INTEGRATED HUMAN HEALTH RISK ASSESSMENT FOR ANNISTON PCB SITE OPERABLE UNIT 4 ANNISTON, ALABAMA

Prepared for:

U.S. Environmental Protection Agency Region 4 Atlanta, Georgia

Contract No. EP-S4-08-03

August 2013

Prepared by:

INTEGRATED HUMAN HEALTH RISK ASSESSMENT

ANNISTON PCB SITE OU4 ANNISTON, ALABAMA

Prepared for:

U.S. Environmental Protection Agency

Remedial Action Contract II Lite Region IV Contract No. EP-S4-08-03 Task Order 001

Prepared by:

J. M. Waller Associates, Inc.

August 2013

James F. Walsh Project Manager 8/1/13

Date

8/1/13

Arnold Ostrofsky, P.E. J. M. Waller Program Manager

Date

Table of Contents
EXECUTIVE SUMMARY
ES 1. INTRODUCTION

ES 1. INTRO	DDUCTION	ES-1
ES 1.1 ES 1.2	CONTAMINANTS OF POTENTIAL CONCERNLAND AND WATER USE	
	Current Uses	
ES 1.3	EXPOSURE UNITS	ES-4
ES 2. EXPO	SURE ASSESSMENT APPROACH	ES-5
ES 2.1	CONCEPTUAL SITE MODEL	ES-5
ES 2.1.1.	Source of Contamination, Release and Transport Mechanisms, and Media	_
ES 2.1.2.	Primary Exposure Media	
ES 2.2	IDENTIFICATION OF EXPOSURE PATHWAYS	ES-7
ES 2.2.2.	Fish Consumption	ES-8
ES 2.3	CHARACTERIZATION OF POTENTIALLY EXPOSED POPULAT	IONS ES-9
ES 2.3.2. ES 2.3.3. ES 2.3.4.	Recreational Anglers Residents Recreational Users Utility Workers Farmers	ES-9 ES-9 ES-10
ES 3. RESUI	LTS	ES-10
ES 3.1 ES 3.2	FISH INGESTION DIRECT CONTACT EXPOSURE	
	Exposure Unit Risks	
ES 3.3	AGRICULTURAL PRODUCT CONSUMPTION	ES-15
	Chicken, Egg and Vegetable Ingestion Beef and Dairy Ingestion	
ES 3.4	INTEGRATED RISK	ES-17
ES 4. CONC	LUSIONS	ES-17

1	INTRO	ODUCTION	1-1
	1.1	OVERVIEW OF THE HHRA	1-2
	1.2	SITE BACKGROUND AND SETTING	1-3
	1.2.1	Site Location and Description	1-3
	1.2.2	Site History	
	1.2.3	Land and Water Use	1-4
	1.2.3.1	Current Uses	
	1.2.3.2	Future Uses	
	1.3	EXPOSURE UNITS	
	1.4 1.5	STRUCTURE OF THE HHRA REPORTREFERENCES	
2		SURE PATHWAYS AND STRATEGY FOR THE HUMAN HEALTH	
_		SSMENT	
	2.1	CONCEPTUAL SITE MODEL	2-1
	2.1.1	Source of Contamination, Release and Transport Mechanisms, and Rece	eiving
		Media	
	2.1.2	Primary Exposure Media	2-2
	2.2	IDENTIFICATION OF EXPOSURE PATHWAYS	2-2
	2.2.1	Fish Consumption	2-3
	2.2.2	Direct Contact Exposure	2-4
	2.2.2.1	Floodplain Soil Exposure	
	2.2.2.2	Sediment and Surface Water Exposure	
	2.2.3	Agricultural Products Consumption	2-4
	2.3	CHARACTERIZATION OF POTENTIALLY EXPOSED POPULATIONS	2-5
	2.3.1	Recreational Angler	2-5
	2.3.2	Residents	
	2.3.3	Recreational Users	
	2.3.4	Utility Workers	
	2.3.5 2.3.6	Farmers	
	2.3.0	REFERENCES	
3		ARD IDENTIFICATION	
3			
	3.1	AVAILABLE DATA	
	3.1.1	Fish	
	3.1.2	Soil	3-2

	3.2	DATA EVALUATION	3-2
	3.2.1	Data Reduction	3-2
	3.2.2	Fish Data Groupings	3-3
	3.2.2.1	Species	
	3.2.2.2	Location	3-4
	3.2.2	ϵ	
	3.2.2		
	3.2.2.3	Summary of Fish Groupings	
	3.2.3	Floodplain Soil Sample Location Averaging	
	3.2.4	Calculation of Toxic Equivalency Values	3-7
	3.3	CONTAMINANT OF POTENTIAL CONCERN SCREENING	3-10
	3.3.1	Fish	3-11
	3.3.2	Soil	3-13
	3.3.3	COPC Screening Summary	3-14
	3.4	REFERENCES	3-15
4	TOXI	CITY ASSESSMENT	4-1
	4.1	NONCANCER EFFECTS	4-1
	4.2	CANCER EFFECTS	
	4.3	TOXICITY VALUES FOR ASSESSING 2,3,7,8-TCDD TEQS	4-3
	4.4	REFERENCES	4-3
5	RISKS	S FROM FISH CONSUMPTION	5-1
	5.1	INTRODUCTION	5-1
	5.2	EXPOSURE ASSESSMENT	5-1
	5.2.1	Exposure Point Concentrations	5-2
	5.2.2	Exposure Models and Parameters	5-3
	5.2.2.1	Fish Consumption Rate	5-3
	5.2.2	2.1.1 RME	5-4
	5.2.2	2.1.2 CTE	
	5.2.2.2	Fraction Ingested	5-5
	5.2.2.3	Cooking Loss	
	5.2.2.4 5.2.2.5	Gastrointestinal Absorption Factor	
	5.2.2.6	•	
	5.2.2.7	6 6	
	5.3	RISK CHARACTERIZATION	5-8
	5.3.1	Cancer Risk	5-8
			_

	5.3.2 5.3.3	Noncancer Health Effects	
	5.3.3.1 5.3.3.2 5.3.3.3	Group A (Locations 1 and 2)	5-12
	5.4	UNCERTAINTY ANALYSIS	5-13
	5.4.1 5.4.2	Hazard Identification	
	5.4.2.1	General Uncertainties	5-14
	5.4.3 5.4.4	Toxicity Assessment	
	5.4.4.1	Calculation of Total Cancer Risk from PCBs	5-21
	5.4.5	Summary	5-23
	5.5 5.6	RISK SUMMARYREFERENCES	
6	RISKS	S FROM DIRECT CONTACT EXPOSURE	6-1
	6.1 6.2	INTRODUCTIONEXPOSURE ASSESSMENT	
	6.2.1 6.2.2	Exposure Units Exposure Point Concentrations	
	6.2.2.1 6.2.2.2 6.2.2.3	tPCBs and Mercury	6-4
	6.3	EXPOSURE PARAMETERS	6-4
	6.3.1	Constant Exposure Parameters	6-5
	6.3.1.1 6.3.1.2 6.3.1.3 6.3.1.4	Body Weight Averaging Time Dermal Absorption Factor Intestinal Absorption Factor from Soil	6-5 6-5
	6.3.2	Receptor-specific Exposure Parameters	6-6
	6.3.2.1 6.3.2.2 6.3.2.3 6.3.2.4	Recreational User Exposure Parameters Utility Worker Exposure Parameters Farmer Exposure Parameters Exposure Doses	6-9 6-9
	6.4	RISK CHARACTERIZATION	6-10
	6.4.1	Cancer Risk	6-11

	6.4.2	Noncancer Health Effects	
	6.4.3	Risk Results	
	6.4.3.1	Exposure Unit Risks	
	6.4.3.2	Site-Wide Risks	
	6.5	UNCERTAINTY ANALYSIS	6-13
	6.5.1	Hazard Identification	
	6.5.2	Exposure Assessment	
	6.5.3	Toxicity Assessment	
	6.5.4	Risk Characterization	6-14
	6.6	RISK SUMMARY	6-15
	6.7	REFERENCES	6-15
7	RISKS	FROM AGRICULTURAL PRODUCTS CONSUMPTION	7-1
	7.1	INTRODUCTION	7-1
	7.2	AGRICULTURAL EXPOSURE UNITS	7-2
	7.3	EXPOSURE ASSESSMENT	7-3
	7.3.1	Agricultural Modeling	7-3
	7.3.1.1	Soil-to-Plant Transfer Mechanisms	
	7.3.1.2	Prediction of Concentrations in Vegetables	7-6
	7.3.1.3	Prediction of Concentrations in Animal Feed	
	7.3.1.4	Prediction of Concentrations in Animal Products	7-7
	7.3.1.		
	7.3.1.	3	
	7.3.1.	4.3 Chickens and Eggs	7-11
	7.3.2	Exposure Parameters	7-12
	7.4	RISK CHARACTERIZATION	7-13
	7.4.1	Cancer Risk	7-13
	7.4.2	Noncancer Health Effects	
	7.4.3	Risk Results	
	7.4.3.1	Vegetable Ingestion	7-14
	7.4.3.2	Beef Ingestion	
	7.4.3.3	Dairy Ingestion	
	7.4.3.4	Chicken and Eggs Ingestion	
	7.5	UNCERTAINTY ANALYSIS	7-17
	7.5.1	Exposure Assessment	7-17
	7.5.2	Toxicity Assessment	
	7.5.3	Risk Characterization	
	7.6	RISK SUMMARY	7-20

7.7	DECEDENCES	7.01
7.7	REFERENCES	7-21
8 INT	FEGRATED RISK CHARACTERIZATION	8-1
9 RES	SULTS	9-1
9.1	FISH INGESTION	9-2
9.2	DIRECT CONTACT EXPOSURE	
9.2.1	Exposure Unit Risks	9-2
9.2.2	Site-Wide Risks for Other COPCs	
9.3	AGRICULTURAL PRODUCT CONSUMPTION	9-3
9.3.1	Chicken, Egg and Vegetable Ingestion	9-4
9.3.2	Beef and Dairy Ingestion	
9.4	CONCLUSIONS	9-4

List of Appendices

Appendix A	Inhalation Screening Evaluation
Appendix B	Surface Water Screening Evaluation
Appendix C	Fish Sample Location Groupings
Appendix D	PCB Dioxin-like Congener Regression Analysis
Appendix E	ProUCL Outputs – Fish
Appendix F	Fish Consumption Rate Derivation
Appendix G	Fish Consumption RAGS 7 Tables
Appendix H	Fish Consumption RAGS 9 Tables
Appendix I	ProUCL Outputs – Direct Contact
Appendix J	Direct Contact RAGS 7 Tables
Appendix K	Direct Contact RAGS 9 and 10 Tables

List of Figures

Figure ES-1	Conceptual Site Model
Figure ES-2	tPCB RME Cancer Risks
Figure ES-3	tPCB RME Hazard Quotients
Figure 1-1	Anniston PCB Site Location Map
Figure 1-2	Operable Unit Locations
Figure 1-3	Location of Direct Contact Exposure Units
Figure 2-1	Conceptual Site Model
Figure 2-2	Direct Contact Exposure Units C2-EU1 and C2-EU2
Figure 2-3	Direct Contact Exposure Units C2N-EU1, C2N-EU2, and C2S-EU1
Figure 2-4	Direct Contact Exposure Units C3N-EU1, C3N-EU2, C3S-EU1, and C3S-EU2
Figure 2-5	Direct Contact Exposure Units C4N-EU1, C4N-EU2, C4S-EU1, C4S-EU2, and
	C4S-EU3
Figure 2-6	Direct Contact Exposure Units C5N-EU1, C5N-EU2, and C5S-EU1
Figure 2-7	Direct Contact Exposure Units C6N-EU1 and C6S-EU1
Figure 2-8	Direct Contact Exposure Units C7N-EU1 and C7S-EU1
Figure 2-9	Direct Contact Exposure Units C8N-EU1 and C8S-EU1
Figure 2-10	Direct Contact Exposure Units C9N-EU1 and C9S-EU1
Figure 3-1	Fish Sample Location Map
Figure 5-1	tPCB Concentration Trends – Pell City Collection Area – ADEM Data 1994-2010
Figure 5-2	tPCB Concentration Trends - Eastaboga Collection Area - ADEM Data 1993-
	2010
Figure 5-3	Fish Ingestion Cancer Risks for "All Species"
Figure 5-4	Fish Ingestion Hazard Quotients for "All Species"
Figure 7-1	Use Restriction and Agricultural Exposure Units
Figure 7-2	Agricultural Exposure Units EU1 and EU2
Figure 7-3	Agricultural Exposure Units EU3, EU4, and EU5
Figure 7-4	Agricultural Exposure Units EU6, EU7, and EU8
Figure 8-1	tPCB RME Cancer Risks
Figure 8-2	tPCB RME Hazard Quotients

List of Tables

Table 2-1	Exposure Scenarios Evaluated Per Exposure Unit
Table 3-1	Samples Used in HHRA – Fish
Table 3-2	Samples Used in HHRA – Soil
Table 3-3	2006 Number of Alabama Anglers by Type of Fish Targeted
Table 3-4	Summary of Analytes Detected in Fish Tissue – Group A
Table 3-5	Summary of Analytes Detected in Fish Tissue – Group B
Table 3-6	Summary of Analytes Detected in Fish Tissue – Group C
Table 3-7	Fish Screening Table
Table 3-8	Summary of Analytes Detected in Floodplain Soil (0 to 1 ft bgs) and Comparison to Residential Soil RSLs
Table 3-9	Summary of Analytes Detected in Floodplain Soil (1 to 4 ft bgs) and Comparison to Residential Soil RSLs
Table 3-10	Summary of Metals Detected in Background Soil (0 to 1 ft bgs) from Fort McClellan
Table 3-11	Comparison of Site Surface Soil Metals Concentrations with Background Soil Levels
Table 4-1	Non-Cancer Toxicity Data – Oral/Dermal
Table 4-2	Cancer Toxicity Data – Oral/Dermal
Table 5-1	Exposure Point Concentration Summary – Location A Fish
Table 5-2	Exposure Point Concentration Summary – Location B Fish
Table 5-3	Exposure Point Concentration Summary – Location C Fish
Table 5-4	Fish Ingestion Exposure Parameters
Table 5-5	Summary of Cancer Risks and Hazard Indexes – RME Scenario – Primary COPCs
Table 5-6	Summary of Cancer Risks and Hazard Indexes – RME Scenario – TEQs
Table 5-7	Summary of Cancer Risks and Hazard Indexes – CTE Scenario – Primary COPCs
Table 5-8	Summary of Cancer Risks and Hazard Indexes – CTE Scenario – TEQs
Table 6-1	Comparison of Exposure Unit tPCB Concentrations to 1 mg/kg tPCBs – Surface Soil
Table 6-2	Comparison of Exposure Unit tPCB Concentrations to 1 mg/kg tPCBs – Total Soil
Table 6-3	Occurrence and Distribution of Contaminants of Potential Concern – Surface Soil – Primary COPCs
Table 6-4	Occurrence and Distribution of Contaminants of Potential Concern – Total Soil – Primary COPCs
Table 6-5	Occurrence and Distribution of Contaminants of Potential Concern in Agricultural Exposure Units – Surface Soil – Primary COPCs
Table 6-6	Exposure Point Concentration Summary – tPCBs and Mercury – Surface Soil
Table 6-7	Exposure Point Concentration Summary – tPCBs and Mercury – Total Soil

List of Tables

Table 6-8	Exposure Point Concentration Summary - tPCBs and Mercury in Agricultural
Table 0-0	Exposure Units – Surface Soil
Table 6-9	PCB Congener TEQ Summary – Surface Soil
Table 6-10	PCB Congener TEQ Summary – Total Soil
	·
Table 6-11	PCB Congener TEQ Summary in Agricultural Exposure Units – Surface Soil
Table 6-12	Exposure Point Concentration Summary – Other COPCs – Surface Soil
Table 6-13	Soil Contact Exposure Parameters
Table 6-14	Summary of Cancer Risks and Noncancer Hazard Indices from Primary COPCS
Table 6-15	Summary of Cancer Risks and Noncancer Hazard Indices from Primary COPCS –
	Agricultural Exposure Units
Table 6-16	Site-Wide Cancer Risks from Other COPCs
Table 6-17	Site-Wide Hazard Indices from Other COPCs
Table 7-1	Summary of Total PCBs Detected in Agricultural Exposure Units – Surface Soil
Table 7-2	Agricultural Product Modeling Parameters
Table 7-3	Agricultural Products – Modeled Concentrations Assuming 1 mg/kg Total PCBs
Table 7-4	Agricultural Product Ingestion Exposure Parameters – Vegetables and Beef
Table 7-5	Agricultural Product Ingestion Exposure Parameters – Dairy, Chickens, and Eggs
Table 7-6	Summary of Agricultural Product Intake Rates (as Consumed)
Table 7-7	Fraction of Food Intake that Is Home Produced
Table 7-8	Derivation of Agricultural Product Ingestion Rates
Table 7-9	Vegetable Ingestion Risk Matrix
Table 7-10	Beef Ingestion Risk Matrix
Table 7-11	Dairy Ingestion Risk Matrix
Table 7-12	Chicken Ingestion Risk Matrix
Table 7-13	Egg Ingestion Risk Matrix
Table 7-14	Beef Ingestion Risk Matrix – Sensitivity Analysis for Lower Soil Bioavailability
Table 7-15	Dairy Ingestion Risk Matrix – Sensitivity Analysis for Lower Soil Bioavailability

Acronyms and Abbreviations

ABS dermal absorption factor ADD average daily dose

ADEM Alabama Department of Environmental Management

AF adherence factor
ALT Alabama Land Trust
AT averaging time

ATSDR Agency for Toxic Substances and Disease Registry

bgs below ground surface

BW body weight

CA characterization area

CalEPA California Environmental Protection Agency

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

cm² square centimeter

COPC contaminant of potential concern

CSF cancer slope factor
CSM conceptual site model
CTE central tendency exposure

ED exposure duration EF exposure frequency

EPA U.S. Environmental Protection Agency

EPC exposure point concentration

EU exposure unit FI fraction ingested FOD frequency of detection

ft foot

HHRA Human Health Risk Assessment

HI hazard index HQ hazard quotient

IAF intestinal absorption factor

IRIS Integrated Risk Information System

IRS soil ingestion rate

JMWA J.M. Waller and Associates

KM Kaplan-Meier kg kilogram

LADD lifetime average daily dose mg/cm² milligram per square centimeter

mg/kg milligram per kilogram

ND non-detect OU Operable Unit

PAR Pathways Analysis Report

PAH polycyclic aromatic hydrocarbon

Acronyms and Abbreviations

PCB polychlorinated biphenyl

PCDD polychlorinated dibenzo-p-dioxin PCDF polychlorinated dibenzofuran

PPRTV Provisional Peer-Reviewed Toxicity Value RAGS Risk Assessment Guidance for Superfund RCRA Resource Conservation and Recovery Act

RfC reference concentration

RfD reference dose

RFI/CS RCRA Facility Investigation/Confirmatory Sampling

RME reasonable maximum exposure
RSL Regional Screening Level
SA exposed skin surface area
SQL sample quantitation limit

SVOC semi-volatile organic compound

TEF toxic equivalency factor

TEQ toxic equivalency

tPCBs total PCBs

UCL upper-confidence limit

URF unit risk factor

VOC volatile organic compound WHO World Health Organization

EXECUTIVE SUMMARY

ES 1. INTRODUCTION

J.M. Waller and Associates, Inc. (JMWA) was tasked by the U.S. Environmental Protection Agency (EPA) to perform a human health risk assessment (HHRA) for Operable Unit 4 (OU-4) of the Anniston Polychlorinated Biphenyl (PCB) Site (the Site) located in Anniston, Alabama. The Anniston PCB Site refers to the area (including all OUs) where hazardous substances, including PCBs (associated with releases or discharges as a result of the operations and waste disposal from the Anniston Plant by Solutia Inc. (Solutia), Monsanto Chemical Company (Monsanto), and their predecessors), have come to be located.

OU-4, the focus of this HHRA, is within Calhoun and Talladega Counties and encompasses the length of Choccolocco Creek and its floodplain from the confluence with Snow Creek, including the backwater area and upstream on Snow Creek to Highway 78, to Lake Logan Martin. The OU-4 HHRA was developed to characterize the potential exposure and risks associated with consumption of fish from Choccolocco Creek, contact with the floodplain soil, and consumption of agricultural products originating in the floodplain. The HHRA was based on the receptors and exposure parameters presented in the Final Pathways Analysis Report (PAR) (JMWA, 2009), and considers the current and future-use exposure pathways by which individuals may be exposed to contaminated media. Exposure pathways were identified based on consideration of the sources and locations of contaminants, the likely environmental fate of the contaminants, and the location and activities of the potentially exposed populations.

During the preparation of this HHRA, the JMWA team reviewed the available information pertaining to the Site from other OUs (i.e., OU-1/OU-2 and OU-3), as well as available information on land and water uses along the Choccolocco Creek. Members of the JMWA team also visited the OU-4 area on multiple occasions, floated major reaches of the Choccolocco Creek, and researched current and future land use trends in the area. This information was applied to the development of the PAR and the exposure assessment presented in this document.

ES 1.1 CONTAMINANTS OF POTENTIAL CONCERN

A contaminant of potential concern (COPC) screening was performed for the OU-4 HHRA. The primary contaminant released from the site was PCBs. Total PCBs (tPCBs, represented as the sum of Aroclors), PCB dioxin-like congener TEQ, 2,3,7,8-TCDD TEQ, and mercury were identified as COPCs for the fish ingestion pathway. Total PCBs and mercury were identified as the primary COPCs in the floodplain soil. In addition, other analytes including dioxins/furans, carcinogenic PAHs, and metals except mercury were identified as COPCs in the floodplain soil, and were evaluated separately due to limited data. As noted in the PAR (JMWA, 2009), only tPCBs were evaluated in agricultural products.

ES 1.2 LAND AND WATER USE

The HHRA evaluated potential risks associated with the current and reasonably anticipated future uses within OU-4.

ES 1.2.1. Current Uses

The OU-4 area includes numerous properties owned by private and public entities that are used for residential, recreational, agricultural, and commercial/industrial purposes. The floodplain area is approximately 6,000 acres. The percentage of each land use in the floodplain is as follows (Arcadis, 2009):

- Agriculture 40 %
- Forest 38 %
- Scrub 10 %
- Commercial/Industrial 7 %
- Residential 3 %
- Park − 1 %
- Waste-water treatment plant– 1 %

According to local Agricultural Extension and Farm Service Agents, there are no dairy cattle and only limited row crop production in Calhoun County in the floodplain other than crops such as corn and soybeans that can be used as silage for cattle (Butler, 2009 and West, 2009). Further downstream in Talladega County, row crops are more common (wheat, cotton, corn and soybeans) and acreage in row crops exceeds acreage used to raise beef cattle (Browning, 2009 and Jurriaans, 2009). As with Calhoun County, there are no current dairy farms with grazing

cows in the floodplain in Talladega County. Agricultural Extension and Farm Service agents for both counties indicated that locally raised beef consumption is not typical and that the common practice is to sell livestock to local and/or regional buyers (Butler, 2009, Browning, 2009, Jurriaans, 2009, and West, 2009). Small backyard gardens and chicken raising operations are present at many locations in both counties, although it is unclear whether that practice occurs in the floodplain areas.

Fishing is possible anywhere along the Choccolocco Creek, but it is likely that the majority of the fishing occurs at and around bridge crossings where access is easy. Local landowners are also known to fish along the Creek in areas with private access. In addition, given the nature, size, and accessibility of the Creek, it is likely that fishing is more common at locations further downstream than at locations closer to the confluence with Snow Creek.

There has been a fish consumption advisory on the Creek since 1994, recommending no consumption due to PCBs. For the purposes of the evaluation of fish consumption presented in this HHRA, it was assumed that the Creek did not have a fish advisory in place, and that consumption of locally caught fish was not influenced by this advisory. This approach is consistent with EPA policy (EPA, 1990).

Recreational use and exposure to floodplain soil is possible throughout the floodplain area. The forested areas provide attractive habitat for various recreational activities including hiking, fishing, canoeing, wading, etc. It is also likely that local adolescents frequent specific areas along the Creek. Hunting is common at many areas as demonstrated by the deer hunting blinds interspersed throughout the floodplain.

There are a number of residential areas within and adjacent to the floodplain. The commercial/industrial areas within the floodplain area consist of the airport property and two waste-water treatment plants. Natural gas pipelines, a railroad, and aboveground utility lines transect the floodplain at various locations.

ES 1.2.2. Future Uses

The Alabama Land Trust (ALT) is in the process of developing a Conservation Corridor for Choccolocco Creek. The Conservation Corridor is a conservation easement that limits the

development and use of the floodplain within certain distances from the Creek bank. There are three distinct zones within the corridor:

- Zone 1 Creek bank to 100 feet into the floodplain;
- Zone 2 the area between 100 feet and 200 feet from the edge of the Creek into the floodplain; and
- Zone 3 the area from 200 feet to a maximum distance of 1,000 feet into the floodplain.

Use restrictions vary depending on the property owner and stipulations in the agreement but, in general, Zone 1 has the largest number of use restrictions followed by Zone 2 and Zone 3. The level of restriction is important because the land use and potential exposure to COPCs within the Conservation Corridor will be different from exposure outside of the Corridor. The status of the Conservation Corridor as of April 2012 has been used in this HHRA.

In areas where the Conservation Corridor does not specifically limit certain uses, it was assumed that future land use will be the same as current land use with no restrictions in place. Future residential development in floodplain areas will need to be monitored to ensure residential exposures do not exceed applicable risk benchmarks.

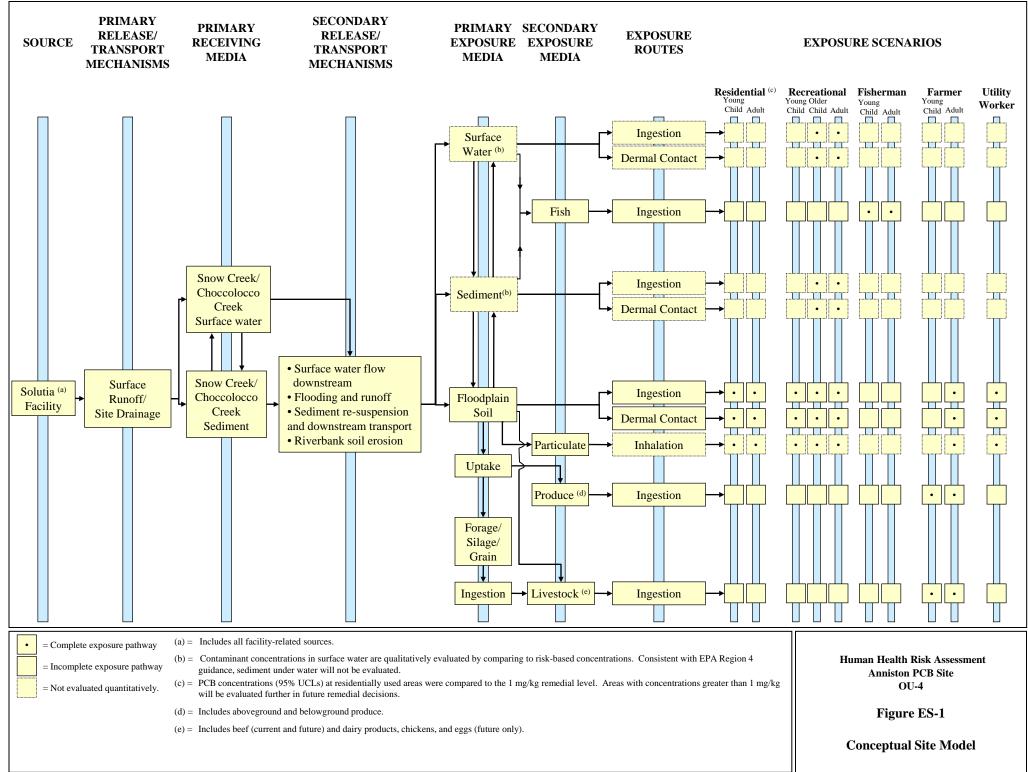
ES 1.3 EXPOSURE UNITS

OU-4 includes over 35 miles of the Choccolocco Creek floodplain. Solutia developed characterization areas (CAs) that were based on topographical and hydraulic features to evaluate the nature and extent of contamination. Nine CAs were identified along the length of OU-4 and each of the nine CAs were subdivided into two to four subareas based on the side of the Creek (north or south) and amount of 100-year floodplain. Given the size and land use variability of these CAs, EPA determined that additional segmentation of CAs into exposure units (EUs) was necessary to adequately characterize exposure.

The approach for developing EUs was to identify as large an area as reasonable within a CA considering both property ownership and land use. In some cases, entire CAs were identified as an EU, in other cases two or more EUs were identified within a CA. At several areas, the EUs encompassed portions of two CAs. Twenty-five EUs were identified for the direct contact risk

assessment in OU-4, and an additional eight EUs were identified to focus on agricultural exposure through direct contact.

ES 2. EXPOSURE ASSESSMENT APPROACH


ES 2.1 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) for human exposure has been developed to describe the contaminant sources, the release and transport mechanisms, the receiving media, the exposure media, the exposure routes, and the potentially exposed populations. The primary objective of the CSM is to identify complete and incomplete exposure pathways. A complete exposure pathway has all of the above-listed components, whereas an incomplete pathway is missing one or more. Figure ES-1 illustrates the CSM that was developed for OU-4.

ES 2.1.1. Source of Contamination, Release and Transport Mechanisms, and Receiving Media

The release and transport processes affecting the fate of PCBs within the Choccolocco Creek and its floodplain are interrelated and complex. The following potential contaminant transport pathways have been identified:

- Surface runoff and drainage from the Solutia facility in Anniston.
- Erosion and downstream transport of contaminated bank soil.
- Sediment contamination via runoff carrying suspended soil particles contaminated with PCBs.
- Floodplain soil contamination via deposition of suspended river sediment during out-of-bank flood events.
- Erosion of contaminated floodplain soil (surface and subsurface) during flood events, and subsequent deposition as contaminated river sediment.
- Bioaccumulation and cycling of PCBs within the terrestrial and aquatic food chains exposed to contaminated soil, surface water, and sediment.

ES 2.1.2. Primary Exposure Media

Based on the review of the current and potential future land and water uses, the following primary exposure media are of potential concern in OU-4:

- Fish.
- Soil (floodplain).
- Sediment.
- Surface water.
- Agricultural products.

ES 2.2 IDENTIFICATION OF EXPOSURE PATHWAYS

The length of the Choccolocco Creek within OU-4, and the size and multiple uses of the floodplain, pose a significant challenge to effectively assessing human health risk from direct and indirect exposures for both current and potential future uses. Children and/or adults could be exposed to soil while engaging in a variety of activities around their homes or recreational activities at other locations. Adults could be exposed to soil while working in agricultural, landscaping, utility maintenance, and other occupations. Sediment and surface water exposure could occur along the riverbanks or in shallow areas of the Creek during recreational activities such as fishing, canoeing, swimming, or wading. Anglers, farmers, and hunters and their families could be exposed to Site contaminants from consumption of fish caught from the Creek, or crops and other agricultural products raised in the floodplain.

For OU-4, three potentially significant modes of contact between contaminated media and humans were evaluated:

- Consumption of fish.
- Direct contact with contaminated media (soil, sediment, and surface water).
- Consumption of agricultural products (e.g., vegetables, beef) grown or raised in the floodplain.

The following sections describe the possible receptors and exposure pathways considering both current and potential future land and water uses.

ES 2.2.1. Fish Consumption

The potential exposure and risks from consuming recreationally-caught fish from the Choccolocco Creek were evaluated. Choccolocco Creek in the vicinity of Lake Logan Martin appears to be a favorite feeder stream of anglers (Phillips, 2009; BamaBassFishing, 2009). The Choccolocco is suggested as a stream to consider for float fishing (ADCNR, 2009), that is good for bank fishing (ADCNR, 2008), and is mentioned in the book *America's Best Bass Fishing* (Price, 2000). There has been a fish consumption advisory on the Creek since 1994, recommending no consumption due to PCBs. However, the presence of PCBs in fish collected from Choccolocco Creek coupled with the popularity of these areas for fishing suggest that ingestion of recreationally caught fish may be a route of potential exposure to PCBs, even with the fish consumption advisory. In addition, EPA guidance requires that risk assessments evaluate fish ingestion under the assumption that no fish consumption prohibition exists (EPA, 1990).

The analytical data used to determine the fish exposure point concentrations were derived from samples that represent fish species, fish length, and fish tissue (fillet) that are most typically caught and consumed by the local population.

ES 2.2.2. Direct Contact Exposure

The direct contact portion of the HHRA evaluates the potential exposure to floodplain soil, sediment, and surface water.

Floodplain Soil Exposure

For soil contact, the following exposure pathways were considered: incidental soil ingestion, dermal contact and absorption, and inhalation of particulates.

Sediment and Surface Water Exposure

Consistent with EPA Region 4 guidance, direct contact with sediment in underwater areas was not quantitatively evaluated in this HHRA because of infrequent contact by human receptors. Based on the low levels observed in the available surface water data, the surface water contact exposure scenarios were also eliminated from consideration.

ES 2.2.3. Agricultural Products Consumption

The potential exposure and risk to an individual who grows vegetables and crops and raises livestock in the floodplain was evaluated. In contrast to the direct contact and fish consumption portions of the HHRA that were based on empirical soil and fish tissue data, the presence of PCBs in the agricultural products consumed by humans was estimated using models. The models predict the degree to which PCBs measured in the floodplain soil could be transferred to plants (root uptake) and animals (incidental soil ingestion and ingesting feed grown in the floodplain). Model input values were based on site-specific information (when available), including regional farm management practices.

ES 2.3 CHARACTERIZATION OF POTENTIALLY EXPOSED POPULATIONS

ES 2.3.1. Recreational Anglers

Recreational anglers, including a young child and an adult, were assumed to ingest fish caught in the Choccolocco Creek. The fish tissue data collected by Solutia in 2008 were used to develop contaminant concentrations in fish, and fish consumption estimates were developed from applicable studies of similar waterbodies.

ES 2.3.2. Residents

Potential residential structures with property in the floodplain that could be affected by PCB contamination were identified by Solutia (Arcadis, 2010). Following the identification of the structures, representatives from EPA and Solutia performed a field investigation to delineate the residentially used areas surrounding the structure that could be contacted by residents. These residentially used areas are planned for evaluation as part of the Non-Time Critical Removal Action agreement between Solutia and EPA and, as a result, are not in the scope of this HHRA. Future residential development in floodplain areas will need to be monitored to ensure residential exposures do not exceed applicable risk benchmarks.

ES 2.3.3. Recreational Users

Recreational exposure, including bank fishing, hunting, hiking, etc., is the predominant exposure occurring in the floodplain. It is expected that some degree of recreational exposure occurs at the majority of the EUs (commercial and industrial areas excluded). The presence of the

Conservation Corridor would not affect the potential contact with floodplain from recreational exposure. That is, the use restrictions in Conservation Corridor agreements do not affect individuals that use the floodplain for non-intrusive recreational activities such hiking and walking.

ES 2.3.4. Utility Workers

Utility workers could be exposed to contaminants in surface and subsurface soil via incidental ingestion and dermal contact during activities such as easement or equipment maintenance, and/or the installation of new equipment such as utility poles or piping. This potential exposure was assumed to be intensive for a short duration. A construction worker scenario was not considered to be a complete exposure scenario because flooding events preclude major construction in the floodplain.

ES 2.3.5. Farmers

The farmer (adult) was assumed to intensively contact the floodplain surface soil (incidental ingestion and dermal contact and absorption) when tilling the soil and planting and harvesting crops. In addition, the farmer, including a young child, was assumed to consume agricultural products (e.g., vegetables and beef) raised in the floodplain.

ES 3. RESULTS

The OU-4 HHRA characterized the potential exposure and risks associated with consumption of fish from Choccolocco Creek, direct contact with the floodplain soil, and consumption of agricultural products originating (i.e., grown or raised) in the Choccolocco Creek floodplain. EPA uses a target cancer risk range of 1E-06 to 1E-04 (or 1 in a million to 1 in 10,000) to determine whether a site needs to be remediated. Cancer risks below 1E-06 are typically assumed to be *de minimus* and would require no action to remediate or mitigate human health risks. Risks within this range are usually considered acceptable, but specific decisions are made on a site-specific basis by EPA. Risks that exceed 1E-04 usually require remediation and/or mitigation; however, no "bright line" has been established at the upper end of the risk range, and decisions on the need to remediate or mitigate are made on a site-specific basis.

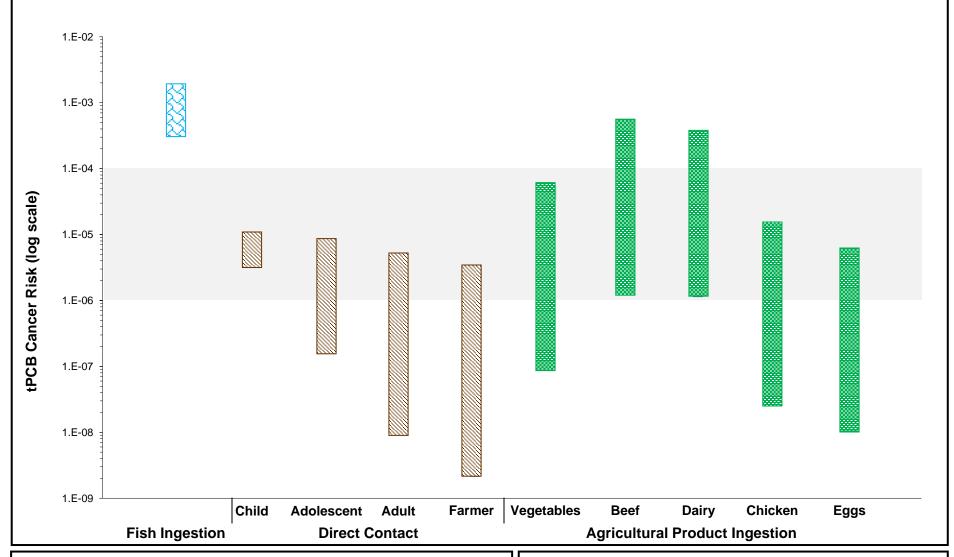
For noncancer hazards, EPA uses a target HI of one. Where HIs exceed this target number, remediation may be warranted; however, similar to the cancer evaluation, risk management decisions are made on a site-specific basis.

The estimates of cancer risk and noncancer HIs summarized below are compared to these benchmarks as a way of providing a perspective on the estimated risk levels for the various stakeholders. Figures ES-2 and ES-3 are visual presentations of tPCB reasonable maximum exposure (RME) cancer risk and hazard indices for each exposure pathway.

ES 3.1 FISH INGESTION

The RME risk levels from fish ingestion exceeded the EPA cancer risk range (1E-06 to 1E-04). The RME cancer risks from tPCBs were greater than 1E-04 for all locations and fish groupings. The RME cancer risks from PCB dioxin-like congener TEQ and 2,3,7,8-TCDD TEQ were less than the risks from tPCBs and were within or above the EPA risk range. As would be expected, the central tendency exposure (CTE) cancer risks were less than the RME and were within or slightly above the EPA risk range.

Total PCBs resulted in RME HQs greater than 10 for every location. The RME HQs from mercury, PCB dioxin-like congener TEQ, and 2,3,7,8-TCDD TEQ were greater than one at a number of locations but were less than the tPCBs HQs. The CTE HQs were less than the RME, but with HQs for tPCBs still greater than one.


ES 3.2 DIRECT CONTACT EXPOSURE

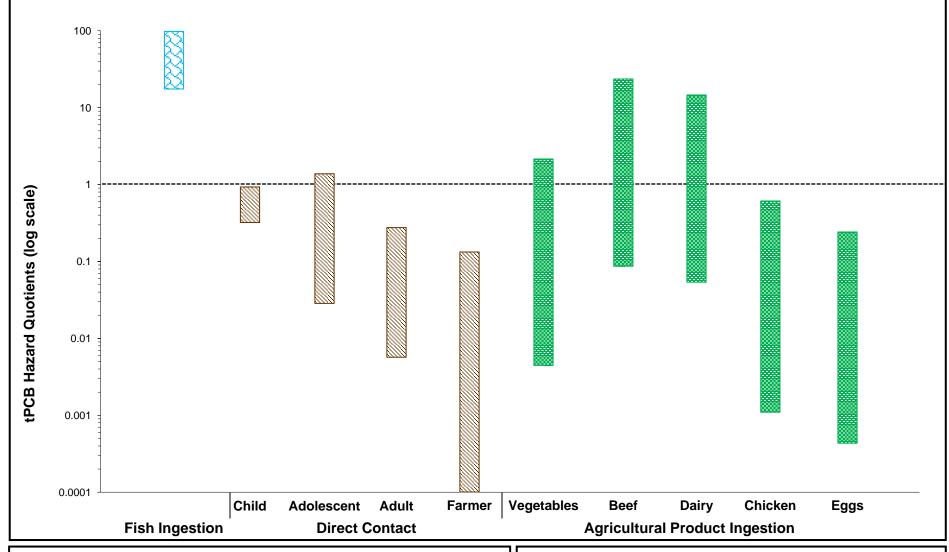
The results of the direct contact risk calculations are presented below, with the primary COPCs exposure unit (EU) risks presented first, and the risks associated with the other COPCs presented separately because the amount of analytical data available for the other COPCs were limited and EU-specific risks could not be calculated.

ES 3.2.1. Exposure Unit Risks

Primary COPCs for direct contact exposure were tPCBs, PCB dioxin-like congener TEQ, and mercury. Based on the available toxicity characteristics, cancer risks were estimated for tPCBs

and PCB dioxin-like congener TEQs only; whereas HQs were estimated for all three primary COPCs.

Legend:


Notes:

- Fish ingestion risk range represents minimum to maximum RME tPCB risks including all fish species and location groupings.
- 2) Direct contact risk range represents minimum to maximum RME tPCB risks including all EUs at which the receptor was evaluated. Note the adult receptor range includes both recreational and worker exposure.
- Agricultural product ingestion risk ranges represent the minimum to maximum RME tPCB risks calculated for 1 to 40 mg/kg in soil and 10 to 100% floodplain soil exposure, as appropriate for scenario.
- 4) Gray shaded area represents EPA's cancer risk range (1E-06 to 1E-04).

FIGURE ES-2

tPCB RME Cancer Risks

ANNISTON PCB SITE – OU4

Legend:

Notes:

- 1) Fish ingestion HQ range represents minimum to maximum RME tPCB HQs including all fish species and location groupings.
- 2) Direct contact HQ ranges represent minimum to maximum RME tPCB HQs including all EUs at which the receptor was evaluated. Note the adult receptor range includes both recreational and worker exposure.
- Agricultural product ingestion HQ ranges represent the minimum to maximum RME tPCB HQs calculated for 1 to 40 mg/kg in soil and 10 to 100% floodplain soil exposure, as appropriate for scenario.
- 4) Horizontal dashed line represents EPA's noncancer benchmark of one.

FIGURE ES-3

tPCB RME Hazard Quotients ANNISTON PCB SITE - OU4

The recreational and farmer cancer risks based on both tPCBs and PCB dioxin-like congener TEQ were either within or less than the EPA acceptable cancer risk range of 1E-06 to 1E-04 at all applicable EUs. The utility worker cancer risks for both tPCBs and PCB dioxin-like congener TEQ were less than the EPA acceptable cancer risk range of 1E-06 to 1E-04 at all EUs.

With very minor exceptions, the noncancer recreational exposure HIs were less than one for all three primary COPCs. The utility worker and farmer HIs were also less than one at all direct contact EUs.

Recreational user, utility worker, and farmer CTE cancer risks were less than the EPA acceptable cancer risk range of 1E-06 to 1E-04 and the noncancer benchmark of one at all direct contact and agricultural EUs.

ES 3.2.2. Site-Wide Risks for Other COPCs

Due to limited data, site-wide risks from direct contact with floodplain soil were estimated separately for 2,3,7,8-TCDD TEQ, carcinogenic PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene), aluminum, arsenic, chromium, cobalt, iron, and manganese. To provide an estimate of all potential recreational exposures, risks were estimated assuming high contact and low contact recreational exposure.

The RME site-wide total cancer risks were within the EPA acceptable risk range for the other COPCs. The noncancer HIs were well below the noncancer benchmark of one. All CTE cancer risks and noncancer HIs were below these benchmarks.

ES 3.3 AGRICULTURAL PRODUCT CONSUMPTION

Current and potential future food production activities by the farmer who grows vegetables and crops and raises livestock in the floodplain were evaluated. Risks were not calculated for specific areas, properties, or agricultural practices because to do so would only provide information for a single set of scenarios and would not be useful if/when conditions and farming practices change in the future. Rather, the agricultural exposure component of the HHRA evaluates where agricultural use is occurring (or could occur) and uses representative tPCB concentrations to

generate risk matrices incorporating multiple potential farming practices and home grown ingestion scenarios.

Total PCB soil concentrations were set at 1 mg/kg, 5 mg/kg, 20 mg/kg, and 40 mg/kg to reflect the range of concentrations in floodplain areas used for agricultural purposes. Fraction ingested (FI) assumptions, which account for the varying livestock raising practices in the floodplain, were set at 10%; 25%; 50%; 75%; or 100%. The 100% FI value was not evaluated for beef and dairy cattle because the sizes of the agricultural areas within the EUs would likely preclude cattle from obtaining 100% of their diet from within the floodplain.

ES 3.3.1. Chicken, Egg and Vegetable Ingestion

Even at the worst case assumptions of the amount of these products ingested and tPCB soil concentrations, the calculated cancer risks were within EPA's risk range, and with very minor exceptions, the HQs were below one. Based on the conservative assumptions included in the HHRA, the potential for any unacceptable risks from consuming chicken, eggs, and vegetables is minimal.

ES 3.3.2. Beef and Dairy Ingestion

Cancer risks and hazard quotients for beef and dairy ingestion ranged from below to above the EPA benchmarks, depending upon the soil concentration and fraction ingested scenario considered. In general, at the highest tPCB soil concentrations (e.g., 20 and 40 mg/kg) and/or the highest FIs (e.g., 25 and 50%), estimated risks were greater than the cancer and noncancer benchmarks.

Although there is currently no evidence to suggest that the consumption of locally raised beef is currently occurring in OU-4, based on these results, consuming beef on a regular basis over a long period of time from cattle grazed in areas with the highest soil tPCB concentrations found in agricultural areas (e.g., 20 and 40 mg/kg) would be a potential health concern for local farmers.

Although there are no known dairy farms within the OU-4 floodplain, if that situation changed in the future, the potential exists for risks to local dairy farmers and their families should they consume milk on a regular basis over a long period of time from dairy cows located at the highest tPCB concentration areas of the floodplain.

ES 3.4 INTEGRATED RISK

The focus of the HHRA was on evaluating potential risk from the three primary exposure pathways on an individual basis. This approach was taken because at a site like OU-4, which covers more than 35 Creek miles and 6,000 acres of floodplain, there are too many potential combinations of exposures through multiple pathways to quantify total integrated risks in any meaningful manner.

The most important consideration in understanding the risk profile for OU-4 is that fish ingestion risk is the most important exposure pathway. Beef and dairy consumption could be important if an individual raised a significant amount of beef or dairy products for personal consumption in the most highly contaminated areas of the floodplain for a long period of time. It is also important to note that the agricultural product risks are based on estimated, not measured concentrations, which are expected to be conservative in nature. Other than this worst case agricultural pathway assumption, combining the direct contact and/or agricultural product risks to risks associated with fish ingestion would have little impact on the overall results. Conversely, if an individual heeded the fish consumption advisory, and did not consume fish from the Choccolocco Creek on a regular basis, most farming and recreational practices would not be likely to result in unacceptable risks.

ES 4. CONCLUSIONS

As with any HHRA, there are numerous sources of uncertainty associated with an attempt to estimate current and future potential human health risks. Detailed discussions of the most important aspects of uncertainty in the OU-4 HHRA were presented in the individual sections of the report. In general, the uncertainties inherent in the risk assessment process tend to overestimate risk to protect public health. This is also true of this HHRA in that the majority of the assumptions used would tend to overestimate risk to human health. Overall, the following conclusions can be drawn:

- Fish consumption poses a potentially significant human health risk to those who regularly consume fish from the Choccolocco Creek at or near the levels assumed in the HHRA.
- Risks from consuming locally raised beef and dairy products from the highest concentration areas also could pose health risks if current practices changed and a

significant portion of an individual's beef and/or dairy intake was locally raised and consumed over a long period of time. More typical exposures to these products, even if originating from the floodplain, are unlikely to cause any unacceptable health risks.

- Risks from other agricultural product consumption, including chicken, eggs, and vegetables are not likely to be a concern under any current or future circumstances.
- Risks from direct contact exposures are not likely to be of any concern even at the highest concentration areas.

1 INTRODUCTION

J.M. Waller and Associates, Inc. (JMWA) was tasked by the U.S. Environmental Protection Agency (EPA) to perform a human health risk assessment (HHRA) for Operable Unit 4 (OU-4) of the Anniston Polychlorinated Biphenyl (PCB) Site (the Site). This risk assessment was performed under Contract No. EP-S4-08-03, Task Order No. 01. The Anniston PCB Site refers to the area (including all OUs) where hazardous substances, including PCBs (associated with releases or discharges as a result of the operations and waste disposal from the Anniston Plant by Solutia Inc. (Solutia), Monsanto Chemical Company (Monsanto), and their predecessors), have come to be located. The former PCB plant property is owned by Solutia. Solutia's Anniston plant encompasses approximately 70 acres of land and is located about 1 mile west of downtown Anniston, Alabama (see Figure 1-1).

To facilitate the investigation, the Anniston PCB Site has been divided into OUs:

- OU-1/OU-2: consists of both residential and non-residential properties near the former Monsanto Company's Anniston PCB manufacturing plant (the plant) and downstream, following Snow Creek to Highway 78.
- OU-3: consists of the plant, the South Landfill, and the West End Landfill.
- OU-4: encompasses the length of Choccolocco Creek and its floodplain from the confluence with Snow Creek, including the backwater area and upstream on Snow Creek to Highway 78, to Lake Logan Martin.

This OU-4 HHRA report is the next step in EPA's evaluation of the potential risks to human health associated with the Anniston PCB Site. HHRAs have been produced for OU-1/2 and OU-3.

The OU-4 HHRA was developed to characterize the potential exposure and risks associated with consumption of fish from Choccolocco Creek, contact with the floodplain soil, and consumption of agricultural products originating in the floodplain. The HHRA was based on the receptors and exposure parameters presented in the Final Pathways Analysis Report (PAR) (JMWA, 2009), and considers the current and future-use exposure pathways by which individuals may be exposed to contaminated media. Exposure pathways were identified based on consideration of

the sources and locations of contaminants, the likely environmental fate of the contaminants, and the location and activities of the potentially exposed populations.

1.1 OVERVIEW OF THE HHRA

During the preparation of this HHRA, the JMWA team reviewed the available information pertaining to the Site from other OUs (i.e., OU-1/OU-2 and OU-3), as well as available information on land and water uses along the Choccolocco Creek. Members of the JMWA team also visited the OU-4 area on multiple occasions, floated major portions of the Choccolocco Creek, and researched current and future land use trends in the area. This information was applied to the development of the PAR and the exposure assessment presented in this document.

The HHRA was developed in accordance with EPA Guidance set forth in the following documents:

- Specific risk assessment guidance from EPA Region 4.
- Risk Assessment Guidance for Superfund: Human Health Evaluation Manual, Part A (EPA, 1989).
- Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors (EPA, 1991).
- Guidelines for Exposure Assessment (EPA, 1992).
- Exposure Factors Handbook 2011 Edition (Final) (EPA, 2011).
- Exposure Factors Handbook, Volumes I, II, and III (EPA, 1997).
- Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment Bulletins (EPA, 2000).
- Risk Assessment Guidance for Superfund: Human Health Evaluation Manual, Part D (EPA, 2001).
- Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (EPA, 2002).
- CSFII Analysis of Food Intake Distributions (EPA, 2003).
- Risk Assessment Guidance for Superfund: Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment. Final (EPA, 2004).
- Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities (EPA, 2005).
- Child-Specific Exposure Factors Handbook (EPA, 2008).
- Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Part F, Supplemental Guidance for Inhalation Risk Assessment. Final (EPA, 2009).

1.2 SITE BACKGROUND AND SETTING

1.2.1 Site Location and Description

The Anniston PCB Site is located in parts of Calhoun and Talladega Counties in the north-central part of Alabama (Figure 1-1). The Anniston PCB Site consists of the entire geographic area in Anniston and its environs where PCBs have come to be located. EPA believes that the vast majority of the PCBs in the Anniston area were released from the operations of the former Monsanto Company's Anniston PCB manufacturing plant. Today the former PCB plant property is owned by Solutia and currently produces para-nitrophenol and polyphenyl compounds.

EPA has been performing investigations in Anniston under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to evaluate the threat to public health, welfare, or the environment posed by hazardous substances, including PCBs. As previously mentioned, the Anniston PCB Site has been divided into OUs to facilitate the investigation and cleanup. Figure 1-2 presents the locations of the Anniston PCB Site OUs.

1.2.2 Site History

A thorough discussion of the manufacturing history at the Solutia facility was included in the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Confirmatory Sampling (RFI/CS) Work Plan for the Anniston, Alabama, Facility (Golder, 1997). As reported therein, manufacturing operations began in 1917 with the production of ferro-manganese, ferro-silicon, ferro-phosphorous compounds, and phosphoric acid (added later) by the Southern Manganese Corporation. In 1927, the production of organic chemicals began with the introduction of biphenyl, which remains a major product today. In 1930, Southern Manganese Corporation became Swann Chemical Company (Swann); in May 1935, Monsanto Chemical Company purchased Swann. PCBs were produced at the plant from 1929 until 1971. In 1997, Monsanto Company formed Solutia and transferred ownership for certain chemical divisions. Solutia currently produces para-nitrophenol and polyphenyl compounds at the Anniston plant.

During its operational history, the plant disposed of hazardous and nonhazardous waste at various areas, including the West End landfill and the South landfill, which are located adjacent to the plant. The West End Landfill encompasses six acres of land, located on the southwestern

side of the plant. The West End Landfill was used for disposal of the plant's wastes from the mid-1930s until approximately 1960. In 1960, Monsanto Company began disposing of wastes at the South Landfill. Disposal of wastes at the South Landfill ceased around 1988. During the time that the West End Landfill and the South Landfill were used to dispose of wastes, there was a potential for hazardous substances, including PCBs, to be released from the landfills via soils and sediments being transported in surface water leaving the property. In addition, during the time that PCBs were manufactured by Monsanto Company at its Anniston plant, an aqueous stream flowing to a discharge point (currently identified as DSN0001) on the property contained PCBs. Discharge from that discharge point flowed to a ditch, the waters of which flowed toward Snow Creek. Sampling by EPA, Solutia, Alabama Department of Environmental Management (ADEM), and other parties has indicated that sediments in drainage ditches leading away from the plant, Snow Creek, and Choccolocco Creek, as well as sedimentary material in the floodplains of these waterways, contain varying levels of PCBs and other contaminants.

The Site has been evaluated extensively since 1980. Environmental work has included a combination of investigative and remedial efforts conducted pursuant to a variety of environmental permits. The environmental response efforts under RCRA included the general areas of the Solutia manufacturing plant, which were termed the "On-Site" area, and areas downstream of the Solutia manufacturing plant, termed the "Off-Site" area.

1.2.3 Land and Water Use

The HHRA evaluated potential risks associated with the current and reasonably anticipated future uses within OU-4.

1.2.3.1 Current Uses

The OU-4 area includes numerous properties owned by private and public entities that are used for residential, recreational, agricultural, and commercial/industrial purposes. The floodplain area is approximately 6,000 acres. The percentage of each land use in the floodplain is as follows (Arcadis, 2009):

- Agriculture 40 %
- Forest − 38 %
- Scrub 10 %

- Commercial/Industrial 7 %
- Residential 3 %
- Park − 1 %
- Waste-water treatment plant– 1 %

According to local Agricultural Extension and Farm Service Agents, there are no dairy cattle and only limited row crop production in Calhoun County in the floodplain other than crops such as corn and soybeans that can be used as silage for cattle (Butler, 2009 and West, 2009). Further downstream in Talladega County, row crops are more common (wheat, cotton, corn and soybeans) and acreage in row crops exceeds acreage used to raise beef cattle (Browning, 2009 and Jurriaans, 2009). As with Calhoun County, there are no current dairy farms with grazing cows in the floodplain in Talladega County. Agricultural Extension and Farm Service agents for both counties indicated that locally raised beef consumption is not typical and that the common practice is to sell livestock to local and/or regional buyers (Butler, 2009, Browning, 2009, Jurriaans, 2009, and West, 2009). Small backyard gardens and chicken raising operations are present at many locations in both counties, although it is unclear whether that practice occurs in the floodplain areas.

Fishing is possible anywhere along the Choccolocco Creek, but it is likely that the majority of the fishing occurs at and around bridge crossings where access is easy. Local landowners are also known to fish along the creek in areas with private access. In addition, given the nature, size, and accessibility of the Creek, it is likely that fishing is more common at locations further downstream than at locations closer to the confluence with Snow Creek.

For the purposes of the evaluation of fish consumption, it was assumed that the Creek did not have a fish advisory in place, and that consumption of locally caught fish was not influenced by this prohibition. This approach is consistent with EPA policy (EPA, 1990). Solutia developed and implemented a creel study that provided some useful information on current fishing habits along the Creek (i.e., fishing frequency with the fish consumption advisory in place).

Recreational use and exposure is possible throughout the floodplain area. The forested areas provide attractive habitat for various recreational activities including hiking, fishing, canoeing, wading, etc. It is also likely that local adolescents frequent specific areas along the creek.

Hunting is common at many areas as demonstrated by the deer hunting blinds interspersed throughout the floodplain.

There are a number of residential areas within and adjacent to the floodplain. The commercial/industrial areas consist of the airport property and two waste-water treatment plants. Natural gas pipelines, a railroad, and aboveground utility lines transect the floodplain at various locations.

1.2.3.2 Future Uses

The Alabama Land Trust (ALT) is in the process of developing a Conservation Corridor for Choccolocco Creek. The Conservation Corridor is a conservation easement that limits the development and use of the floodplain within certain distances from the Creek bank. There are three distinct zones within the corridor:

- Zone 1 creek bank to 100 feet into the floodplain;
- Zone 2 the area between 100 feet and 200 feet from the edge of the Creek into the floodplain; and
- Zone 3 the area from 200 feet to a maximum distance of 1,000 feet into the floodplain.

Use restrictions vary depending on the property owner and stipulations in the agreement but, in general, Zone 1 has the largest number of use restrictions followed by Zone 2 and Zone 3. The level of restriction is important information because the land use and potential exposure to contaminants of potential concern (COPCs) within the Conservation Corridor will be different from exposure outside of the Corridor. The status of the Conservation Corridor within OU-4 is presented in detail in Section 7.1. Although changes are likely to be made to various properties within OU-4 as additional agreements are developed, the status as of April 2012 has been used in this HHRA.

In areas where the Conservation Corridor does not specifically limit certain uses, it was assumed that future land use will be the same as current land use with no restrictions in place. Future residential development in floodplain areas will need to be monitored to ensure residential exposures do not exceed applicable risk benchmarks.

1.3 EXPOSURE UNITS

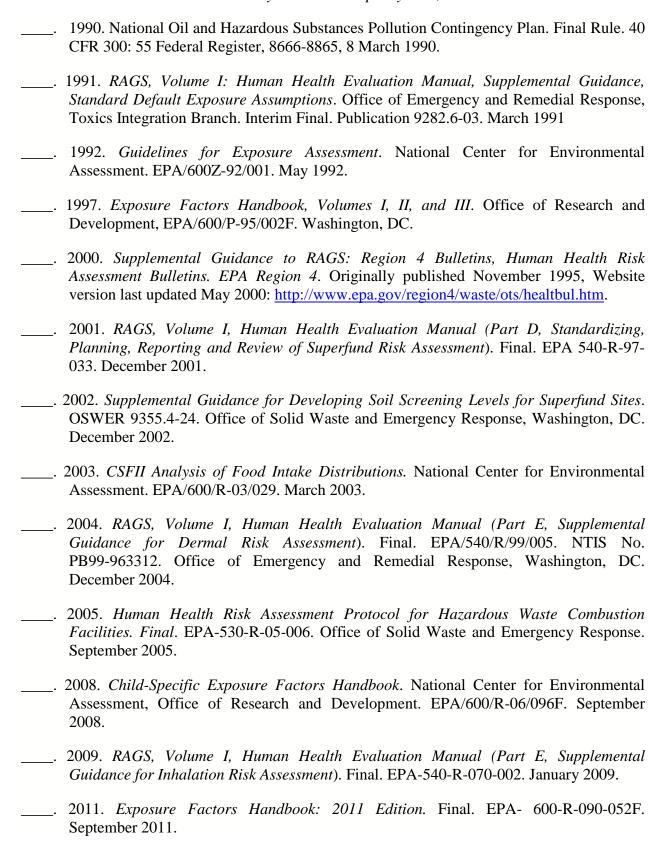
OU-4 includes over 35 miles of the Choccolocco Creek floodplain. Solutia developed characterization areas (CAs) that were based on topographical and hydraulic features to evaluate the nature and extent of contamination. Nine CAs were identified along the length of OU-4 and each of the nine CAs were subdivided into two to four subareas based on the side of the Creek (north or south) and amount of 100-year floodplain. Given the size and land use variability of these CAs, EPA determined that additional segmentation of CAs was necessary to adequately characterize exposure. Therefore, the existing CAs were further divided into exposure units (EUs) to develop a meaningful exposure assessment.

The approach for developing EUs was to identify as large an area as reasonable within a CA considering both property ownership and land use. In some cases, entire CAs were identified as an EU, in other cases two or more EUs were identified within a CA. At several areas, the EUs encompassed portions of two CAs. Twenty-five EUs were identified for the direct contact risk assessment in OU-4, and an additional eight EUs were identified to focus on agricultural exposure through direct contact. Figure 1-3 presents the locations of the direct-contact EUs.

After identifying the EUs, the next step was to evaluate the level of contamination and to eliminate those EUs with minimal PCB concentrations. EUs were eliminated from consideration in the HHRA when tPCB concentrations (either maximum detected concentration or 95% upper confidence limit of the mean [UCL]) were less than 1 mg/kg tPCBs. EUs were further refined for agricultural exposures. Identification of agricultural exposure units (Ag-EUs) is discussed in Section 7.2.

1.4 STRUCTURE OF THE HHRA REPORT

The HHRA evaluates three primary routes of exposure: fish ingestion, contact with floodplain soil, and ingestion of agricultural products from the floodplain. It was necessary to structure the HHRA so that these exposure routes could be evaluated separately and then integrated at the end. This HHRA report is comprised of 9 sections, as follows:


• Section 1 – Introduction – Provides an overview of the report, site background and setting, and the approach to the HHRA.

- Section 2 Exposure Pathways and Strategy for the HHRA Presents a conceptual site model and identifies the exposure pathways and the potentially exposed receptors.
- Section 3 Hazard Identification Describes the available data and the evaluation and reduction for use in the HHRA, as well as the contaminant of potential concern screening.
- Section 4 Toxicity Assessment Presents the toxicity values used to determine hazard quotients/cancer risks.
- Section 5 Risks from Fish Consumption Presents information specific to the consumption of fish and the associated risk results.
- Section 6 Risks from Direct Contact Exposure Presents information specific to direct contact with soil and the associated risk results.
- Section 7 Risks from Agricultural Products Consumption Presents information specific to the consumption of agricultural products and the associated risk results.
- Section 8 Integrated Risk Characterization Discusses the potential risks from exposure to multiple pathways.
- Section 9 Results Discusses the general findings of the HHRA.

Note that references are contained within each section of the report. In addition, as this report integrates three risk assessments, segments with significant commonalities among them were discussed in upfront sections to reduce redundancies.

1.5 REFERENCES

- Arcadis, 2009. Anniston PCB Site, Phase 2 Field Sampling Plan for Operable Unit 4. Revision 1. April 2009.
- Browning, B. 2009. Personal communication with Bill Browning, Talladega County Extension Agent, regarding farming and livestock practices in Talladega County along the Choccolocco Creek.
- Butler, S. 2009. Personal communication with Scott Butler, Calhoun County Farm Service, regarding farming and livestock practices in Calhoun County along the Choccolocco Creek.
- EPA (U.S. Environmental Protection Agency). 1989. *Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual* (Part A) Interim Final. Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-89/002. December 1989.

- Golder Associates, Inc. 1997. RCRA Facility Investigation/Confirmatory Sampling (RFI/CS) Work Plan.
- JMWA (JM Waller, Inc.). 2009. Final Pathways Analysis Report for the Baseline Risk Assessment for Anniston PCB Site Operable Unit 4, Anniston, Alabama. Prepared for EPA Region 4. December 2009.
- Jurriaans, W. 2009. Personal communication with Wanda Jurriaans, Talladega Calhoun County Extension Agent, regarding farming and livestock practices in Talladega County along the Choccolocco Creek.
- West, D. 2009. Personal communication with David West, Calhoun County Extension Agent, regarding farming and livestock practices in Calhoun County along the Choccolocco Creek.

2 EXPOSURE PATHWAYS AND STRATEGY FOR THE HUMAN HEALTH RISK ASSESSMENT

2.1 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) for human exposure describes the contaminant sources, the release and transport mechanisms, the receiving media, the exposure media, the exposure routes, and the potentially exposed populations. The primary objective of the CSM is to identify complete and incomplete exposure pathways. A complete exposure pathway has all of the above-listed components, whereas an incomplete pathway is missing one or more. Figure 2-1 illustrates the CSM that was developed for OU-4. Each component of the conceptual site model is examined in detail in the following sections.

2.1.1 Source of Contamination, Release and Transport Mechanisms, and Receiving Media

PCBs released in the past from the Solutia facility have been transported primarily in storm water in Snow Creek and ultimately discharged into the Choccolocco Creek. The release and transport processes affecting the fate of PCBs within the Choccolocco Creek and its floodplain are interrelated and complex. The following potential contaminant transport pathways have been identified:

- Surface runoff and drainage from the Solutia facility in Anniston.
- Erosion and downstream transport of contaminated bank soil.
- Sediment contamination via runoff carrying suspended soil particles contaminated with PCBs.
- Floodplain soil contamination via deposition of suspended river sediment during out-of-bank flood events.
- Erosion of contaminated floodplain soil (surface and subsurface) during flood events, and subsequent deposition as contaminated river sediment.
- Bioaccumulation and cycling of PCBs within the terrestrial and aquatic food chains exposed to contaminated soil, surface water, and sediment.

2.1.2 Primary Exposure Media

Based on the review of the current and potential future land and water uses, the following primary exposure media are of potential concern in OU-4:

- Fish.
- Soil (floodplain).
- Sediment.
- Surface water.
- Agricultural products.

2.2 IDENTIFICATION OF EXPOSURE PATHWAYS

The length of the Choccolocco Creek within OU-4, and the size and multiple uses of the floodplain, poses a significant challenge to effectively assessing human health risk from direct and indirect exposures for both current and potential future uses. Children and/or adults could be exposed to soil while engaging in a variety of activities around their homes or recreational activities at other locations. Adults could be exposed to soil while working in agricultural, landscaping, utility maintenance, and other occupations. Sediment and surface water exposure could occur along the riverbanks or in shallow areas of the Creek during recreational activities such as fishing, canoeing, swimming, or wading. Anglers, farmers, and hunters and their families could be exposed to Site contaminants from consumption of fish caught from the Creek, or crops and other agricultural products raised in the floodplain.

The potential exposure associated with consuming wild game (e.g., deer and turkey) taken from the floodplain was considered for inclusion in the HHRA. However, the exposure from consuming game is expected to be negligible given the home ranges of the game, the limited contact time with the affected media in OU-4, and the subsequent lack of contaminant uptake and transfer into the tissues of targeted game species. In addition, the conservative assumptions related to human consumption of beef and chicken raised in the floodplain that were quantified in the HHRA exceed any reasonable estimate of the potential consumption of wild game from the same areas. Therefore, consumption of game was not quantitatively evaluated in the HHRA.

For OU-4, three potentially significant modes of contact between contaminated media and humans were evaluated:

- Consumption of fish.
- Direct contact with contaminated media (soil, sediment, and surface water).
- Consumption of agricultural products (e.g., vegetables, beef) from the floodplain.

The following sections describe the possible receptors and exposure pathways considering both current and potential future land and water uses. An identified pathway does not imply that exposures are actually occurring, only that the potential exists for the pathway to be complete.

2.2.1 Fish Consumption

The potential exposure and risks from consuming recreationally-caught fish from the Choccolocco Creek were evaluated. Choccolocco Creek in the vicinity of Lake Logan Martin appears to be a favorite feeder stream of anglers (Phillips, 2009; BamaBassFishing, 2009). The Choccolocco is suggested as a stream to consider for float fishing (ADCNR, 2009), that is good for bank fishing (ADCNR, 2008), and is mentioned in the book *America's Best Bass Fishing* (Price, 2000). There has been a fish consumption advisory on the Creek since 1994, recommending no consumption due to PCBs. However, the presence of PCBs in fish collected from Choccolocco Creek coupled with the popularity of these areas for fishing suggest that ingestion of recreationally caught fish may be a route of potential exposure to PCBs, even with the fish consumption advisory. In addition, EPA guidance requires that risk assessments evaluate fish ingestion under the assumption that no fish consumption advisory exists (EPA, 1990).

Studies have demonstrated that fish consumption in Alabama is an important benefit to low-income anglers and their families (Auburn, 1998); however, there is no evidence confirming that subsistence fishing or hunting are conducted in the area near the Creek. Therefore, subsistence level fish ingestion from fish caught in the Choccolocco Creek was determined to be unreasonable based on the local demographics, a lack of any evidence supporting this practice, the likely inability of portions of the Creek to support subsistence level consumption, and more attractive fishable waterbodies nearby such as Lake Logan Martin and over 100 reservoirs in the two county area. The implications associated with not evaluating this scenario are discussed in the Uncertainty Analysis (Section 5.4).

The analytical data used to determine the fish exposure point concentrations were derived from samples that represent fish species, fish length, and fish tissue (fillet) that are most typically caught and consumed by the local population.

2.2.2 Direct Contact Exposure

The direct contact portion of the HHRA evaluates the potential exposure to floodplain soil, sediment, and surface water.

2.2.2.1 Floodplain Soil Exposure

For soil contact, the following exposure pathways were considered: incidental soil ingestion, dermal contact and absorption, and inhalation of particulates. Typically, the inhalation of particulates exposure pathway results in exposure and risks that are minimal compared to the exposure and risks associated with the incidental ingestion and dermal contact and absorption exposure pathways. An analysis was performed assuming worst-case tPCB concentrations in the soil and the most conservative inhalation exposure parameters to determine if the inhalation of particulate pathway warrants further evaluation in the HHRA. This analysis showed that inhalation exposure is well below other soil related exposures and as such, it was not evaluated quantitatively in the HHRA. Appendix A presents the details of this evaluation.

2.2.2.2 Sediment and Surface Water Exposure

Consistent with EPA Region 4 guidance, direct contact with sediment in underwater areas was not quantitatively evaluated in this HHRA because of infrequent contact by human receptors. Based on the low levels observed in the available surface water data, the surface water contact exposure scenarios were also eliminated from consideration. A risk-based surface water screening evaluation supporting this decision is provided in Appendix B.

2.2.3 Agricultural Products Consumption

The potential exposure and risk to an individual who grows vegetables and crops and raises livestock in the floodplain was evaluated. In contrast to the direct contact and fish consumption portions of the HHRA that were based on empirical soil and fish tissue data, the presence of PCBs in the agricultural products consumed by humans was estimated using models. The models

predict the degree to which PCBs measured in the floodplain soil could be transferred to plants (root uptake) and animals (incidental soil ingestion and ingesting feed grown in the floodplain). Model input values were based on site-specific information (when available), including regional farm management practices.

2.3 CHARACTERIZATION OF POTENTIALLY EXPOSED POPULATIONS

2.3.1 Recreational Angler

Recreational anglers, including a young child and an adult, were assumed to ingest fish caught in the Choccolocco Creek. The fish tissue data collected by Solutia in 2008 were used to develop contaminant concentrations in fish, and fish consumption estimates were developed from applicable studies of similar waterbodies (see Subsection 3.2.2).

2.3.2 Residents

Potential residential structures with property in the floodplain that could be affected by PCB contamination were identified by Solutia (Arcadis, 2010). Following the identification of the structures, representatives from EPA and Solutia performed a field investigation to delineate the residentially used areas surrounding the structure that could be contacted by residents. These residentially used areas are planned for evaluation as part of the Non-Time Critical Removal Action agreement between Solutia and EPA and, as a result, are not in the scope of this HHRA.

2.3.3 Recreational Users

Recreational exposure is the predominant exposure occurring in the floodplain. It is expected that some degree of recreational exposure occurs at the majority of the EUs (commercial and industrial areas excluded). The presence of the Conservation Corridor would not affect the potential contact with floodplain from recreational exposure. That is, the use restrictions in Conservation Corridor agreements do not affect individuals that use the floodplain for non-intrusive recreational activities such hiking and walking.

The recreational users were assumed to contact the surface soil (0 to 1 ft bgs) in the floodplain through the incidental ingestion and dermal contact and absorption exposure routes. The potential exposure associated with the recreational user population was based on a number of

recreational activities that can occur within the floodplain (e.g., bank fishing, hunting, hiking, walking, etc.). Young child, adolescent, and adult receptors were evaluated depending on the EU. Adolescents (7 through 16 years) and adults were the most frequently evaluated receptors based on the nature of the area and the difficulty a young child would likely experience attempting to recreate in the floodplain area. The young child (1 through 6 years) was considered at areas with easy access to the floodplain area (near a residence).

2.3.4 Utility Workers

Utility workers could be exposed to contaminants in surface and subsurface soil (0 to 4 ft bgs) via incidental ingestion and dermal contact during activities such as easement or equipment maintenance, and/or the installation of new equipment such as utility poles or piping. This potential exposure was assumed to be intensive for a short duration. A construction worker scenario was not considered to be a complete exposure scenario because flooding events preclude major construction in the floodplain.

2.3.5 Farmers

The farmer (adult) was assumed to intensively contact the floodplain surface soil (incidental ingestion and dermal contact and absorption) when tilling the soil and planting and harvesting crops. In addition, the farmer, including a young child, was assumed to consume agricultural products (e.g., vegetables and beef) raised in the floodplain (see Section 7 – Risks from Agricultural Products Consumption).

2.3.6 Selection of Exposure Unit-Specific Exposure Scenarios

Table 2-1 presents the exposure scenarios that were evaluated at each of the direct contact EUs. A determination was made as to whether low contact or high contact recreational exposure is likely to occur at the EU. Low contact recreational exposure (adolescent and adult) was the predominant type of recreational exposure evaluated as a result of the remoteness of the floodplain areas, the limited access to the floodplain because of land ownership issues, and/or the difficult access due to vegetation and terrain. High contact recreational exposure (child, adolescent, and adult) was evaluated at the areas where access was not restricted such as near parks (i.e., Oxford Lake Park) and near residences. Figures 2-2 through 2-10 present the direct

contact EUs along with the evaluated exposure scenarios. Agricultural EUs are discussed in Section 7.2.

2.4 REFERENCES

- ADCNR (Alabama Department of Conservation and Natural Resources). 2008. Bank and Wheelchair Accessible Fishing; Bank Fishing and Wheelchair Accessible Fishing Sites in Northeast

 Alabama. http://www.outdooralabama.com/Fishing/freshwater/where/regions/northeast/bank.cfm
- ADCNR (Alabama Department of Conservation and Natural Resources). 2009. Float Fishing, Dan Catchings, District II Fisheries Supervisor, Eastaboga, Alabama. http://www.outdooralabama.com/fishing/freshwater/where/rivers/float.cfm
- Arcadis, 2010. OU-4 Phase 3 Proposed Residential Investigation Plan. June 2010.
- Auburn University (Auburn). 1998. Recreational Fishing on Alabama's Public Waters Netting BIG Returns, Highlights of Agricultural Research, Vol. 45, No. 2, Summer 1998. May 17, 2006. www.ag.auburn.edu/aaes/communications/highlights/summer98/fishing.html
- BamaBassFishing. 2009. Logan Martin Lake My Home Lake for Bass Fishing! http://www.bamabassfishing.com/loganmartin.html
- EPA (U.S. Environmental Protection Agency). 1990. National Oil and Hazardous Substances Pollution Contingency Plan. Final Rule. 40 CFR 300: 55 Federal Register, 8666-8865, 8 March 1990.
- Phillips, J.E. 2009. Hot Times on Logan Martin. *Alabama Fish and Game*. http://www.alabamagameandfish.com/fishing/bass-fishing/al_aa080202a/

Price. 2000. America's Best Bass Fishing. Falcon, pp 248.

3 HAZARD IDENTIFICATION

The hazard identification presents the data available to assess site risks, outlines the approach used to summarize site data, and identifies contaminants of potential concern (COPCs). The following sections describe the methods that were used for data reduction, data evaluation, and selection of COPCs:

- Available Data (Section 3.1).
- Data Evaluation (Section 3.2).
- Contaminant of Potential Concern Screening (Section 3.3).

3.1 AVAILABLE DATA

The sampling and characterization activities for OU-4 were performed by Solutia and followed a phased sampling approach. The phased approach was implemented to account for the large area and complexity of the OU. Phase 1 and Phase 2 sampling (BBL, 2006 and Arcadis, 2009) constitute the majority of the data used in the HHRA. Phase 3 sampling was completed in 2012 and focused on localized areas that were identified at the conclusion of Phase 2 as needing additional sampling to satisfactorily characterize the nature and extent of PCB contamination. The phased sampling did not include Oxford Lake Park. Historical PCB data was used for the Oxford Lake Park area (the upper extent of OU-4).

3.1.1 Fish

Fish concentration data have been collected in the Choccolocco Creek dating back to approximately 1993. However, only data collected by Solutia during the Phase 2 sampling (November-December, 2008) were used in this HHRA (see Table 3-1). There were 362 fish samples collected from the Choccolocco Creek; 122 bass, 113 catfish, and 127 sunfish. All of the fish samples were analyzed for total PCBs as represented by the sum of Aroclors (tPCBs), select metals (i.e., arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, manganese, nickel, and vanadium), and mercury. A subset (approximately 10%) of the sample locations were analyzed for PCB dioxin-like congeners (36 samples) and dioxin/furan congeners (35 samples).

3.1.2 Soil

Available soil data date back to 2000 (Oxford Lake Park data) and continue to 2011/2012. Table 3-2 presents the soil data that were collected by Solutia and used in the HHRA. There were 901 soil sample locations within the floodplain area of OU-4. Surface soil samples (0 to 1 foot below ground surface [ft bgs]) were collected at nearly every location (896). At approximately 130 locations, samples were collected between 1 and 4 ft bgs. All of the floodplain soil samples were analyzed for tPCBs. Mercury was analyzed at 666 locations. A subset of the sample locations were analyzed for PCB dioxin-like congeners (119 locations), dioxin/furan congeners (114 locations), other metals (83 locations), and other contaminants such as volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, and herbicides (15 locations).

3.2 DATA EVALUATION

This section presents the approach that was followed to prepare the analytical data for use in the COPC screening process and for the calculation of risks.

3.2.1 Data Reduction

Data reduction involves the evaluation of data qualifiers and their potential use in the HHRA process and describes the treatment of duplicate and co-located samples. The following guidelines were used in developing the data sets to evaluate risk associated with OU-4:

- If an analyte was not detected in any sample from a given medium, it was not considered further for that medium.
- All "U" qualified data represent samples for which the analyte was not present or was below the sample quantitation limit (SQL) and reported as a non-detect (ND).

When field duplicate samples were collected, the following approach was used to calculate the concentrations to be evaluated in the HHRA:

- If the analyte was detected in both the original (primary) sample and the field duplicate, the maximum detected concentration was used.
- If the analyte was detected in either the primary or duplicate sample and was ND in the other sample, the detected concentration was used.

• If the analyte was ND in the primary and duplicate sample, the lower detection limit was used.

3.2.2 Fish Data Groupings

The analytical data ultimately used to determine the fish exposure point concentrations (EPCs) were derived from samples that represent fish species, fish length, and fish tissue (fillet with the skin removed) that are typically caught and consumed by the local population from Choccolocco Creek. The determination of EPCs for fish ingestion required two grouping decisions: 1) which species to group, if any; and 2) which locations to group, if any.

3.2.2.1 Species

The Solutia/Arcadis creel survey (2009) indicated that bass were the most popular food fish, and more than half of the anglers responding reported eating all of the species listed (i.e., bass, striped bass, brim, crappie, channel catfish, blue catfish, and sunfish). Table 3-3 presents a summary of the fish species commonly targeted by anglers in Alabama from the 2006 U.S. Fish and Wildlife National Survey of Fishing, Hunting and Wildlife-Associated Recreation in Alabama (DOI/DC, 2006). Largemouth bass and catfish were identified as preferred species for recreational anglers (Wright and DeVries, 2003). The data appear relatively consistent among studies.

There are several different ways to group the available fish data, including:

- By species;
- By taxonomic groups (e.g., bass, catfish, crappie, sunfish);
- By targeted species (e.g., bass, catfish, panfish); and
- Combining all species.

For this evaluation, the grouping of fish data by species considered human behavior and exposure issues. In general, there are two types of anglers: those that target specific types of fish and those that eat whatever they catch. Anglers often take different fishing approaches depending on what they are targeting. For example, fishing for catfish would entail one approach (bottom fishing) whereas fishing for panfish (or bass) would require different approaches, which could be combined within a single visit to a location. In addition, fishing for panfish is typically similar for all types of panfish, and anglers who favor this type of fish often keep whatever species is

biting that day. Therefore, to cover anglers who would only tend to target and consume a particular fish type (e.g., bass) and anglers who might consume any fish they were able to catch, "targeted species" groupings were used to estimate exposure and risk, as well as a separate grouping for "all species" as follows:

- All Species;
- Targeted Species
 - Bass (i.e., largemouth and spotted);
 - Catfish; and
 - Panfish (i.e., crappie and sunfish).

3.2.2.2 Location

Fish sampling was performed at nine locations along the portion of the Choccolocco Creek under evaluation. Jackson Shoals is a unique physical feature in the Choccolocco Creek that serves as a logical separation point. The Creek below (downstream of) Jackson Shoals is influenced by the Lake Logan Martin impoundment and is slower moving. Upstream of Jackson Shoals, the Creek is characterized as free-flowing with no major impoundment areas.

	Location	Sample Area Description
Below Jackson Shoals	1	Highway 77
Delow Jackson Shoars	2	Jackson Trace
	3	Eastaboga Road
	4	Curry Station
	5	Priebes Mill
Above Jackson Shoals	6	Silver Run
	7	Highway 21
	8	Friendship Road
	9	Snow Creek

These locations are up to 37 miles downstream from the confluence with Snow Creek. It is not reasonable to assume that an individual would fish all the locations given the distances, so an evaluation was performed to determine a logical grouping of sites based on both distance travelled and the need to achieve a workable sample size of each of the fish groupings. Figure 3-1 is a location map showing each of the fish sampling locations.

3.2.2.2.1 Fishing Behavior

There are significant physical differences between portions of the Creek upstream and downstream of Jackson Shoals. The two locations downstream of or below the Shoals are logically grouped as these areas of the Creek are wider, slower moving, and can be readily fished from a boat. Upstream of or above the shoals, the river is more narrow and bank fishing is the most likely scenario. Data grouping decisions in this portion of the Creek are a function of the distance between the locations and PCB concentration gradients as they apply to the need to develop supportable statistics.

The Solutia/Arcadis Creel Survey (2009) indicated that, based on data from 46 anglers, the mean distance travelled from the individual's home to the fishing location was 12.6 miles, with most traveling 10 miles or less. When asked about alternate fishing locations, of those fishing below Jackson Shoals (i.e., at Jackson Trace Road or Highway 77; n= 36), there were only 3 responses indicating that anglers also fished above Jackson Shoals (Arcadis, 2009; Table 5). Of the 17 anglers interviewed above Jackson Shoals, at least 11 responded that they also fished below the Shoals and 3 anglers indicated they fished another location above the Shoals. One fished 3 locations away, one fished 2 locations away, and one fished the two locations immediately upstream. It should be noted that anglers were selected for interview based on publicly accessible fishing locations. Individuals who own or visit private property areas to fish were not included in this creel survey.

3.2.2.2.2 Statistics

PCBs are the primary COPCs at the site; and therefore, PCB concentrations are the most important metric when performing statistics to determine which locations should be grouped. Using the four categories of fish species noted above (i.e., all species, bass, catfish, and panfish), one-way analysis of variance (ANOVA) and Tukey Honestly Significant Difference (HSD) comparisons were made. ANOVA is a statistical technique for comparing the means among more than two sample groups. If the ANOVA (at a 95% confidence level) indicated that there were differences among the means, the Tukey's HSD Test was used for indicating specifically which of the locations were different from one another. This is important because if the means of

two different groups of data are statistically different, the potential exists for the final EPC to be inflated or unrealistically high.

Given the Creek characteristics and statistical results, certain location groupings are indicated:

- Locations 1 and 2;
- Locations 3 and 4; and
- Locations 5 through 9.

A more detailed discussion of the groupings is presented in Appendix C.

3.2.2.3 Summary of Fish Groupings

Data groupings used to evaluate fishing in the Choccolocco Creek are based on each targeted species group (i.e., bass, catfish, and panfish) and all species combined in the following location groupings:

- Group A Locations 1 and 2;
- Group B Locations 3 and 4; and
- Group C Locations 5 through 9.

Summary statistics for the selected groupings for fish data are presented in Tables 3-4 through 3-6. Note that the following apply in selecting these groupings for developing EPCs.

- Individual species groups allow the public to gain an understanding of potential risks based on what types of fish they target and consume.
- For bass, although there are two species in this group, many anglers cannot tell the difference between the two (largemouth or spotted), so they were combined into one group.
- For panfish, although there are five species in this group, it was assumed that most anglers who eat panfish do not discriminate among the species typically found in Choccolocco Creek.

Grouping all species into one dataset provides an approximation of exposure to individuals that eat fish from each of the species groupings on an approximately equal basis. However, uncertainty in the risk estimate occurs when the species consumed differ from the species analyzed.

3.2.3 Floodplain Soil Sample Location Averaging

EPA Region 4 defines the 0 to 1 ft bgs depth range as the surface soil available for direct human contact (EPA, 2000). As such, the available data from the top foot of soil was evaluated. Soil samples were collected at each soil sample location from multiple depth intervals. To avoid biasing the dataset toward locations with multiple results, a representative concentration was calculated per location. For surface soil, the samples collected between the 0 to 0.5 ft bgs and 0.5 to 1 ft bgs depth intervals at a location were averaged. For the subsurface, the samples collected from multiple intervals between 0 to 4 ft bgs were averaged. The concentration results at each location were averaged as follows:

- If the samples were detected, the observed concentrations were averaged.
- If one of the samples was not detected and the other sample(s) was detected, the detected concentration(s) was averaged with the non-detect sample assuming the contaminant was present at the detection limit level.

The resultant average concentrations for each sampling location were used in the evaluation of the potential floodplain soil exposure and risks.

3.2.4 Calculation of Toxic Equivalency Values

Dioxin/furans and PCB dioxin-like congeners were detected in OU-4 floodplain soil and fish from Choccolocco Creek. Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) (dioxins and furans), and PCB congeners are commonly found as complex mixtures when detected in environmental media. Humans can be exposed to variable distributions of individual dioxin and furan compounds, referred to as "congeners," and PCB congeners that vary by source and pathway of exposure. There are over 200 PCDD and PCDF congeners. There are 209 PCB congeners. Currently, 17 of the dioxin and furan congeners are designated as carcinogens by EPA (Van den Berg et al., 2006; EPA, 2010). There are 12 PCB congeners with dioxin-like carcinogenic activity.

The World Health Organization (WHO) (Van den Berg et al., 2006) has developed toxic equivalency factors (TEFs) to evaluate the relative toxic potencies and risks for the 17 dioxin and furan congeners and the 12 PCB congeners. The TEFs relate the carcinogenic potency of the

individual congeners to the carcinogenic potency in man of the reference congener 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2,3,7,8-TCDD). The TEFs were developed from scientific review of the toxicological studies, along with consideration of chemical structure, persistence, and resistance to metabolism. The TEF value assigned to select dioxin/furan and PCB dioxin-like congener is shown below:

Congener	Mammal TEFs (unitless)
1,2,3,4,6,7,8-HpCDD	0.01
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
1,2,3,4,7,8-HxCDD	0.1
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDD	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDD	0.1
1,2,3,7,8,9-HxCDF	0.1
1,2,3,7,8-PeCDD	1
1,2,3,7,8-PeCDF	0.03
2,3,4,6,7,8-HxCDF	0.1
2,3,4,7,8-PeCDF	0.3
2,3,7,8-TCDD	1
2,3,7,8-TCDF	0.1
OCDD	0.0003
OCDF	0.0003
PCB-77	0.0001
PCB-81	0.0003
PCB-126	0.1
PCB-169	0.03
PCB-105	0.00003
PCB-114	0.00003
PCB-118	0.00003
PCB-123	0.00003
PCB-156	0.00003
PCB-157	0.00003
PCB-167	0.00003
PCB-189	0.00003

Source: Van den Berg et al., 2006

HpCDD= Heptachlorodibenzodioxin.TCDF= Tetrachlorodibenzofuran.HpCDF= Heptachlorodibenzofuran.OCDD= Octachlorodibenzodioxin.HxCDD= Hexachlorodibenzodioxin.OCDF= Octachlorodibenzofuran.HxCDF= Hexachlorodibenzofuran.PeCDD= Pentachlorodibenzo-p-dioxin.

PeCDF = Pentachlorodibenzofuran. TCDD = Tetrachlorodibenzo-p-dioxin.

^{*}Dioxins/furans are abbreviated as follows:

A 2,3,7,8-TCDD toxic equivalent (TEQ) concentration was calculated for each dioxin/furan and/or PCB dioxin-like congener sample by multiplying the concentration of each congener by its respective TEF. If a given congener was not detected in any samples in a given medium, it was not included in the TEQ calculation for that medium. If the congener was detected at least once in a sample set, the TEQ concentration was determined by multiplying the detected concentrations and the non-detects at the SQL with the TEF. For each sample, the individual congener TEQs were summed to obtain a total 2,3,7,8-TCDD TEQ for that sample for dioxin/furan congeners only and PCB dioxin-like congeners only. The equations that follow present the TEQ calculation approach.

$$\begin{split} TEQ_{dioxin/furan} = & \sum\nolimits_{n1} (PCDD_i \ x \ TEF_i) + \sum\nolimits_{n2} (PCDF_i \ x \ TEF_i) \\ TEQ_{PCBcongeners} = & \sum (PCB_i \ x \ TEF_i) \end{split}$$

Where:

TEQ = Toxic equivalent concentration.

PCDD = Polychlorinated dibenzo-p-dioxin congener. PCDF = Polychlorinated dibenzofuran congener.

PCB = PCB dioxin-like congener. TEF = Toxic equivalency factor.

The exceptions to the TEQ_{PCBcongeners} calculation above were for PCB dioxin-like congeners PCB-126 and PCB-167 in fish tissue. Both of these congeners were detected only once in 36 fish samples, and so as not to inappropriately inflate the individual sample TEQs by assuming their presence (i.e., multiplying the full SQL by the TEF and adding to the other congeners to obtain a sample-specific TEQ), contributions from PCB-126 and PCB-167 to the total TEQ_{PCBcongeners} were made only in the respective fish sample with the detected concentration of these congeners.

3.3 CONTAMINANT OF POTENTIAL CONCERN SCREENING

Based on the long history of releases from the Solutia facility in Anniston, contamination is present in environmental media in OU-4. The primary contaminant released from the site was PCBs. Other contaminants present in OU-4 media include metals, dioxin/furan congeners, polycyclic aromatic hydrocarbons (PAHs), pesticides, and various VOCs and SVOCs. The concentrations of the observed contaminants were screened against risk-based criteria and background levels (for metals) to determine which of these contaminants warranted further evaluation in the HHRA. The COPC screening process was conducted in accordance with EPA Region 4 guidance (EPA, 2000).

The maximum detected concentrations in fish and floodplain soil were compared to the EPA Regional Screening Levels (RSLs) (EPA, 2012). The cancer based RSLs were set at a target cancer risk of one-in-a-million, 1E-06. The noncancer based RSLs were set at a target hazard quotient of 0.1, which is one-tenth of the RSL value presented on the RSL Table. The fish tissue RSLs were based on a default fish ingestion rate of 54 g/day (equates to consuming approximately 13 ounces of fish tissue per week). This is likely an over-estimate of the level of fish consumption assumed to occur in Choccolocco Creek. The residential soil RSLs were used for the soil evaluation. The residential soil RSLs are based on assumptions indicative of exposure associated with residential backyards. They over-estimate the recreational level of exposure that dominates the current use of the floodplain.

If the medium-specific maximum detected concentration was less than the RSL, the analyte was eliminated from further consideration in the HHRA. If the maximum concentration exceeded the RSL, the contaminant was identified as a COPC. Further, because at least one PAH concentration exceeded the RSL, all detected PAHs were identified as and retained as COPCs (EPA, 2000).

Exceedances of the fish RSLs by metals were further evaluated by comparing site sediment concentrations with background levels from Fort McClellan (SAIC, 1998) and from locations upstream of the hydraulic influence of the Solutia facility in Anniston. The premise of the

background sediment comparison is that if the site sediment levels are consistent with background, then site fish concentrations are a result of background sediment levels.

For metals in soil exceeding the RSLs, a comparison with regional-specific background levels was performed. The source of the background data was the Fort McClellan Background Metals Survey Report (SAIC, 1998). The background data used in the comparison were from the 0 to 1 ft bgs depth range and were collected from between 1992 through 1997. The site maximum concentrations were compared to two times the average background concentration (EPA, 2000). If the site maximum was less than the two times average background level, the metal was eliminated from consideration as a COPC.

The following subsections present the results of the COPC screening process for fish and soil.

3.3.1 Fish

Fish tissue samples were collected from nine sampling locations in Choccolocco Creek. Various fish species were collected from each sampling location. For the purposes of the COPC screening evaluation, the available data from the targeted species were pooled and summarized.

Table 3-7 presents summary statistics (i.e., frequency of detection, range of detected concentrations, location of maximum detected concentration, and average concentration) of contaminants that were detected in fish tissue along with the screening toxicity value. The contaminants that exceeded the fish RSLs are:

- tPCBs (represented by the sum of Aroclors)
- PCB dioxin-like congener 2,3,7,8-TCDD TEQ
- Dioxins/furans 2,3,7,8-TCDD TEQ
- Arsenic
- Chromium
- Lead
- Mercury

Based on these exceedances, tPCBs, PCB dioxin-like congener TEQ, 2,3,7,8-TCDD TEQ, and mercury will be evaluated as COPCs in the HHRA. Arsenic, chromium, and lead were eliminated based on a comparison to background as described in the following paragraphs.

Absent fish tissue data from background locations, direct comparison to site fish tissue levels could not be performed. However, given what is known about the relationship between contamination levels in sediment and the potential uptake and accumulation of contaminants in fish, the site sediment concentrations of arsenic, chromium, and lead were compared to background levels as a surrogate comparison for screening purposes. Site sediment samples were collected from each fish sampling location in the Creek along with locations sampled for the ecological risk assessment. The site sediment concentrations were initially compared to levels observed at Fort McClellan. The site concentrations were also compared to sediment data collected from locations upstream of the Facility in Anniston.

The table below presents a comparison of the concentrations of arsenic, chromium, and lead observed in Choccolocco Creek sediment with background sediment concentrations from Fort McClellan (SAIC, 1998). Focusing on the headwater extents of streams upgradient from the developed portion of Fort McClellan, the background samples were collected from depositional areas within a streambed. The result of the comparisons indicates that the site maximum arsenic concentration is less than the Fort McClellan background. The site maximum concentrations of chromium and lead exceed the Fort McClellan background.

	Site	Background		
Metal	Maximum Concentration (mg/kg)	Average Concentration (mg/kg)	2X Average Concentration (mg/kg)	
Arsenic	7.5	5.7	11.4	
Chromium	105	16	32	
Lead	53	19	38	

The site sediments were also compared to data collected upstream of the confluence of Snow Creek and the 11th Street Ditch in Anniston. The data collected from this area are considered to be background for the Snow Creek and the Choccolocco Creek watersheds within the Anniston area. The results of this comparison indicate that the levels observed in OU-4 are less than the levels observed upstream of Anniston for all metals.

Integrated Human Health Risk Assessment Anniston Polychlorinated Biphenyl Site, OU-4

	Site	Anniston Upstrea	am Background		
Metal	Maximum Concentration (mg/kg)	Average Concentration (mg/kg)	2X Average Concentration (mg/kg)		
Arsenic	7.5	12.9	25.8		
Chromium	105	134	268		
Lead	53	119	238		

Given the relationships between site and background sediment concentrations, the levels of arsenic, chromium, and lead in the fish appears to be a consistent with background levels in the Anniston area. Therefore, these metals were eliminated as COPCs in fish.

3.3.2 Soil

The surface soil data (0 to 1 ft bgs) collected during the Phase 1, Phase 2, and Phase 3 sample collection efforts were used in the COPC screening process. Samples were collected from 0 to 0.5 ft bgs and 0.5 to 1 ft bgs. There were over 800 soil sample locations within the floodplain, all of which were analyzed for tPCBs. Mercury was analyzed at over 600 locations. A subset of the sample locations were analyzed for PCB dioxin-like congeners, dioxin/furan congeners, metals, and other contaminants.

Subsurface soil data were collected at a subset of the sample locations. These data were collected from 1 to up to 4 ft bgs depending on the location. The subsurface data were analyzed for tPCBs, PCB dioxin-like congeners, dioxin/furan congeners, and metals. The site subsurface soil datasets for the metals (except for mercury) consisted of five or fewer samples, precluding any meaningful comparisons of site (subsurface) and background concentrations. Mercury has the largest dataset (24 subsurface samples) and the average concentrations of mercury in surface and subsurface soil are similar (1.1 mg/kg and 0.88 mg/kg in surface and subsurface, respectively [see Tables 3-8 and 3-9]).

Table 3-8 presents the contaminants that were detected in the surface soil (0 to 1 ft bgs). The detected analytes included PCBs, dioxins/furans, SVOCs and VOCs, pesticides, PAHs, and metals. The list below presents those detected contaminants that exceeded the residential soil RSLs:

- tPCBs (represented by the sum of Aroclors)
- PCB dioxin-like congener as 2,3,7,8-TCDD TEQ
- Dioxins/furans 2,3,7,8-TCDD TEQ
- Benzo(a)pyrene
- Aluminum
- Arsenic
- Chromium
- Cobalt
- Iron
- Manganese
- Mercury
- Thallium
- Vanadium

The organic contaminants that exceed their RSLs will be carried forward as COPCs. Because of the benzo(a)pyrene exceedance of the residential soil RSL, all of the detected carcinogenic PAHs will be evaluated as COPCs (EPA, 2000).

The metals were subjected to a background comparison. Table 3-10 presents a summary of the metals detected in the background samples collected from Fort McClellan (0 to 1 ft bgs). The comparisons of site metals concentrations to the background values are shown on Table 3-11. Per EPA Region 4 guidance (EPA, 2000), the site maximum concentrations were compared with two times the background average concentrations. Of the metals with maximum concentrations greater than the RSLs, the site levels of thallium and vanadium were less than background. The background comparisons for the other metals that exceeded the RSLs indicate that the site levels were greater than the background levels. With the exception of mercury, the site levels were less than three times greater than background. The site mercury level was over 400 times greater than background. Thus, the following metals will be evaluated as COPCs in the HHRA: aluminum, arsenic, chromium, cobalt, iron, manganese, and mercury.

3.3.3 COPC Screening Summary

Fish

The COPCs in fish include tPCBs (sum of Aroclors), PCB dioxin-like congeners (evaluated as TEQ), dioxin/furan congeners (evaluated as TEQ), and mercury.

Soil

Total PCBs and mercury were identified as COPCs in the floodplain soil. Both of these analytes were sampled for extensively in the floodplain. Based on the robustness of the soil dataset, tPCBs and mercury were considered the "primary COPCs" for OU-4 soil. PCB congeners were sampled for less extensively than tPCBs but given the relationship between tPCBs and PCB congeners, the PCB congeners were also considered a primary COPC. A statistical analysis was performed to investigate the relationship between paired tPCBs and PCB congener sample results. This analysis is presented in Appendix D.

The other analytes (dioxins/furans, carcinogenic PAHs, and metals except mercury) that were also selected as COPCs were termed the "other COPCs". These COPCs cannot be evaluated in the HHRA in the same manner as the primary COPCs due to the limited dataset. Section 6.2.2 presents the approach that was followed to quantitatively evaluate the primary COPCs and the other COPCs in the HHRA.

3.4 REFERENCES

- Arcadis. 2009. Anniston PCB Site, Phase 2 Field Sampling Plan for Operable Unit 4. Revision 1. April 2009.
- Arcadis. 2009. Methodology and Results of the Choccolocco Creek Fish Consumption Survey. November 2009.
- BBL. 2006. Phase 1 Field Sampling Plan for Operable Unit 4 of the Anniston PCB Site. Revision 3. August 2006.
- DOI/DC (U.S. Department of the Interior, Fish and Wildlife Service and U.S. Department of Commerce, U.S. Census Bureau). 2006. 2006 National Survey of Fishing, Hunting and Wildlife-Associated Recreation Alabama.
- EPA (U.S. Environmental Protection Agency). 1990. National Oil and Hazardous Substances Pollution Contingency Plan. Final Rule. 40 CFR 300: 55 *Federal Register*, 8666-8865, 8 March 1990.
- _____. 2000. Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment Bulletins. EPA Region 4. Originally published November 1995, Website version last updated May 2000: http://www.epa.gov/region4/waste/ots/healtbul.htm.

·	2010. Re	commended	Toxic	Equivalency	Factors	(TEFs)	for I	Human	Health	Risk
	Assessmen	nts of 2,3,7,	8-Tetra	chlorodibenzo-	-p-dioxin	and Die	oxin Li	ke Com	pounds.	Risk
	Assessme	nt Forum,	U.S.	Environmenta	l Protec	ction A	gency,	Washi	ngton,	D.C.
	EPA/600/	R-10/005.								

- _____. 2012. Regional Screening Levels Table. May 2012.
- SAIC (Science Applications International Drive). 1998. *Background Metals Survey Report, Fort McClellan, Anniston, Alabama, Final.* Submitted to U.S. Army Corps of Engineers, Mobile District. July 1998.
- Van den Berg, M., L. Birnbaum, M. Denison, M. DeVito, W. Farland, M. Feeley, H. Fiedler, H. Hakansson, A. Hanberg, L. Haws, M. Rose, S. Safe, D. Schrenk, C. Tohyama, A. Tritscher, J. Tuomisto, M. Tyslkind, N. Walker, and R.E. Peterson. 2006. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. *Toxicological Sciences*. 93(2):223-241.
- Wright, R.A. and D.R. DeVries. 2003. 2002 Alabama Freshwater Anglers Survey. Alabama Department of Conservation and Natural Resources, Wildlife and Freshwater Fisheries Division, Study 52. March 2003.

4 TOXICITY ASSESSMENT

The toxicity assessment examines information concerning the potential human health effects of exposure to COPCs. The goal of the toxicity assessment is to provide, for each COPC, a quantitative estimate of the relationship between the magnitude and type of exposure and the severity or probability of human health effects. The toxicity values presented in this section are integrated with the information presented in the exposure assessment to characterize the potential for the occurrence of adverse health effects.

Cancer slope factors (CSFs) are the dose-response values used to evaluate potential carcinogens. Noncancer effects, such as organ damage or reproductive effects, are evaluated by reference doses (RfDs). The following hierarchy was used for selection for toxicity values:

- Tier 1 Integrated Risk Information System (IRIS) (EPA, 2012a); and
- Tier 2 Values presented on the most recent RSL Table (EPA, 2012b). Toxicity values presented on the RSL Table are from a number of sources including EPA (Provisional Peer-Reviewed Toxicity Values), the California Environmental Protection Agency (CalEPA), and the Agency for Toxic Substance and Disease Registry (ATSDR).

4.1 NONCANCER EFFECTS

For noncancer effects, it is assumed that there exists a dose below which no adverse health effects would occur. Below this "threshold" dose, exposure to a COPC can be tolerated without adverse effects. Therefore, for noncancer effects, a range of exposures exist that can be tolerated. Toxic effects are manifested only when physiologic protective mechanisms are overcome by exposures to a COPC above its threshold level.

The potential for noncancer health effects resulting from oral or dermal exposure to COPCs is assessed by comparing an exposure estimate (intake or dose) to an RfD. The RfD is expressed in units of mg/kg-day and represents a daily intake of COPC per kilogram of body weight that is not sufficient to cause the threshold effect of concern. An RfD is specific to the COPC, the route of exposure, and the duration over which the exposure occurs.

Two exposure durations are applicable to noncancer doses calculated in this HHRA – subchronic and chronic. Subchronic exposures are those that are greater than subacute (approximately 28

days) but less than 10% of a lifetime (7 years based on a lifetime of 70 years). Child recreational direct contact exposures were considered subchronic; therefore, subchronic RfDs were used to calculate hazard quotients for those receptors. Chronic RfDs (corresponding to exposures of at least 10% of a lifetime) were used to assess all other noncancer exposures.

Dermal RfDs are derived from the corresponding oral RfD values. To derive the dermal RfD, the oral RfD (based on an administered dose) is multiplied by the gastrointestinal tract absorption efficiency factor to determine an RfD based on an absorbed dose rather than an administered dose. The resulting dermal RfD is used to evaluate the dermal (absorbed) dose calculated by the dermal exposure algorithms.

Oral RfDs are presented in Table 4-1. Dermal RfDs and the absorption efficiencies used in their determination are also included in Table 4-1. The absorption efficiencies were obtained from EPA's RAGS Part E Guidance (EPA, 2004). Table 4-1 also includes the primary target organs affected by each listed COPC, where information is available. This information may be used in the risk characterization to segregate risks by target organ effects when the total hazard index (HI) is greater than 1.0.

4.2 CANCER EFFECTS

The toxicity information considered in the assessment of potential carcinogenic risks includes slope factors and a weight-of-evidence narrative consistent with EPA's 2005 Guidelines for Carcinogenic Risk Assessment (EPA, 2005). These guidelines use standard narrative descriptors (Carcinogenic to Humans, Likely to Be Carcinogenic to Humans, Suggestive Evidence of Carcinogenic Potential, Inadequate Information to Assess Carcinogenic Potential, and Not Likely to Be Carcinogenic to Humans) to describe the likelihood that a COPC is a human carcinogen and are based on an evaluation of the available data from human and animal studies.

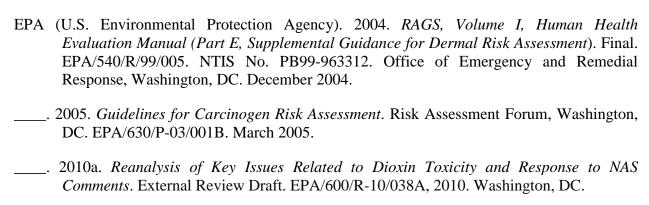
The CSF is the toxicity value used to quantitatively express the carcinogenic risk of cancercausing COPCs via oral and dermal routes of exposure. It is defined in the IRIS glossary as:

An upper-bound, approximately a 95 percent confidence limit, on the increased cancer risk from a lifetime exposure to an agent. This estimate, usually expressed in units of proportion (of a population) affected per mg/kg-day, is generally

reserved for use in the low-dose region of the dose-response relationship, that is, for exposures corresponding to risks less than 1 in 100.

Dermal CSFs are derived from the corresponding oral CSF values. To derive the dermal CSF, the oral CSF is divided by the gastrointestinal absorption efficiency factor to determine a CSF based on an absorbed dose rather than an administered dose.

Oral CSFs are presented in Table 4-2. Dermal CSFs and the absorption efficiencies used in their determination are also included in Table 4-2. The absorption efficiencies were obtained from EPA's RAGS Part E Guidance (EPA, 2004).


4.3 TOXICITY VALUES FOR ASSESSING 2,3,7,8-TCDD TEQS

As recently published in IRIS (EPA, 2012a):

For the assessment of human health risks posed by exposure to mixtures of TCDD and dioxin-like compounds (DLCs), including polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls, and when data on a whole mixture or a sufficiently similar mixture are not available, EPA recommends use of the consensus mammalian Toxicity Equivalence Factor (TEF) values developed by the World Health Organization (EPA, 2010a; EPA, 2010b; Van den Berg et al., 2006).

Therefore, the 2,3,7,8-TCDD RfD and CSF were used to quantify hazards and risks from both dioxin/furan and PCB dioxin-like congener TEQ concentrations. The application of the 2,3,7,8-TCDD RfD to PCB dioxin-like congener TEQs is a new approach that was based on direction from EPA.

4.4 REFERENCES

 . 2010b. <i>Recor</i>	nmended Tox	ac Equivalency	Factors (TE	(Fs) for F	Human Health	Risk
Assessments of	of 2,3,7,8-Tet	rachlorodibenzo- _l	o-dioxin and	Dioxin Lik	ke Compounds	. Risk
Assessment	Forum, U.S	Environmental	Protection	Agency,	Washington,	D.C.
EPA/600/R-1	0/005.					
	search and De	mation System (I	*			_
 . 2012b. <i>Regiona</i>	al Screening L	evels Table. May	2012.			

Van den Berg, M., L. Birnbaum, M. Denison, M. DeVito, W. Farland, M. Feeley, H. Fiedler, H. Hakansson, A. Hanberg, L. Haws, M. Rose, S. Safe, D. Schrenk, C. Tohyama, A. Tritscher, J. Tuomisto, M. Tyslkind, N. Walker, and R.E. Peterson. 2006. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. *Toxicological Sciences*. 93(2):223-241.

5 RISKS FROM FISH CONSUMPTION

5.1 INTRODUCTION

This section presents an evaluation of the fish ingestion pathway for recreational anglers who fish the Choccolocco Creek. Although there currently exists a fish consumption prohibition, recommending that no fish caught from the Choccolocco in the area under evaluation be consumed, it was assumed for the purposes of this analysis that there are no restrictions on fish consumption. EPA risk assessment policy directs the evaluation of the potential risks without reducing the likely exposure because of the fish consumption advisory.

As noted in the beginning of this HHRA, certain sections that are common to all three pathway risk assessments have been previously presented (e.g., toxicity assessment). This section provides the exposure assessment, the risk characterization, and a discussion of key uncertainties.

5.2 EXPOSURE ASSESSMENT

The exposure assessment for the fish ingestion pathway estimates the nature, extent, and magnitude of potential exposure from consuming fish caught in the Choccolocco Creek. The exposure assessment involves several steps, which are listed below:

- Calculating exposure point concentrations (EPCs) for the fish data groupings summarized in Section 3.2.2.
- Identifying the exposure models and parameters with which to calculate exposure doses.
- Calculate exposure doses.

To provide a range of exposure and risks, the reasonable maximum exposure (RME) and central tendency exposure (CTE) scenarios were evaluated (EPA, 1992). The RME, an estimate of the high-end exposure in a population, is based on a combination of average and high-end estimates of exposure parameters typically representing the 90th percentile or greater of expected exposure. The CTE represents an estimate of the average exposure in a population and is based on central estimates of exposure parameters. Both the RME and CTE were evaluated for the fish ingestion pathway.

5.2.1 Exposure Point Concentrations

The following guidelines were used to determine the EPCs for fish tissue. The EPC for a given data set, in general, is represented by the 95% upper-confidence limit of the mean (95% UCL; EPA, 2010a and b). The equations that are used for the 95% UCL calculations are based upon the shape and underlying distribution of the concentration data. Note that each contaminant per data set is looked at individually and professional judgment is used, guided by both the ProUCL Technical Manual (EPA, 2010a) and the ProUCL User's Guide (EPA, 2010b) to determine the appropriate 95% UCL to select.

ProUCL calculates 95% UCLs using 15 different computation methods, 5 parametric and 10 non-parametric. Parametric methods rely on the estimation of parameters (such as the mean or the standard deviation) describing the distribution of the variable of interest in the population; non-parametric methods do not.

Support documentation (ProUCL outputs) for the calculation of the ProUCL-based EPCs is presented in Appendix E. The EPCs for the COPCs used in the risk assessment are presented in Tables 5-1 through 5-3. Note that the same EPC value was used for the RME and CTE scenarios.

As shown on Tables 3-4 through 3-6 the detection frequencies for the fish COPCs ranged from 99 to 100%. The high levels of detection eliminate any issues that could arise when calculating EPCs for data sets with a high amount of censored data. Fish EPCs for all COPCs were selected per species/grouping based on the criteria below.

- If only 1 or 2 samples were collected within a data grouping, the EPC is the maximum detected concentration.
- If between 3 and 8 samples were collected within a data grouping, the EPC is the 75th percentile. Full detection limits were used as values for the non-detected samples in these small data sets.
- If 8 or more samples were collected within a data grouping, the appropriate distribution of the data set was determined and UCLs/EPCs were selected as guided by the ProUCL supporting documentation.

5.2.2 Exposure Models and Parameters

As noted previously, the recreational fisherman scenario consists of an adult or child who may be exposed to COPCs through the ingestion of fish from the Choccolocco Creek.

Dose estimates for recreational anglers were calculated for one receptor – an individual who consumes fish as a child (1 through 6 years) and an "adult" (age 7 to 30 years). Exposure doses were calculated separately using age-adjusted factors.

The evaluation of subsistence anglers was considered for this assessment, but was not included because no evidence has been found of subsistence angling practices in OU-4.

Table 5-4 presents the equations used to calculate exposure doses and summarizes the recreational anglers' exposure parameters. Details regarding the parameters are presented in the subsections below.

5.2.2.1 Fish Consumption Rate

Many studies have estimated fish consumption in the United States. Region 4 suggests a default rate of 54 g/day (in combination with an exposure frequency of 350 days/year) when site-specific information is not available (EPA, 2000). This default ingestion rate is the upper-bound value that was in place at the time of the writing of the Region 4 guidance (EPA, 2000 and 1991). Additionally this default ingestion rate remains the value currently used in the calculation of Regional Screening Levels for human ingestion of fish (EPA, 2012a). The 54 g/day rate, which equates to consuming approximately 13 ounces of fish tissue per week, is still a valid, upper-bound value to use for screening purposes.

As emphasized by Moya (2004), data for the general population are often useful, but specific data on recreational fishing are needed to assess potential exposure to individuals at the higher end of the consumption range. Recreational fishermen, subsistence fishing populations, and some racial/ethnic minority groups have been shown to consume fish and shellfish at higher rates than the general population. Because interest in recreational angling varies with proximity to suitable water bodies, species of fish available, and economic factors, it is most appropriate to evaluate data specific for the recreational anglers residing near the study area. This is complicated for the

Choccolocco Creek because there has been a fish consumption advisory, recommending no consumption, since 1994.

Solutia conducted a creel/angler survey for the portion of the Choccolocco Creek that constitutes OU-4 (Arcadis, 2009). However, the results of Solutia's survey are likely to be biased low due to the fish consumption advisory. As such, the fish consumption rate estimates resulting from the Solutia study were not used to calculate the RME scenario risks, but were used in the derivation of the CTE fish consumption rate.

5.2.2.1.1 RME

The purpose of this section is to determine the potential RME exposure to individuals consuming fish caught from the Choccolocco creek assuming there was no fish consumption advisory in place and assuming there was no knowledge of contamination, as is required by EPA (EPA, 1990).

Suitable information to derive fish consumption rates from the Choccolocco Creek were not available; therefore, regional data derived by state or local agencies or interested parties were considered. Three principal studies relevant to the patterns of recreational fish consumption in the Alabama region were identified:

- ADEM (1993) Estimation of Daily Per Capita Freshwater Fish Consumption of Alabama Anglers;
- ADCNR (Wright and DeVries, 2003) 2002 Alabama Freshwater Anglers Survey; and
- Burger et al. (1999) Factors in Exposure Assessment: Ethnic and Socioeconomic Differences in Fish and Consumption of Fish Caught along the Savannah River.

Detailed discussions of each principal study are presented in Appendix F. Ultimately, the study selected for the derivation of the adult fish ingestion rate was the ADEM (1993) study that estimated adult consumption rates of recreationally caught freshwater fish in Alabama. The mean consumption rate of 30 g/day, calculated by the serving size method for all respondents based on site meals only, was used in this evaluation. This consumption rate equates to eating one 8-ounce meal per week. Based on ratios of child to adult ingestion rates (as presented in Appendix F), 15

g/day was used as a reasonable estimate of the consumption rate for the child of a recreational angler. An age-adjusted ingestion rate of 16.3 g-yr/kg-day was calculated (see Table 5-4).

5.2.2.1.2 CTE

Data presented in the Solutia creel/angler survey for the Choccolocco Creek (Arcadis, 2009) was used to derive the CTE ingestion rates. This survey was a one-year angler intercept survey of Choccolocco Creek that began on 28 June 2008 and ended 27 June 2009 focused entirely on publicly accessible fishing locations (i.e., bridge crossings), and did not include any interviews with individuals who own or otherwise have access to other locations along the Creek. Some relevant statistics are as follows.

- 52 of the 72 anglers observed were interviewed.
- 8 of those 52 interviewees had caught fish at the time of the interview.
- 4 of those 8 individuals had kept the fish they had caught.
- 3 of the 4 individuals that kept fish allowed Solutia to measure their fish and answered questions regarding ingestion rates.
- 7 total fish were caught among these 3 interviewees.

Fish ingestion rates estimated from the interviews ranged from 0.14 to 7.9 g/day, with an average of 2.8 g/day (n = 3). This average was selected as the adult CTE ingestion rate. The CTE rate equates to eating between 4 and 5 meals (8 ounce) per year. As for the child RME ingestion rate, one-half of the adult consumption rate was used to determine the child ingestion rate, i.e., 2.8 g/day divided by 2 = 1.4 g/day. An age-adjusted ingestion rate of 1.5 g-yr/kg-day was calculated (see Table 5-4). It should be noted that this CTE ingestion rate may be biased low considering it was based on a study that was conducted in the presence of the long-standing fish consumption prohibition.

5.2.2.2 Fraction Ingested

Fraction ingested (FI) refers to the fraction of the recreationally-caught fish consumed by anglers from the Choccolocco Creek in the absence of any consumption prohibition. Given that the fish consumption rates were based on "site-only" values instead of consumption from all Alabama waters, the starting point for an FI was 1.0 for the recreational angler scenario. That is, it was

assumed that the recreational angler catches and consumes all of their fish from Choccolocco Creek up to the amount assumed in the consumption rate estimation.

Although, as noted previously, there are books and web forums that anecdotally suggest that the Choccolocco Creek is good for fishing; other, potentially more attractive fishing areas are available in the vicinity to recreational anglers, particularly, Lake Logan Martin. The Choccolocco Creek flows into the Coosa River at Lake Logan Martin approximately 37 miles downstream (southwest) of Anniston.

The Lake Logan Martin reservoir extends 48.5 miles from the Neely Henry dam to the Logan Martin Dam. It has 275 miles of shoreline, covers 15,263 acres, and is up to 69 feet deep (average depth 18 ft; Lakelubbers, 2008). Information released by the ADCNR in their Bass Anglers Information Team (BAIT) report indicates that the quality of fishing in Lake Logan Martin was ranked #5 in the state. The lake has three free public boat ramps and several pay-as-you-go launch sites (Phillips, 2009).

Aside from the availability of more desirable fishing areas in the vicinity of the Choccolocco Creek, the type of fishing in the creek, for the most part, differs from the sites ADEM used to derive the site-only ingestion rates (i.e., wading and bank fishing versus fishing from a boat in reservoirs and dam tailwaters) it was necessary to consider a modified consumption rate to account for these differences. Therefore, fish ingestion FIs other than one were considered for the Choccolocco Creek.

Because the characteristics of Choccolocco Creek vary along the 37 mile length of the OU-4 study area, river section-specific FIs were determined. Jackson Shoals is a unique physical feature in the Choccolocco Creek that serves as a logical separation point. The conditions upstream of Jackson Shoals (river miles 10-37; fish locations 3-9) are much different from those below Jackson Shoals to Lake Logan Martin (river miles 0-10; fish locations 1-2). For example:

• The lower or downstream portion of the Creek is larger and would be expected to contain more legally catchable fish per mile than above Jackson Shoals;

- The lower portion of the Creek is boatable (e.g., boats can come up the Creek from the Lake to Jackson Shoals and there is a boat launch at river mile 7, Highway 77 access point); whereas boating above Jackson Shoals is limited by the size of the creek, depth of the water at some places, obstructions, and locations to put in; and
- Other than bridge crossings, public wade-in access in the portion above Jackson Shoals is limited by the amount of private property bordering the Creek.

Based on professional judgment regarding the areas most likely to be fished, stream characteristics, amount of fish present, accessibility issues, species of fish in the Creek, and the average ingestion rate among others, the portion of Choccolocco Creek downstream of Jackson Shoals, i.e., fish locations 1 and 2 or Group A, was assigned an FI of 1, as noted above.

The portion of the Creek between fish locations 3 and 9 (Groups B and C) is unlikely to consistently provide catch amounts high enough to support a 30 g/day adult ingestion rate for the avid recreational angler. For one adult to ingest an annual average of 30 g skin-off fillet/day, approximately 50 lbs. of fish would need to be caught (assuming a conservative dress-out ratio of 0.5) per year. The average number of days Alabama anglers fish rivers and streams is 21 (DOI/DC, 2006; 90 percent confidence interval = 15 to 27); therefore, on average, approximately 2.2 lbs of fish would need to be caught at each outing to obtain the necessary mass. This would be difficult to accomplish in the upstream portions of the Choccolocco Creek and anglers who consume that much fish would be more likely to fish in areas with larger concentrations of sizable fish. As such, the FI for fish locations 3 through 9 was estimated at 0.5 or 50% of the rate downstream of Jackson Shoals. These FI values are used for both the RME and CTE scenarios.

5.2.2.3 Cooking Loss

Cooking loss was not considered because the fish tissue concentrations are based on skin-off fillet samples. PCBs tend to sequester in the fat and skinning the fillets effectively removes the majority of the fat deposits, resulting in what are likely relatively similar concentrations to cooked skin-on fillets.

5.2.2.4 Gastrointestinal Absorption Factor

The 2002 RFI/CS Report used an intestinal absorption factor of 30% from ingested soil based on a matrix effect on aged PCBs (EPA, 1986). However, fish consumption text within the 1986

document notes that it is assumed that there is complete absorption of the contaminant (i.e., PCBs) associated with the consumption of fish. Therefore, the 30% gastrointestinal absorption factor for PCBs from soil is not appropriate to use for fish ingestion and the absorption factor for all fish COPCs is one.

5.2.2.5 Body Weight

The average BW values for the young child (1 through 6 years) and the adult were 15 kg and 70 kg, respectively (EPA, 1989, 2008).

5.2.2.6 Averaging Time

The cancer-based AT was based on a 70-year lifetime for all age groups and equates to 25,550 days (70 years x 365 days/year) (EPA, 1989). The noncancer AT for each of the scenarios was based on the receptor- and scenario-specific exposure duration (ED) in years multiplied by 365 days/year. The noncancer-based AT is constant across all of the scenarios in that it is always the ED multiplied by 365 days/year.

5.2.2.7 Exposure Doses

Calculated exposure doses are presented in RAGS D format in Appendix G.

5.3 RISK CHARACTERIZATION

The risk characterization integrates the information developed in the exposure assessment and the toxicity assessment (Section 4) into an evaluation of the potential risks from consuming fish obtained from the Choccolocco Creek. Cancer risks were calculated for those COPCs with evidence of carcinogenicity and for which cancer toxicity values were available. Noncancer health effects were evaluated for COPCs (i.e., including carcinogens) for which noncancer toxicity values were available.

5.3.1 Cancer Risk

Potential cancer risks from oral exposure were calculated by multiplying the estimated LADD intake that was calculated for a COPC through an exposure route by the exposure route-specific CSF (Table 4-2), as follows:

Risk = LADD * CSF

Where:

LADD = Lifetime average daily dose; intake averaged over a 70-year

lifetime as mg COPC/kg-body weight per day.

CSF = COPC- and route-specific cancer slope factor (mg/kg-day)⁻¹.

Cancer risks were summed across the relevant pathways for a given receptor and exposure scenario to yield a cumulative lifetime risk. EPA's cancer risk range is an increased risk of developing cancer, based on a plausible upper-bound estimate of risk, of approximately 1 in 1,000,000 (1E-06) to 1 in 10,000 (1E-04). This range is used to guide remedial actions under CERCLA.

5.3.2 Noncancer Health Effects

Potential noncancer health effects were evaluated by the calculation of hazard quotients (HQs) and hazard indices (HIs). An HQ is the ratio of the ADD through a given exposure route to the COPC-specific RfD (Table 4-1). The HQ-RfD relationship is illustrated by the following equation:

HO = ADD/RfD

Where:

ADD = Average daily dose; estimated daily intake averaged over the

exposure duration (mg/kg-day).

RfD = Reference dose (mg/kg-day).

HQs were summed to calculate HIs for each scenario. A total HI was calculated based on exposure to the COPCs from exposure routes for each receptor. HIs of less than one indicate that adverse health effects associated with the exposure scenario are unlikely to occur.

5.3.3 Risk Results

As discussed in Section 3.2.2.1, in order to cover potential anglers who would target and consume a particular fish type and those who might consume any fish they were able to catch, "targeted species" and "all species" groupings were used to estimate risk. Species groupings are as follows:

- All species;
- Bass (i.e., largemouth and spotted);
- Catfish; and
- Panfish (i.e., crappie and sunfish).

Because it is not reasonable to assume that an individual would fish all the locations given the distances between the collection locations, the fish sampling locations were grouped based on the observed tPCB concentrations, the distance between the fish collection sites, and the need to achieve a statistically supportable sample size of each of the fish groupings.

Each of the species groupings noted above was evaluated within the following location groupings:

- Group A Locations 1 and 2;
- Group B Locations 3 and 4; and
- Group C Locations 5 through 9.

Appendix H contains RAGS 9 Tables presenting fish ingestion cancer risks and HQs. The RME cancer risks and HQs are summarized in Tables 5-5 and 5-6 for the primary COPCs and TEQs, respectively. The analogous CTE summary tables are presented in Tables 5-7 and 5-8. In general, the RME risk levels for the "all species" grouping exceeded the EPA cancer risk range (1E-06 to 1E-04). The RME cancer risks from tPCBs were greater than 1E-04 for all locations and fish groupings. The RME cancer risks from PCB dioxin-like congener TEQ were less than the tPCB cancer risks for all locations and fish groupings. The RME risks from 2,3,7,8-TCDD TEQ were less than the risks from tPCBs and the PCB dioxin-like congener TEQ. The RME cancer risks from the targeted species groupings were similar to the risks calculated for the "all species" category.

Total PCBs resulted in RME HQs greater than 10 for every location. The RME HQs from mercury, PCB dioxin-like congener TEQ, and 2,3,7,8-TCDD TEQ were greater than one at a number of locations but were less than the tPCBs HQs.

As would be expected, the CTE cancer risks and HQs were less than the RME. Cancer risks were within or slightly above the EPA risk range and HQs for tPCBs were greater than one. The following sections discuss the risk results in greater detail.

5.3.3.1 Group A (Locations 1 and 2)

Tables H-1 and H-2 present the RME risks for Group A. The CTE risks are presented on Tables H-3 and H-4. The table below summarizes the range of RME risks for the "all species" grouping:

COPC	RME Cancer Risk	RME Hazard Quotient
tPCBs	1E-03	62
Mercury	NA	2
PCB Dioxin-like Congeners TEQ	5E-04	12
2,3,7,8-TCDD TEQ	1E-04	4

NA = Not applicable.

As presented, the "all species" grouping total and individual RME risks exceeded EPA's applicable cancer and noncancer risk thresholds. The RME risks for the targeted species groupings are similar to the risks for the "all species" grouping.

The ranges of the CTE risks for the "all species" grouping are summarized below. The individual CTE cancer risks were within EPA's applicable cancer risk range. Total PCBs had an HQ greater than one.

СОРС	CTE Cancer Risk	CTE Hazard Quotient
tPCBs	5E-05	6
Mercury	NA	0.2
PCB Dioxin-like Congeners TEQ	4E-05	1
2,3,7,8-TCDD TEQ	1E-05	0.4

NA = Not applicable.

5.3.3.2 Group B (Locations 3 and 4)

Tables H-5 and H-6 present the RME risks for Group B. The CTE risks are presented on Tables H-7 and H-8. The table below summarizes the range of RME risks for the "all species" grouping:

COPC	RME Cancer Risk	RME Hazard Quotient
tPCBs	6E-04	37
Mercury	NA	1
PCB Dioxin-like Congeners TEQ	1E-04	3
2,3,7,8-TCDD TEQ	3E-05	0.6

NA = Not applicable.

As presented, the "all species" grouping total RME risks were at or exceeded EPA's applicable cancer and noncancer risk thresholds, with the exception of mercury and the 2,3,7,8-TCDD TEQ. The RME risks for the targeted species groupings are similar to the risks for the "all species" grouping.

The ranges of the CTE risks for the "all species" grouping are summarized below. The CTE total and individual cancer risks fell within EPA's cancer risk range. The noncancer HI from tPCBs was greater than one.

СОРС	CTE Cancer Risk	CTE Hazard Quotient
tPCBs	6E-05	7
Mercury	NA	0.2
PCB Dioxin-like Congeners TEQ	2E-05	0.5
2,3,7,8-TCDD TEQ	5E-06	0.1

NA = Not applicable.

5.3.3.3 Group C (Locations 5 through 9)

Tables H-9 and H-10 present the RME risks for Group C. The CTE risks are presented on Tables H-11 and H-12. The table below summarizes the range of RME risks for the "all species" grouping:

COPC	RME Cancer Risk	RME Hazard Quotient
tPCBs	1E-03	71

Mercury	NA	1
PCB Dioxin-like Congeners TEQ	1E-04	3
2,3,7,8-TCDD TEQ	1E-05	0.3

NA = Not applicable.

As presented, the "all species" grouping total RME risks were at or exceeded EPA's applicable cancer and noncancer risk thresholds, with the exception of mercury and the 2,3,7,8-TCDD TEQ. The RME risks for the targeted species groupings are similar to the risks for the "all species" grouping.

The ranges of the CTE risks for the "all species" grouping are summarized below. The individual CTE cancer risks fell within or at EPA's cancer risk range. Although the noncancer total HIs were greater than one, the individual HQs were less than one, with the exception of tPCBs.

COPC	CTE Cancer Risk	CTE Hazard Quotient
tPCBs	1E-04	13
Mercury	NA	0.2
PCB Dioxin-like Congeners TEQ	2E-05	0.6
2,3,7,8-TCDD TEQ	2E-06	0.06

NA = Not applicable.

5.4 UNCERTAINTY ANALYSIS

The uncertainty analysis in a risk assessment provides to decision makers (i.e., risk managers) information about the key assumptions, their inherent uncertainty and variability, and the impact of this uncertainty and variability on the estimates of risk. The uncertainty analysis shows that risks, in this case from the fish ingestion pathway, are relative in nature and do not represent an absolute quantification. The subsections that follow identify the major uncertainties inherent in the fish ingestion HHRA to determine if the calculated risks may have been overestimated or underestimated, and the approximate degree to which this may have occurred.

5.4.1 Hazard Identification

Analytes without Screening Values – Lead does not have an established screening value for fish concentrations and was not quantitatively evaluated in the risk assessment process. Because

toxicity criteria were not available, risks (cancer and noncancer) could not be estimated. It is likely that site risks are underestimated as a result of this lack of toxicity criteria.

Congener Data Availability – Congener data (PCBs and dioxins/furans) were available for approximately 10% of the fish samples. Given the number of samples per location and species groups, it was not possible to calculate a UCL-based EPC for any species/location group combination except for "all species" at Location A and "all species" and panfish at Location C. In the other instances, an alternative EPC (maximum detected concentration or 75th percentile value) was selected. It is not known if this uncertainty results in an over- or underestimate of risk.

Trends Analysis – ADEM monitors contaminant concentrations in fish in Alabama waterways, including the Choccolocco Creek. Since 1993, there have been four areas in the Creek from which fish have been collected. Of these, one is upstream of OU-4 and not applicable for use, and one that is close to Oxford only had data collected in 1993, which eliminates the ability to perform any trends analysis. The Eastaboga area (within risk assessment Group C) has had a total of 38 fish analyzed for tPCBs among 1993, 2004, and 2007 sampling events. The Pell City area (within risk assessment Group A) has had a total of 219 fish analyzed for tPCBs among 1994, 1996, 1999, 2001, 2004, 2007, and 2010 sampling events. Figures 5-1 and 5-2 show trends in fish concentrations in each of these areas, respectively. Note that fish were grouped into the same species categories as in the quantitative risk assessment (i.e., bass, catfish, and panfish) for this exercise. In general, these graphs indicate that tPCB concentrations have been decreasing over the last 16-17 years.

5.4.2 Exposure Assessment

5.4.2.1 General Uncertainties

Selection of Exposure Parameters – The selection of exposure parameters directly influence the calculated doses (chronic daily intakes), and ultimately the calculation of risk. The RME concept was used to estimate the exposure potential. The RME is defined as the "maximum exposure that is reasonably expected to occur at the site" (EPA, 1989). The RME parameters contribute to an overestimation of real-life exposures and a resulting overestimation of risk for most individuals.

The use of the CTE is designed to provide a more typical exposure and risk estimate. However, given that the Creek has a long standing fish consumption prohibition, and that risk assessments are supposed to evaluate risk in the absence of any fishing restrictions, it is likely that the CTE underestimates actual risk to an individual who would otherwise fish and consume fish more regularly in a uncontaminated waterbody.

Exposed Populations – Consumption of the whole fish is common for certain ethnic populations (e.g., southeast Asian cultures). However, a review of the most recent census estimates indicated that southeast Asian ethnic populations represent a small portion (< 1%) of the Calhoun and Talladega County populations (see Appendix F, Table F-4). If there are individuals in the area who eat whole fish, risk may be underestimated as PCBs and other COPCs tend to accumulate in fatty tissue and whole fish contain higher deposits of fat than skin-off fillets.

Subsistence fishing populations would consume considerably more fish than the consumption rate used in this HHRA. However, no evidence was found that points to the existence of subsistence fishing in the area around the Choccolocco Creek, and it was considered unlikely to occur. If subsistence fishing populations were to be determined to exist along the Creek, risks would be underestimated for this population.

Another exposed population that was not evaluated in this HHRA includes those individuals who have property along the river or have access to the river at locations other than the limited number of public access fishing locations. It is possible that an individual with easy access to a good fishing location could fish and consume fish to a greater degree than that assumed in the HHRA, which would result in the calculated risks underestimating real risks for these individuals. This is especially true for the CTE scenario, which was based on current conditions and actual respondents to the Solutia Creel Survey (Arcadis, 2009) at only the nine access points. Individuals at other locations along the Choccolocco Creek with greater access could consume more fish than that estimated by the Creel Survey, which would result in an underestimation of risk for the CTE.

Data Groupings – Locational groupings were determined based on tPCB concentrations. The distribution of other COPCs within the Choccolocco Creek may be different from tPCBs. It is

not known which direction the uncertainty would affect risk; but given the magnitude of risks and relatively small differences in risks between locations, it would likely have minimal effect on the risk assessment outcomes.

CTE Ingestion Rate – Given the likelihood that the current fish consumption advisory posted on this portion of the Creek would reduce the local population's frequency of fishing and the amount of fish consumed, it is anticipated that the creel/angler survey identifies a current fish consumption rate, which was used as the basis of the CTE ingestion rate, that is lower than it would likely be for similar rivers and streams without an advisory. This would tend to underestimate risk for the CTE individual. "In addition, the CTE fish ingestion rate, which was based on the Solutia Creel Survey, could underestimate current exposure and risk based on a potential tendency by respondents to either not respond or not respond accurately due to their knowledge of the existing fish consumption advisory."

Fraction Ingested – As noted in the Exposure Assessment, different FI values were used for different portions of the Creek. A value of 1.0 was used for downstream of Jackson Shoals and 0.5 was used for upstream of the Shoals. Of the 17 anglers interviewed in Solutia's Creel Survey upstream of Jackson Shoals, at least 11 responded that they also fished downstream of the Shoals and 3 anglers indicated they fished another reach upstream of the Shoals (Arcadis, 2009). For anglers fishing upstream of the Shoals (i.e., Groups B and C) that also fish downstream of the Shoals, risks may be underestimated due to the assumed difference in the FIs. For anglers who fish in Choccolocco Creek as well as other locations, and consume their fish, risks would tend to be overestimated as some portion of their total fish consumption would come from other sources assumed not to be contaminated.

5.4.3 Toxicity Assessment

PCBs, 2,3,7,8-TCDD TEQ from PCB dioxin-like congeners, mercury, and 2,3,7,8-TCDD TEQ from dioxins/furans were the only COPCs evaluated in the fish ingestion risk assessment. The toxicity values used in this risk assessment for these COPCs represent the most current values available in U.S. governmental databases and reports (EPA, 2012b; CalEPA-OEHHA 2010; ATSDR, 2009).

The CSFs and RfDs are derived to be health protective and tend to overestimate true toxicity in humans. Therefore, risk calculations, which are partially based on toxicity estimates, may be overstated in general. The exact degree of overestimation cannot be determined and each COPC must be evaluated on a case-by-case basis. The following sections provide a brief discussion of some of the principal uncertainties related to the toxicity of PCBs and TEQ contaminants.

PCB CSF – The PCB CSF (EPA, 2012b) is based on animal studies using commercial mixtures of PCBs (Aroclors). EPA has developed both high-end and central tendency estimates of the PCB CSF. The upper-bound and central estimate slope factors for highly chlorinated PCB mixtures, such as those detected in fish sampled in the Choccolocco Creek, differ only by a factor of two.

There are a number of uncertainties associated with the use of animal studies to predict cancer risk in humans, both qualitatively and quantitatively, through the CSF. Qualitatively, PCBs have been classified as probable human carcinogens (former EPA category B2) based on clear evidence of carcinogenicity in animal experiments and suggestive studies in human populations. Quantitatively, major sources of uncertainty in the application of experimental information to human exposure are the extrapolation of animal studies to human populations, the extrapolation of the high experimental doses to the lower doses from environmental exposures, the extrapolation to less than lifetime doses (including the impact of early life exposures), and the extrapolation of results from commercial mixtures to environmental mixtures. The first three uncertainties are common to the derivation of many CSFs derived by EPA. The extrapolation from commercial to environmental mixtures is specific to mixtures such as PCBs, which adds additional uncertainty to the risk estimate for tPCBs.

tPCB RfD – The RfD for tPCBs used in this assessment was based on immunological effects observed in rhesus monkeys exposed to Aroclor 1254 (EPA, 2012b). An uncertainty factor of 300, which accounts for sensitive members of the population and for extrapolating from animal data to human data, is incorporated into the RfD. EPA is currently reviewing new studies on noncancer effects of PCBs as part of the ongoing IRIS review process. These studies report

possible associations between developmental and neurotoxic effects in children from pre-natal or post-natal exposures to PCBs.

Major sources of uncertainty associated with the PCB RfDs include:

- The selection of uncertainty factors in the derivation of the RfDs, including the length of the study, the critical effect, the quality of the dataset, and the variability of the human population, including sensitive subpopulations.
- The assumption that the critical effects in animal studies are the critical effects in humans.
- The assumption that the dose metric of average daily dose is applicable to bioaccumulative compounds.
- The potential for toxicity changes resulting from variations in PCB mixtures ("weathering") following release to the environment.

In addition to the uncertainties with the chronic RfD, there is additional uncertainty associated with toxic effects that may result from shorter exposure durations. The critical period of exposure for developmental effects associated with *in utero* exposure may be days or weeks instead of the long-term exposure assessed in this report. The potential impact of these acute (short-term) exposures was not evaluated in this assessment, which could lead to an underestimate of the risk associated with tPCBs.

2,3,7,8-TCDD CSF – Cancer risks from dioxins/furans and dioxin-like PCBs were characterized using the TEQ methodology. Toxic equivalency factors (TEFs) developed by WHO (Van den Berg et al., 2006) were used to calculate the TEQ for these contaminants. TEFs are order of magnitude estimates that do not include expressions of uncertainty in predicted dioxin-like toxicity. Some TEFs are based on cancer-related effects, and others are based on noncancer-related effects. The TEQ approach assumes that the effects of the individual congeners are additive and does not address possible antagonism or synergism. The result of the TEQ methodology is a concentration or dose that has a potency that is expressed in terms of its equivalency to 2,3,7,8-TCDD (EPA, 2010c).

Cancer risks are characterized by multiplying the TEQ, expressed as a lifetime average daily dose, with the CSF for 2,3,7,8-TCDD. The CSF for 2,3,7,8-TCDD TEQ used in this assessment (CalEPA-OEHHA, 2010) is based results of a linearized multistage model using male mouse hepatocellular adenoma/carcinoma tumor data for TCDD and female rat neoplastic nodule/hepatocellular carcinoma data for HexaCDD, both from inhalation exposures (CalEPA-OEHHE, 2009). California Department of Health Services (CDHS) has found that the most sensitive species/sex/site for the induction of cancer by TCDD is the male mouse with hepatocellular adenomas or carcinomas, with a response an order of magnitude greater than the least sensitive species/sex/site examined (female mouse subcutaneous fibromas). However, there is less than a four-fold difference in the unit risk between animals species for liver tumors.

Uncertainties with this toxicity value include the assumption that oral and inhalation routes are equivalent, the concentration of TCDD in the air would be the daily oral dose, the route of exposure does not affect absorption, and that there is no difference in metabolism and pharmacokinetics between animals and humans. Although studies regarding relative absorption via differing routes show that inhalation of CDDs is at least as available as through gastrointestinal absorption, it cannot be definitely determined if the aforementioned factors lead to an overestimate in risks because the available data also suggest that the degree and rate relative of absorption are dependent upon the media on which the CDDs are adsorbed and the degree of chlorination (ATSDR, 1998).

2,3,7,8-TCDD RfD – Noncancer hazards from dioxins/furans and dioxin-like PCBs were characterized using the TEQ methodology. Oral TCDD exposure is associated with adverse noncancer effects, including hepatic, neurological, immunological, reproductive, endocrine, and developmental effects. The RfD for dioxins/furans and PCB dioxin-like congeners used in this assessment was based on two epidemiologic studies, reporting either reproductive or developmental effects in humans exposed to TCDD through an industrial accident in Seveso, Italy in 1976 (EPA, 2012b).

Decreased sperm concentrations and decreased motile sperm counts were reported in men who were 1-9 years of age at the time of the Seveso accident. Serum TCDD levels were measured in

samples collected within one year of the initial exposure. A LOAEL of 2.0E-08 mg/kg-day was calculated (Mocarelli et al., 2008 as in EPA, 2012b).

TCDD concentrations in maternal plasma were related to increased levels of thyroid stimulation hormone (TSH) in neonates. This toxicological concern is with the increased metabolism and clearance of the thyroid hormone thyroxine (T4). Adequate levels of thyroid hormones are essential during the brain development of newborns and young infants. Disruption of these hormones during pregnancy and neonatal stages can lead to neurological deficiencies, particularly in attention and memory. A LOAEL of 2.0E-08 mg/kg-day was calculated for this study also (Baccarelli et al., 2008 as in EPA, 2012b).

An uncertainty factor (UF) of 30 was applied to this dose to calculate the RfD. The 30 value comes from combining a UF of 3 to account for interindividual variability and a UF of 10 and to account for extrapolating from a lowest observable adverse effect level (LOAEL) to a no observable adverse effect level (NOAEL) (EPA, 2012b).

EPA has noted that confidence in the oral RfD is listed as "high." The two principal studies were identified as "well conducted" by EPA and they show health effects in humans (as opposed to animals). There is some uncertainty with the exposure in the Mocarelli et al. study are based on a high dose exposure followed by gradual elimination. This is not considered an issue with the Baccarelli et al. study as the maternal exposures were not subject to large fluctuations because the maternal blood measurements occurred several years following the accident and newborns were exposed over a much narrower critical window. However, there is uncertainty with the extrapolation of serum TCDD concentrations from the time of measurement to the time of pregnancy (EPA, 2012b).

2,3,7,8-TCDD Toxicity Reanalysis – In May 2010, EPA released Reanalysis of Key Issues Related to Dioxin Toxicity and Response to NAS Comments, which contained a revised oral slope factor of 1E+06 (mg/kg-day)⁻¹. The response to comment period closed in September of 2010. EPA intends to revise the draft to respond to the Science Advisory Board's (SAB) recommendations and public comments, share the revised report internally with other federal agencies and White House offices, then update and modify the dioxin reassessment. EPA

released an updated IRIS profile containing an RfD for 2,3,7,8-TCDD in February 2012. At that time, it was indicated that the revised oral slope factor would be released "as soon as possible." If the currently discussed toxicity criteria are eventually adopted, the cancer risks for dioxins and dioxin-like compounds presented in this HHRA would increase significantly (i.e., up to approximately 7.7 times).

5.4.4 Risk Characterization

5.4.4.1 Calculation of Total Cancer Risk from PCBs

Total PCB cancer risk was quantified by multiplying tPCB doses by the PCB CSF, and TEQ cancer risk was quantified by multiplying TEQ doses from PCB dioxin-like congeners by the CSF for 2,3,7,8-TCDD. However, estimating total cancer risk from tPCBs and TEQ is not straightforward for several reasons:

- Aroclors are complex commercial mixtures that contain many individual PCB congeners as well as a small component of chlorinated furans (Cogliano, 1998).
- The fate and transport properties of individual congeners differ, and PCB mixtures in the environment can differ significantly from the original commercial products.
- The cancer bioassays used to derive the PCB CSF were conducted using commercial Aroclors as test materials rather than the environmental PCB mixtures to which people are exposed.

Because of the potential differences between the commercial Aroclor mixtures that were tested and the PCB mixture in the environment, there is uncertainty associated with applying the PCB CSF to environmental mixtures. For example, if the relative proportion of carcinogenic PCB congeners is higher in the environmental mixture than in the Aroclor used in the cancer bioassays that form the basis of the PCB CSF, use of the PCB CSF alone may underestimate cancer risk from tPCBs. Several commercial Aroclors were used to determine the CSF (i.e., Aroclors 1016, 1242, 1254, and 1260). The chlorine in the site-specific fish data (calculated using total homolog concentrations) accounted for approximately 56% of the weight of the total homologs, which indicates that the environmental mixture in fish in the Choccolocco Creek would tend to be more closely associated with the heavier, and typically more toxic congener

groupings. Therefore, it is likely that the PCB CSF does underestimate the site-specific cancer risk to some degree.

It is possible that one or more of the 12 PCB dioxin-like congeners (and the furans that compose a small fraction of the Aroclor mixture) might be present in environmental mixtures in higher proportions than in the commercial Aroclors. These PCB congeners were evaluated as TEQ using the approach developed for chlorinated dioxins and furans. Although the carcinogenic potency of these PCB congeners (and the furans that compose a small fraction of the Aroclor mixture) is already accounted for in the PCB CSF, to the extent that they were present in the Aroclor mixture tested in the animal bioassay(s), assessing risks for tPCBs may not capture the full extent of risks from dioxin-like PCBs. Environmental mixtures, particularly those found in the food chain (in fish, for example), may have enhanced concentrations of these and other highly persistent congeners. This appears to be true in fish in Choccolocco Creek as the % weight of the 12 PCB dioxin-like congeners with TEFs in commercial Aroclors generally ranges from about 2 to 12% (ATSDR, 2000); with the % weight of these same congeners (assuming nondetects present at the detection limit) in the site-specific fish data ranging from approximately 6 to 17%, with a mean of 11%.

Although PCB cancer risk can be quantified as TEQ, this approach alone may not fully account for PCB carcinogenicity because PCBs have been associated with carcinogenic mechanisms other than dioxin-like effects. For example, EPA's SAB cited the van der Plas et al. (2000) study of rats exposed to Aroclor 1260, which suggests that most of the tumor promotion potential of PCB mixtures is attributable to the nondioxin-like fraction (SAB, 2001). Because this fraction is not included in the TEQ calculation, van der Plas et al. (2000) concluded that the tumor promotion potential of PCBs might be underestimated by the TEQ approach alone.

To address the concern that some of the cancer potency of dioxin-like PCBs in environmental mixtures may pose a health risk that is predicted by the PCB CSF, cancer risks for tPCBs and PCB dioxin-like congeners were not summed. This approach underestimates the total cancer risk. Although the best approach to evaluating total cancer risk would be to appropriately account for

the potential enrichment of dioxin-like congeners in the environmental mixture, the uncertainties associated with that approach decrease the useability of the information.

5.4.5 Summary

In total, it is difficult to determine whether risks would over or underestimated. A number of factors could lead to an overestimation of risk and a number of factors could lead to an underestimation of risk. The overall RME approach to the risk assessment would tend to overestimate risk for all but the most exposed individuals, while the CTE risk would tend to underestimate risk (especially if no fish consumption advisory was in place) given that it was based on an actual Creel survey on a river with a longstanding fish consumption prohibition.

5.5 RISK SUMMARY

Figures 5-3 and 5-4 present the fish ingestion cancer risks and HQs, respectively, for the "all species" grouping at each location. Although only the "all species" grouping was presented, as noted in the Risk Characterization text and tables (Section 5.3), the various targeted species break-outs (e.g., bass, catfish, and panfish) have relatively similar risk estimates. Each of the COPC cancer risks and HQs are presented individually so that their relative contributions are clear for both RME and CTE risks.

All of the RME cancer risk results were equal to or greater than the EPA cancer risk range of 1E-06 to 1E-04, with the exception of 2,3,7,8-TCDD TEQ risk within Groups B and C, which were within the cancer risk range. All of the RME HQs in all groups were at or above the benchmark of one. All of the CTE cancer risks were within the risk range, with the exception of the Group C tPCB risk, which was equal to the upper-end of EPA's risk range (i.e., 1E-04). With the exception of tPCBs, which had CTE HQs well above one in all locations, the other CTE HQs were at or below this benchmark.

5.6 REFERENCES

- ADEM (Alabama Department of Environmental Management). 1993. Estimation of Daily Per Capita Freshwater Fish Consumption of Alabama Anglers.
- Arcadis. 2009. Methodology and Results of the Choccolocco Creek Fish Consumption Survey. November 2009.
- ATSDR (Agency for Toxic Substances and Disease Registry). 2009. Minimal Risk Levels (MRLs), December 2009. http://www.atsdr.cdc.gov/mrls/pdfs/atsdr mrls december 2009.pdf
- ATSDR (Agency for Toxic Substances and Disease Registry). 2000. *Toxicological Profile for Polychlorinated Biphenyls (PCBs)*. U.S. Department of Health and Human Services, Public Health Service, ATSDR. November 2000.
- ATSDR (Agency for Toxic Substances and Disease Registry). 1998. *Toxicological Profile for Chlorinated Dibenzo-p-Dioxins*. U.S. Department of Health and Human Services, Public Health Service, ATSDR. December 1998.
- Burger, J., W.L. Stephens, Jr., C.S. Boring, M. Kuklinski, J.W. Gibbons, and M. Gochfeld. 1999. Factors in Exposure Assessment: Ethnic and Socioeconomic Differences in Fishing and Consumption of Fish Caught along the Savannah River. *Risk Analysis* 19(3):427-438.
- CalEPA-OEHHA (California Environmental Protection Agency- Office of Environmental Health Hazard Assessment). 2010. Toxicity Criteria Database. http://www.oehha.org/risk/ChemicalDB/index.asp
- _____. 2009. Technical Support Document for Cancer Potency Factors: Methodologies for derivation, listing of available values, and adjustments to allow for early life stage exposures. May 2009.
- Cogliano, V.J. 1998. Assessing the cancer risk from environmental PCBs. *Environ. Health Perspect.* 106(6):317-323.
- DOI/DC (U.S. Department of the Interior, Fish and Wildlife Service and U.S. Department of Commerce, U.S. Census Bureau). 2006. 2006 National Survey of Fishing, Hunting and Wildlife-Associated Recreation Alabama.
- EPA, 1986. Development of Advisory Levels for Polychlorinated Biphenyls (PCBs) Cleanup, Exposure Assessment Group, Office of Health and Environmental Assessment, Washington, DC EPA/600/6-86/002
- _____. 1989. Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual (Part A) Interim Final. Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-89/002. December 1989.

1990. National Oil and Hazardous Substances Pollution Contingency Plan. Final Rule. 40
CFR 300: 55 Federal Register, 8666-8865, 8 March 1990.
1991. RAGS, Volume I: Human Health Evaluation Manual, Supplemental Guidance, Standard Default Exposure Assumptions. Office of Emergency and Remedial Response, Toxics Integration Branch. Interim Final. Publication 9282.6-03. March 1991
1992. Guidelines for Exposure Assessment. National Center for Environmental Assessment. EPA/600Z-92/001. May 1992 2000. Supplemental Guidance to RAGS. Region 4 Bulletins, Human Health Risk Assessment Bulletins. EPA Region 4. Originally published November 1995, Website version last updated May 2000: http://www.epa.gov/region4/waste/ots/healtbul.htm
2008. <i>Child-Specific Exposure Factors Handbook</i> . National Center for Environmental Assessment, Office of Research and Development. EPA/600/R-06/096F. September 2008.
2010a. ProUCL Version 4.00.05 Technical Guide (Draft) EPA/600/R-07/041 May 2010.
2010b. ProUCL Version 4.00.05 User Guide (Draft) EPA/600/R-07/038 May 2010.
2010c. Recommended Toxic Equivalency Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin Like Compounds. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. EPA/600/R-10/005.
2012a. Regional Screening Levels Table. May 2012.
2012b. <i>Integrated Risk Information System (IRIS)</i> . On-Line Database [www.epa.gov/iris]. Office of Research and Development, National Center for Environmental Assessment, Washington, DC.
Lakelubbers (Lakelubbers Guide to Recreational Lakes). 2008. Logan Martin Lake, Alabama.

- Lakelubbers (Lakelubbers Guide to Recreational Lakes). 2008. Logan Martin Lake, Alabama. http://www.lakelubbers.com/logan-martin-lake-230/
- Moya, J. 2004. Overview of fish consumption rates in the United States. *Human and Ecological Risk Assessment.* 10:1195-1211.
- Phillips, J.E. 2009. Hot Times on Logan Martin. *Alabama Fish and Game*. http://www.alabamagameandfish.com/fishing/bass-fishing/al_aa080202a/
- SAB (EPA Science Advisory Board). 2001. *Dioxin Reassessment an SAB Review of the Office of Research and Development's Reassessment of Dioxin*. Review of the Revised Sections (Dose Response Modeling, Integrated Summary, Risk Characterization, and Toxicity Equivalency Factors) of the EPA's Reassessment of Dioxin by the Dioxin Reassessment

- Review Subcommittee of the EPA Science Advisory Board (SAB). PA-SAB-EC-01-006. May 2001.
- Van den Berg, M., L. Birnbaum, M. Denison, M. DeVito, W. Farland, M. Feeley, H. Fiedler, H. Hakansson, A. Hanberg, L. Haws, M. Rose, S. Safe, D. Schrenk, C. Tohyama, A. Tritscher, J. Tuomisto, M. Tyslkind, N. Walker, and R.E. Peterson. 2006. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. *Toxicological Sciences*. 93(2):223-241.
- Van der Plas, S.A., H. Sundberg, H. van den Berg, G. Scheu, P. Wester, S. Jensen, Ake Bergman, J. de Boer, J.H. Koeman, and A. Brouwer. 2000. Contribution of planar (0-1 *Ortho*) and Nonplanar (2-4 *Ortho*) Fractions of Aroclor 1260 to the induction of altered hepatic foci in female Sprague Dawley rats. *Toxicol. Appl. Pharm.* 169:255-268.
- Wright, R.A. and D.R. DeVries. 2003. 2002 Alabama Freshwater Anglers Survey. Alabama Department of Conservation and Natural Resources, Wildlife and Freshwater Fisheries Division, Study 52. March 2003.

6 RISKS FROM DIRECT CONTACT EXPOSURE

6.1 INTRODUCTION

This section presents an evaluation of the direct contact pathway, which includes exposure from incidental ingestion and dermal absorption from contaminated floodplain soil. Because of the size of the floodplain in OU-4 (more than 6,000 acres), property ownership, and varied land use, the floodplain area was separated into 25 exposure units (EUs) to facilitate the evaluation of exposure and risk for the recreational, utility worker, and farmer scenarios (see Section 1.3). As discussed in Section 2.3.2, residential areas are being evaluated as part of the Non-Time Critical Removal Action agreement between Solutia and EPA and, as a result, are not in the scope of this HHRA.

As noted in the beginning of this HHRA Report, certain sections that are common to all three pathway risk assessments have been previously presented (e.g., toxicity assessment). This section provides the exposure assessment, the risk characterization, and a discussion of key uncertainties associated with the direct contact with floodplain soil component of the OU-4 HHRA.

6.2 EXPOSURE ASSESSMENT

The exposure assessment estimates the nature, extent, and magnitude of potential exposure of humans to COPCs considering both current and future uses. The exposure assessment involves several steps, which are listed below:

- Determining EUs for evaluation.
- Calculating exposure point concentrations (EPCs) for each of the exposure scenarios and routes of exposure.
- Identifying the exposure scenarios, models, and parameters with which to calculate exposure doses.

To provide a range of exposure and risks, the reasonable maximum exposure (RME) and central tendency exposure (CTE) scenarios were evaluated (EPA, 1992). The RME, an estimate of the high-end exposure in a population, is based on a combination of average and high-end estimates of exposure parameters typically representing the 90th percentile or greater of actual expected

exposure. The CTE represents an estimate of the average exposure in a population and is based on central estimates of exposure parameters. Both the RME and CTE were evaluated for each exposure scenario.

6.2.1 Exposure Units

As presented in Section 1.3, the OU-4 floodplain area was divided into 25 EUs. This section evaluates the level of contamination within each EU and eliminates from further evaluation in the HHRA those EUs with minimal tPCB concentrations. EUs were eliminated from consideration in the HHRA when tPCB concentrations (either maximum detected concentration or 95% upper confidence limit of the mean [UCL]) were less than 1 mg/kg tPCBs, the previously agreed upon target level for tPCBs.

Soil exposure was evaluated as both surface soil and total soil, with surface soil defined as 0-1 foot bgs, and total soil defined as 0-4 feet bgs. Surface soil concentrations were applied to recreational and farmer soil in which the vast majority of exposure would likely be to the top foot of soil. Total soil was specifically limited to the utility or industrial worker who could be exposure to a greater depth during typical work activities.

Table 6-1 presents the 25 EUs, the maximum tPCB surface soil concentration, the tPCB surface soil 95% UCL, and EU-specific tPCB surface soil EPCs (see Section 6.2.2 for discussion of EPC calculation). Seven of the EUs had tPCB surface soil EPCs less than 1 mg/kg and were eliminated from further consideration in the HHRA. Eighteen of the EUs had a surface soil EPC greater than 1 mg/kg tPCBs and were therefore retained for further investigation in the HHRA.

Four EUs had either utility lines or industrial facilities (e.g., wastewater treatment plant). Table 6-2 presents the 4 total soil EUs evaluated, the maximum tPCB total soil concentration, the tPCB total soil 95% UCL, and EU-specific tPCB total soil EPCs. All four of the EUs had tPCB total soil EPCs greater than 1 mg/kg tPCBs and were therefore retained for further investigation in the HHRA.

Ag-EUs, as identified in Section 7, were used to develop data sets/statistics for use in intake calculations for direct contact exposures to the farmer.

Tables 6-3 and 6-4 present the surface soil and total soil summary statistics for the primary COPCs in the retained direct contact EUs, respectively. Table 6-5 presents the surface soil summary statistics for the primary COPCs at the agricultural EUs (Ag-EUs 1 through 8).

6.2.2 Exposure Point Concentrations

The subsections below present the methods used to calculate the EPCs for the primary COPCs (tPCBs, PCB congeners, and mercury) and the other COPCs.

6.2.2.1 tPCBs and Mercury

The following guidelines were used to determine the EPCs in floodplain soil for tPCBs and mercury for the direct contact risk assessment for each of the EUs. In general, the EPC is represented by the 95% upper-confidence limit of the mean (95% UCL; EPA, 2010a and b). The equations that are used for the 95% UCL calculations are based upon the shape and underlying distribution of the concentration data. Note that each contaminant is looked at individually and professional judgment is used, guided by both the ProUCL Technical Manual (EPA, 2010a) and the ProUCL User's Guide (EPA, 2010b).

ProUCL calculates 95% UCLs using 15 different computation methods, 5 parametric and 10 non-parametric. Parametric methods rely on the estimation of parameters (such as the mean or the standard deviation) describing the distribution of the variable of interest in the population; non-parametric methods do not.

Support documentation (ProUCL outputs) for the calculation of the ProUCL-based EPCs is presented in Appendix I. The EPCs for tPCBs and mercury within the direct contact and agricultural EUs are presented in Tables 6-6 through 6-8. Note that the same EPC value was used for the RME and CTE scenarios.

Soil EPCs for tPCBs and mercury were based on the criteria below.

• If 8 or more samples were collected and the dataset contained more than 5 percent but less than 50 percent detects and at least 4 detects, a nonparametric-based UCL (either Kaplan-Meier (KM) or bootstrapping derived), as per ProUCL's non-parametric-based UCL recommendation, was selected. Note that the bootstrapping method was not considered unless there were at least 10 detects.

• If 8 or more samples were collected within a data grouping and the data set contains at least 50% detects, the appropriate distribution of the data set is determined and UCLs/EPCs are selected as guided by the ProUCL supporting documentation. If the recommended UCL exceeds the maximum detected concentration, a Chebyshev-based UCL is selected as the EPC if possible. If the Chebyshev-based UCL is still higher than maximum detected concentration, the maximum concentration is selected as the EPC.

6.2.2.2 PCB Dioxin-like Congeners in Floodplain Soil

PCB dioxin-like congeners were also identified as a primary COPC, but an alternative approach was required for determining EPCs because there was not enough data collected in each of the EUs to develop a supportable statistical value. Instead, the EPCs for PCB dioxin-like congeners in floodplain soil were estimated using regression equations based on paired tPCB and dioxin-liked PCB congener concentrations from throughout OU-4. A detailed description of the regression analysis and the approach to estimating PCB dioxin-like congener EPCs is presented in Appendix D. Tables 6-9 and 6-10 present the surface soil and total soil EPCs, respectively, for the PCB dioxin-like congener TEQ within the direct contact EUs. Table 6-11 presents the surface soil EPCs for the PCB dioxin-like congener TEQ within the agricultural EUs.

6.2.2.3 Other Floodplain Soil COPCs

Other soil COPCs (i.e., dioxin/furan congeners, PAHs, and metals, excluding mercury) were evaluated differently since the data set is limited because these COPCs were sampled in only 10% of the samples collected from the floodplain. A site-wide approach was used to calculate EPCs for these COPCs. A single EPC was calculated for each of the other soil COPCs and was assumed to be representative of the COPC concentration throughout OU-4. EPA's ProUCL program was used to calculate the EPCs. Support documentation (ProUCL outputs) for the calculation of the UCLs is presented in Appendix I. EPCs used in the risk assessment for the other soil COPCs are presented in Table 6-12.

6.3 EXPOSURE PARAMETERS

This section presents the exposure parameters that were used to quantify exposure in terms of contaminant intake (exposure dose). Table 6-13 presents the exposure parameters for each receptor, which were initially presented in the Final PAR (JMWA, 2009). The mathematical formulas used in estimating exposure intakes are also shown on these tables.

To streamline the presentation and discussion of exposure parameters, they were separated into two categories. The first category was the constant exposure parameters that were similar for all exposure scenarios. These parameters were not repeated in each scenario-specific discussion. The second category was the variable exposure parameters. These parameters were usually different for each exposure scenario and were presented in the exposure scenario-specific discussions in Section 6.3.2.

6.3.1 Constant Exposure Parameters

The exposure parameters values that were constant for all of the exposure scenarios are listed below:

- Body weight (BW).
- Averaging time (AT) cancer and noncancer.
- Dermal absorption factor (ABS).
- Intestinal absorption factor (IAF) from soil.

6.3.1.1 Body Weight

The average BW values for the young child (1 through 6 years) and the adult were 15 kg and 70 kg, respectively (EPA, 1989, 2008). For the adolescent (7 through 16 years), the BW was 45 kg (EPA, 1997, 2000). These values were used in the RME and CTE evaluations and are constant across all scenarios.

6.3.1.2 Averaging Time

The cancer-based AT was based on a 70-year lifetime for all age groups and equates to 25,550 days (70 years x 365 days/year) (EPA, 1989). The noncancer AT for each of the scenarios was based on the receptor- and scenario-specific exposure duration (ED) in years multiplied by 365 days/year. The noncancer-based AT was constant across all of the scenarios in that it was always the ED multiplied by 365 days/year.

6.3.1.3 Dermal Absorption Factor

The ABS term (unitless) represents the fraction of a COPC that was assumed to penetrate the skin following dermal contact with contaminated soil. Similar to the HHRAs performed for OU-1/2 and OU-3 of the Anniston PCB Site, an ABS value of 0.06 was used for PCBs (Solutia,

2002). The ABS values for the other COPCs were obtained from EPA RAGS Part E guidance (EPA, 2004) and are listed below. The ABS values were used in the RME and CTE evaluations.

COPC	Dermal Absorption Factor
PCBs (includes PCB congeners)	0.06
Mercury	Not available
2,3,7,8-TCDD	0.03
PAHs	0.13
Aluminum	Not available
Arsenic	0.03
Chromium	Not available
Cobalt	Not available
Iron	Not available
Manganese	Not available

6.3.1.4 Intestinal Absorption Factor from Soil

The IAF term (unitless) represents the fraction of COPCs that was assumed to be absorbed through the gastrointestinal tract following the incidental ingestion of the soil. Similar to the HHRAs performed for OU-1/2 and OU-3, an IAF value of 0.3 was used for PCBs in soil (Solutia, 2002). IAF values for the other COPCs were 1.0. The IAF values were used in the RME and CTE evaluations for all of the scenarios involving the soil ingestion route of exposure.

6.3.2 Receptor-specific Exposure Parameters

6.3.2.1 Recreational User Exposure Parameters

Recreational users are potentially exposed to COPCs in surface soil (0 to 1 ft bgs) through incidental ingestion and dermal contact and absorption. The recreational receptors included young children, adolescents, and adults that use the OU-4 floodplain for various recreational activities, including walking, hiking, picnicking, riding all-terrain vehicles, hunting, fishing, and related activities. The exposure parameters for the recreational user scenario were developed to cover the potential exposure associated with the most soil intensive recreational activity. The age groups of the recreational user receptors evaluated at an EU were determined based on the EU's access characteristics. The young child receptor was evaluated at EUs located close to residences

or at areas with easy access to the floodplain. The adolescent and adult were evaluated at every recreational EU. Table 2-1 presents the recreational user exposure scenario evaluated per EU.

RME

The incidental soil ingestion rates (IRS) for residential exposure in the list below were used in the RME evaluation for the recreational users.

- Young child 200 mg/day (EPA, 1991, 1997).
- Adolescent 100 mg/day (EPA, 1991, 1997).
- Adult 100 mg/day (EPA, 1991, 1997).

The following exposed skin surface area (SA) values were used in the RME evaluation:

- Young child exposed skin surface includes head, hands, forearms, lower legs, and feet. This equates to a SA value of 2,800 cm² (EPA, 2004).
- Adolescent exposed skin surface includes head, hands, forearms, and lower legs. This equates to a SA value of 5,300 cm² (EPA, 2004).
- Adult exposed skin surface includes head, hands, and forearms. This equates to a SA value of 3,300 cm² (EPA, 2004).

The following soil-to-skin adherence factor (AF) values were used in the RME evaluation:

- Young child a value of 0.3 mg/cm² was used, which is the 95th percentile value for the daycare children activity (EPA, 2004).
- Adolescent a value of 0.4 mg/cm² was used, which is the 95th percentile value for children playing in dry soil activity (EPA, 2004).
- Adult a value of 0.1 mg/cm² was used, which is the 95th percentile value for the commercial/industrial groundskeeper activity (EPA, 2004).

The following ED values were used in the RME evaluation:

- Young child a value of 6 years was used, based on the age range of 1 through 6 years.
- Adolescent a value of 10 years was used, based on the age range of 7 through 16 years.
- Adult a value of 30 years was used. This value is consistent with EPA's default residential ED (EPA, 1997). The duration of 30 years is supported by 2006 Census data for Calhoun and Talladega Counties related to the year an individual moved into their

current residence. The data indicate that approximately 10% of the respondents have been in their current dwelling since 1969 or earlier (U.S. Census Bureau, 2007a, 2007b).

For soil ingestion, a fraction ingested (FI) value of 1.0 was used. A FI of 1.0 assumes that the exposed individual receives 100% of their daily soil intake while engaging in recreational activities at the EU.

Exposure frequency (EF) can vary at different EUs as a function of the location and accessibility of the EUs. At the majority of the EUs, the recreational users were assumed to be exposed to soil 52 days/year which assumes exposure one day per week over the course of a year (52 weeks). This EF is half of the recreational user EF value used in the OU-1/2 HHRA (CDM, 2008). Many of the floodplain areas are not readily accessible as a result of vegetation. Thus, a reduced recreational user EF was used. This is referred to as low contact recreational. At recreational EUs located near residential properties or areas where access is not restricted by vegetation (e.g., along maintained pathways), a higher EF value was used (104 days/year). This is termed high contact recreational.

CTE

The RME parameters for SA were also used for the CTE analysis. The young child and adolescent RME ED values were also used for the CTE.

The IRS values in the list below were used in the CTE evaluation.

- Young child 100 mg/day (EPA, 1991, 1997).
- Adolescent 50 mg/day (EPA, 1991, 1997).
- Adult 50 mg/day (EPA, 1991, 1997).

The following AF values were used in the CTE evaluation:

- Young child a value of 0.04 mg/cm² was used, which is the geometric mean value for the daycare children activity (EPA, 2004).
- Adolescent a value of 0.04 mg/cm² was used, which is the geometric mean value for the children playing in dry soil activity (EPA, 2004).
- Adult a value of 0.02 mg/cm² was used, which is the geometric mean value for the commercial/industrial groundskeeper activity (EPA, 2004).

An ED value of 15 years was used for the adult recreational user. This value is half of the RME value. A soil FI value of 0.5 was used. This assumes that the exposed individual receives 50% of their daily soil intake from within the EU. At the majority of the recreational EUs, the recreational users were assumed to be exposed to soil 26 days/year which assumes exposure one day every two weeks over the course of a year (52 weeks). An EF value of 52 days/year (once a week) was used at recreational EUs located near residential properties.

6.3.2.2 Utility Worker Exposure Parameters

Utility workers, or other industrial workers, could be exposed to COPCs in surface and subsurface soil (total soil) within OU-4 via the incidental soil ingestion and dermal contact routes of exposure during typical work activities that require excavation and repair. The exposure was based on intense soil contact activities that were assumed to have a short duration.

RME

The IRS was 330 mg/day (EPA, 2002). The SA value was 3,300 cm² (EPA, 2004) and assumes that the head, hands, and forearms are exposed. The AF value was 0.3 mg/cm², which corresponds to the 95th percentile value for the construction workers activity (EPA, 2004). The utility worker ED was 1 year. The EF was 10 days/year which assumes the utility worker maintains easements, and inspects, repairs and replaces equipment. The FI was 1.0.

CTE

The RME parameters SA and ED were also used for the CTE analysis. An IRS value of 100 mg/day was used (EPA, 2003). The AF value was 0.1 mg/cm², which corresponds to the geometric mean value for the construction workers activity (EPA, 2004). The EF was 5 days/years, which is half of the RME value. The FI was 0.5.

6.3.2.3 Farmer Exposure Parameters

The farmer exposure scenario consists of an adult contacting floodplain soil during typical farming activities such as planting and harvesting. It is applied to EUs that are currently used for agricultural purposes.

RME

Higher soil ingestion rates are used for contact-intensive activities such as farming. EPA recommends a soil ingestion rate of 330 mg/day for construction work activities (EPA, 2002). This value represents the 95th percentile rate based on a study by Stanek at al. (1997). The 90th percentile ingestion rate from the Stanek study was 200 mg/day. The IRS of 200 mg/day was used in the RME for the adult farmer. This rate applies to the planting and harvesting activities in which heavy equipment can be used and fugitive dust generated.

The RME EF for the adult farmer contact with floodplain soil was 10 days/year. This value is based on a 200-day growing season and assumes that a farmer spends 5 days/year planting and 5 days/year harvesting in the floodplain. A SA value of 3,300 cm² was used. An AF value of 0.4 mg/cm², which is the 95th percentile value for the farmer activity, was used (EPA, 2004). The farmer based ED value of 40 years was used in the RME evaluation (EPA, 2005). A FI value of one was used.

CTE

The RME parameters for SA and ED were also used for the CTE analysis. The IRS was 100 mg/day (EPA, 2003). The CTE EF for the adult farmer contact with floodplain soil was 5 days/year. An AF value of 0.1 mg/cm², which is the geometric mean value for the farmer activity, was used (EPA, 2004). A soil FI value of 0.5 was used.

6.3.2.4 Exposure Doses

Calculated exposure doses are presented in RAGS D format in Appendix J.

6.4 RISK CHARACTERIZATION

The risk characterization integrates the information developed in the exposure assessment and the toxicity assessment into an evaluation of the potential risks associated with exposure to COPCs. Cancer risks were calculated for those COPCs with evidence of carcinogenicity and for which cancer toxicity values were available. Noncancer health effects were evaluated for COPCs (i.e., including carcinogens) for which noncancer toxicity values were available.

6.4.1 Cancer Risk

Potential cancer risks from oral exposure were calculated by multiplying the estimated LADD

intake that was calculated for a COPC through an exposure route by the exposure route-specific

CSF, as follows:

Risk = LADD * CSF

Where:

LADD = Lifetime average daily dose; intake averaged over a 70-year

lifetime as mg COPC/kg-body weight per day.

CSF = COPC- and route-specific cancer slope factor (mg/kg-day)⁻¹.

EPA's cancer risk range is an increased risk of developing cancer, based on a plausible upper-

bound estimate of risk, of approximately 1 in 1,000,000 (1E-06) to 1 in 10,000 (1E-04).

6.4.2 Noncancer Health Effects

Potential noncancer health effects were evaluated by the calculation of hazard quotients (HQs) and hazard indices (HIs). An HQ is the ratio of the ADD through a given exposure route to the

COPC-specific RfD. The HQ-RfD relationship is illustrated by the following equation:

HQ = ADD/RfD

Where:

ADD = Average daily dose; estimated daily intake averaged over the

exposure duration (mg/kg-day).

RfD = Reference dose (mg/kg-day).

HQs were summed to calculate HIs for each scenario. HIs were calculated for each exposure

route, and a total HI was calculated based on exposure to the COPCs from exposure routes for

each receptor. HIs of less than one indicate that adverse health effects associated with the

exposure scenario are unlikely to occur.

6-11

6.4.3 Risk Results

The following subsections present the results of the RME risk calculations. Section 6.4.3.1 presents the RME risk results for the EUs. The EU-specific risks were based on the primary COPCs (tPCBs, PCB TEQ, and mercury). Section 6.4.3.2 presents the RME site-wide risk results based on potential exposure to the other COPCs (2,3,7,8-TCDD TEQ, carcinogenic PAHs, aluminum, arsenic, chromium, cobalt, iron, and manganese). As discussed previously in this report, the amount of analytical data available for the other COPCs were limited and therefore EU-specific risks could not be calculated. Site-wide (i.e., OU-4 area) risks were estimated based on the limited amount of data assuming that the calculated EPCs were representative of the entire OU-4 area. There is uncertainty associated with this approach that is discussed in the Uncertainty Analysis.

6.4.3.1 Exposure Unit Risks

Tables 6-14 and 6-15 present a summary of the total RME cancer risks and noncancer HIs from the primary COPCs (tPCBs, PCB TEQ, and mercury) at each direct contact EU and agricultural EU, respectively. The recreational cancer risks based on both tPCBs and PCB dioxin-like congener TEQ were either within or less than the EPA acceptable cancer risk range of 1E-06 to 1E-04. The maximum recreational cancer risk was observed at C3S-EU2. High contact recreational exposure was evaluated at this EU for the young child, adolescent, and adult receptors. The total tPCB cancer risks at C3S-EU2 ranged from 4E-06 to 8E-06. The PCB dioxin-like congener TEQ cancer risks at C3S-EU2 ranged from 1E-06 to 3E-06. The utility worker cancer risks for both tPCBs and PCB dioxin-like congener TEQ were less than the EPA acceptable cancer risk range of 1E-06 to 1E-04 at all EUs. The tPCB cancer risks for the utility worker ranged from 1E-08 to 1E-07. The PCB dioxin-like congener TEQ cancer risks for the utility worker ranged from 2E-09 to 2E-08. The farmer cancer risks were at or less than the EPA acceptable cancer risk range at every agricultural EU and ranged from 3E-09 to 3E-06 for tPCBs and 8E-11 to 3E-07 for PCB dioxin-like congener TEQ.

The noncancer RME HIs for all soil contact exposure scenarios (recreational, worker, and farmer) were less than or equal to the noncancer benchmark of one at all of the direct contact EUs.

Appendix K presents the RAGS Part D Tables 9 and 10 for both the RME and CTE evaluations. Recreational user, utility worker, and farmer CTE cancer risks were less than the EPA acceptable cancer risk range of 1E-06 to 1E-04 at all direct contact and agricultural EUs. Recreational user, utility worker, and farmer CTE HIs were less than the noncancer benchmark of one at all direct contact and agricultural EUs.

6.4.3.2 Site-Wide Risks

Site-wide RME risks were estimated for 2,3,7,8-TCDD TEQ, carcinogenic PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene), aluminum, arsenic, chromium, cobalt, iron, and manganese. Risks were estimated assuming high contact and low contact recreational exposure. Table 6-16 presents the results of the RME cancer risk calculations. Table 6-17 presents the RME noncancer HIs.

The site-wide cancer risks were within the EPA acceptable risk range. The risks ranged from 2E-06 to 9E-06. The noncancer HIs were less than the noncancer benchmark of one, ranging from 0.04 to 0.7.

6.5 UNCERTAINTY ANALYSIS

The uncertainty analysis in a risk assessment provides to the appropriate decision makers (i.e., risk managers) information about the key assumptions, their inherent uncertainty and variability, and the impact of this uncertainty and variability on the estimates of risk. The uncertainty analysis shows that risks are relative in nature and do not represent an absolute quantification. The subsections that follow identify the major uncertainties inherent in the HHRA process by report section to determine if the calculated risks may have been overestimated or underestimated, and the approximate degree to which this may have occurred.

6.5.1 Hazard Identification

Analytes without Screening Values – Lead does not have an established screening value for soil concentrations and was not quantitatively evaluated in the risk assessment process. Because toxicity criteria were not available, risks (cancer and noncancer) could not be estimated. It is likely that site risks are slightly underestimated as a result of this lack of toxicity criteria.

Congener Data Availability – Congener data were available for approximately 10% of the soil samples. EPCs for dioxin-like PCB congeners in floodplain soil were estimated using regression equations based on paired tPCB and dioxin-liked PCB congener concentrations from throughout OU-4. It is not known if this uncertainty results in an over- or underestimate of risk, but the magnitude of the uncertainty is likely to be minimal.

6.5.2 Exposure Assessment

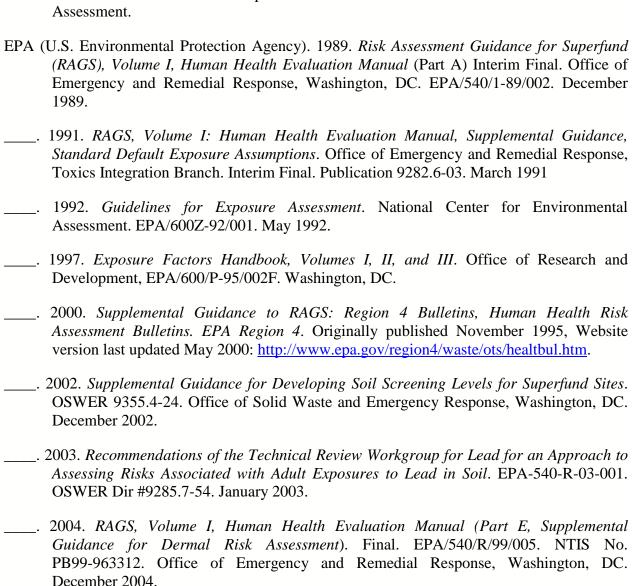
Selection of Exposure Assumptions — The exposure assumptions directly influence the calculated doses (chronic daily intakes), and ultimately the calculation of risk. The RME concept was used to estimate the exposure potential for each of the receptors that were evaluated in the HHRA. The RME is defined as the "maximum exposure that is reasonably expected to occur at the site" (EPA, 1989). These assumptions contribute to an overestimation of real-life exposures and a resulting overestimation of risk for most individuals, in some cases to a relatively significant degree. The use of the CTE is designed to provide a more typical exposure and risk estimate for those individuals who would contact floodplain soil.

6.5.3 Toxicity Assessment

A detailed presentation of the key issues associated with toxicity uncertainties was presented in Section 5.4.3 in the Fish Risk Assessment section, and is not repeated here. In general, given the conservative nature of the development of toxicity factors, it is likely that the use of these criteria in evaluating exposure and risk through direct contact exposure results in an overestimation of risk.

6.5.4 Risk Characterization

A detailed discussion of some of the key issues associated with presenting PCB and congener risk was presented in the Fish Risk Assessment in Section 5.4.4, and is not repeated here.


In general, due to the conservative nature of the exposure assumptions, especially for the RME, and the toxicity criteria, it is likely that the risks presented for direct contact exposure are overestimated to a significant degree.

6.6 RISK SUMMARY

Cancer risks and hazard quotients estimated for direct contact exposure were all within or less than typical risk ranges for both RME and CTE exposures. In addition, based on the conservative approach taken in calculating these risks, it is unlikely that direct contact exposure of residents, recreators, farmers, or workers to floodplain soils would result in unacceptable human health risks.

6.7 REFERENCES

CDM. 2008. Anniston PCB Site Operable Units 1 and 2 Human Health Baseline Risk Assessment.

2005. <i>Guidelines for Carcinogen Risk Assessment</i> . Risk Assessment Forum, Washington, DC. EPA/630/P-03/001B. March 2005
2008. <i>Child-Specific Exposure Factors Handbook</i> . National Center for Environmental Assessment, Office of Research and Development. EPA/600/R-06/096F. September 2008.
2010a. ProUCL Version 4.00.05 Technical Guide (Draft) EPA/600/R-07/041 May 2010.
2010b. ProUCL Version 4.00.05 User Guide (Draft) EPA/600/R-07/038 May 2010.
JM Waller, Inc. 2009. Final Pathways Analysis Report for the Baseline Risk Assessment for Anniston PCB Site Operable Unit 4, Anniston, Alabama. Prepared for EPA Region 4. December 2009.
Solutia. 2002. RCRA Facility Investigation/Confirmatory Sampling Report for the Anniston, Alabama Facility. October.
Stanek, E.J., E.J. Calabrese, R. Barnes, and P. Pekow. 1997. Soil Ingestion in Adults - Results of a Second Pilot Study. <i>Ecotoxicology and Environmental Safety</i> . 36: 249-257
U.S. Census Bureau. 2007a. Calhoun County, Alabama Selected Housing Characteristic 2005-2007. Accessed April 1, 2009. Available at: http://factfinder.census.gov/servlet/ADPTable? http://factfinder.census.gov/servlet/ADPTable? http://factfinder.census.gov/servlet/ADPTable? http://factfinder.census.gov/servlet/ADPTable? http://factfinder.census.gov/servlet/ADPTable? http://factfinder.census.gov/servlet/ADPTable? https://factfinder.census.gov/servlet/ADPTable? https://factfinder.census.gov/servlet/ADPTable? https://factfinder.census.gov/servlet/ADPTable? https://factfinder.census.gov/servlet/ADPTable? <a adptable?"="" factfinder.census.gov="" href="mailto:bm-y&-caller=geoselect&-geo_id=05000US01015&-format=&geo-geo-geo-geo-geo-geo-geo-geo-geo-geo-</td></tr><tr><td> 2007b. Talladega County, Alabama Selected Housing Characteristic 2005-2007. Accessed</td></tr><tr><td>April 1, 2009. Available at: http://factfinder.census.gov/servlet/ADPTable? http://factfinder.census.gov/servlet/ADPTable? http://factfinde
ds name=ACS 2007 3YR G00 &-tree id=3307&-redoLog=true&- caller=geoselect&-
geo id=05000US01121&-format=&- lang=en

7 RISKS FROM AGRICULTURAL PRODUCTS CONSUMPTION

7.1 INTRODUCTION

The focus of this portion of the HHRA is the current and potential future food production activities by the farmer who grows vegetables and crops and raises livestock in the floodplain. The ingestion of agricultural products takes into account the current agricultural practices in OU-4. It also considers the reasonably anticipated future agricultural practices. Risks were not calculated for specific areas, properties, or agricultural practices because to do so would only provide information for a single set of scenarios and would not be useful if/when conditions and farming practices change in the future. Rather, it evaluates where agricultural use is occurring (or could occur) and uses representative tPCB concentrations to generate risk matrices incorporating multiple potential farming practices and home grown ingestion scenarios.

An investigation of current agricultural practices indicated that the primary uses of the floodplain in OU-4 are cattle grazing (for beef production) and crops (for direct sale and to a lesser extent, cattle feed) (Butler, 2009, Browning, 2009, Jurriaans, 2009, and West, 2009). Dairy production is no longer practiced in the floodplain areas of OU-4, according to farm service agents in Calhoun and Talladega Counties; and no evidence was found that chickens, eggs, or garden vegetables are commonly raised in floodplain soil, although it is possible that this could change in the future (Butler, 2009, Browning, 2009, Jurriaans, 2009, and West, 2009).

As described earlier, the Alabama Land Trust (ALT) is in the process of developing a Conservation Corridor for Choccolocco Creek. The Conservation Corridor is a conservation easement that limits the development and use of the floodplain within certain distances from the Creek bank. Depending on the property and specific stipulations in the agreement, restrictions can be applied to residential, commercial, industrial, recreational, or agricultural uses.

Figure 7-1 shows the areas where the Conservation Corridor restricts agricultural uses. It is possible that additional properties will become part of the Conservation Corridor in the future. This is important information for the agricultural component of the OU-4 HHRA because the land use and potential exposure to COPCs (tPCBs) within the easement will be different from

exposure outside of the easement. The boundaries of the Conservation Corridor were taken into consideration in the delineation of agricultural exposure units (Ag-EUs).

Section 7.2 describes the Ag-EUs which represent areas within OU-4 where agricultural use is occurring or could reasonably occur in the future, and where the maximum detected tPCB concentration is greater than 1 mg/kg. Section 7.2 also provides a summary of the tPCB data in each Ag-EU and provides the justification for the range of tPCB concentrations used for modeling uptakes. Section 7.3 is the Exposure Assessment, which describes the approach used to model the transfer of soil tPCB concentrations into agricultural crops and animal tissue and presents the farmer exposure parameters. Section 7.4 provides the estimates of risk for each agricultural practice at a series of tPCB soil concentrations, and Section 7.5 provides a description of the major sources of uncertainty associated with this analysis. A summary of the risks is presented in Section 7.6 and references are presented in Section 7.7.

7.2 AGRICULTURAL EXPOSURE UNITS

The first step in evaluating potential exposure and risks from agricultural uses is to determine where agricultural activities are occurring (or could potentially occur) in the floodplain. Figures 7-2 through 7-4 present the locations of the designated Ag-EUs. Note that the Ag-EUs are separate and distinct from the direct contact EUs described in Section 2.

The Ag-EUs were delineated using the available aerial photography and information obtained during numerous trips to the floodplain area by EPA personnel and their contractors. The Ag-EUs included land used for growing row crops and grasses and where cattle were observed grazing. Areas with agricultural use restrictions imposed by the Conservation Corridor were not included in the Ag-EUs. The floodplain soil data (for tPCBs only) from each of the Ag-EUs were summarized to determine the extent of contamination levels that may be of concern for agricultural exposure. Table 7-1 presents this information.

As shown on Figures 7-2 through 7-4, eight Ag-EUs have been identified. Additional areas within OU-4 are used for agricultural purposes but all of the tPCB concentrations were less than 1 mg/kg; therefore, these areas were not evaluated further. Total PCB exposure point concentrations (EPCs) for each of the eight Ag-EUs were calculated following the approach

presented in Section 6.2.2. These EPCs ranged from less than 1 mg/kg to 42.5 mg/kg. Based on the EPCs, exposure and risk from agricultural practices were calculated for the following tPCB concentrations: 1 mg/kg, 5 mg/kg, 20 mg/kg, and 40 mg/kg.

7.3 EXPOSURE ASSESSMENT

As noted previously, current agricultural activities in the OU-4 floodplain are primarily beef cattle grazing and row crop production. Row crops are considered in regard to their use as animal feed crops, not as human consumables. Raising of dairy cows (milk consumption) and poultry (chicken and egg consumption) and growing of vegetables within the floodplain are considered potential future activities.

7.3.1 Agricultural Modeling

In contrast to the fish consumption (Section 5) and direct contact with soil (Section 6) portions of the HHRA, PCBs in the agricultural products consumed by humans were not measured, but were estimated using uptake/transfer models for the following reasons:

- Wide range of current and potential farming practices in the area;
- Potential for changes in both farming practices and locations in the future; and
- Uncertainty associated with soil concentrations for any specific farming practice.

The models predict the degree to which PCBs measured in the floodplain soil could be transferred to plants (root uptake) and animals (incidental soil ingestion and ingesting feed grown in the floodplain). As noted in the PAR (JMWA, 2009), only tPCBs were planned to be evaluated in agricultural products. Predictive models were used to estimate the concentrations of tPCBs in plants (i.e., vegetables and animal feed) and animal products.

The approach and models presented in EPA's *Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities* (HHRAP) (EPA, 2005) were preferentially used. The types of plants that were evaluated included above ground vegetables, below ground (root) vegetables for human consumption, and animal feed (e.g., pasture grass and silage). The predicted concentrations of tPCBs in vegetables were used to estimate exposure from human consumption of home grown garden vegetables. The predicted concentrations in animal feed

(i.e., forage/silage/grain) were used to model uptake into animals grazing/foraging in the floodplain and consuming feed raised in the floodplain.

The models used in the HHRA are designed to be conservative and may result in an over-estimate of the concentrations of tPCBs in the agricultural products of interest and a potential overestimate of risk to humans who are assumed to consume these products. This modeling-related conservatism is addressed in the Uncertainty Analysis (Section 7.5). Table 7-2 presents a summary of the parameters used in the agricultural product modeling. These are the same parameters presented in the PAR (JMWA, 2009).

Table 7-3 presents a summary of the modeled tPCB concentrations in agricultural products assuming a soil concentration of 1 mg/kg tPCBs. Predicted tPCB concentrations in livestock were modeled based on a variety of livestock ingestion assumptions. This was done by altering the fraction of food that is assumed to be grown in the floodplain. The fraction ingested terms (FI) used in this analysis included 10%, 25%, 50%, and 100%, depending on the agricultural product. The predicted tPCB concentrations in agricultural products at the unity concentration were used to estimate risks at the range of tPCB concentrations in soil observed in the Ag-EUs.

7.3.1.1 Soil-to-Plant Transfer Mechanisms

This section describes the mechanisms by which PCBs can migrate from the soil to plant tissue. Contaminants such as PCBs are transferred from soil to plant tissue by:

- Root uptake from soil and transfer into above ground vegetation.
- Partitioning from soil to root vegetables.

The biotransfer factors (BTF) for above ground plants (BTF_{ag}), including vegetables and animal feed, were calculated on a dry weight basis using the correlation equation from Travis and Arms (1988) as presented in Equation 7-1. As previously described by EPA (1995), the BTF values for most compounds are a function of water solubility, which is inversely proportional to octanol/water partitioning coefficient (Kow). Thus, for compounds with a high Kow value (e.g., PCBs), which indicates very low water solubility, the potential transfer is expected to be minimal.

The correlation equation developed by Travis and Arms does not distinguish between above ground produce, forage, silage, or grain. Equation 7-1 was derived from experiments performed on compound classes such as DDT, pesticides, dioxins, furans, and PCBs. Therefore, because of the similarities between the test compound classes and the OU-4 contaminants, it is considered by EPA to be a valid modeling approach.

Equation 7-1

$$log BTF_{ag} = 1.588 - 0.578(log Kow)$$

The log Kow value used in the modeling analyses was 6.5. This value is for Aroclor 1254 and was obtained from EPA's HHRAP (EPA, 2005).

The BTF for root vegetables (BTF_{bg}) was based on a root concentration factor (RCF). The RCF value is calculated on a wet weight basis based on experiments by Briggs et al. (1982) using Equation 7-2, which is specific to compounds with a log Kow value of greater than 2.0.

Equation 7-2

$$log RCF_{wet weight} = 0.77 x log Kow - 1.52$$

The log RCF and a soil-water partitioning coefficient (Kds) value were used to calculate the BTF_{bg} on a wet weight basis (Equation 7-3). A Kds value of 24,535 (cm 3 /gram) based on Aroclor 1254 was used (EPA, 2005). An empirical correction factor of 0.01 was applied to the calculated BTF_{bg} value to reduce the PCB uptake to root vegetables. Because of the protective outer skin, size, and shape of below ground produce, transfer of PCBs to the center of the produce is unlikely (EPA, 2005).

Equation 7-3

$$BTF_{bg} = \frac{10^{\log RCF_{wet weight}}}{Kds} \times 0.01$$

Empirical constants and calculated transfer factors are presented in Table 7-2.

7.3.1.2 Prediction of Concentrations in Vegetables

Home grown produce was evaluated in two categories: above ground vegetables and below ground (root) vegetables. The soil-to-plant BTFs described in the previous section were applied to the unity tPCB concentration of 1 mg/kg to yield an estimate of the concentration of tPCBs in home grown produce (see Equations 7-4 and 7-5). The modeled above ground produce concentrations are in dry weight. For consistency with the vegetable ingestion rates discussed in Section 7.3.2, it was necessary to convert the produce concentrations to wet weight. A moisture content of 94% was used for above ground vegetables. This value represents the average moisture content of cucumbers, peppers, and tomatoes (EPA, 1997).

Equation 7-4

Above ground produce

$C_{ag} = C_{soil} \times BTF_{ag} \times CF$			
Where:			
C_{ag}	=	Concentration of tPCBs in above ground produce due to root uptake	
		(mg/kg wet weight).	
C_{soil}	=	Concentration of tPCBs in soil (mg/kg dry weight). The unity tPCB	
		concentration term (i.e., 1 mg/kg) was initially used.	
BTF_{ag}	=	Soil-to-plant biotransfer factor for above ground produce – 0.00678 ([mg	
		COPC/kg dry weight plant]/[mg COPC/kg dry weight soil]).	
CF	=	Conversion factor (0.06 kg dry weight/kg wet weight; does not apply to	
		forage/silage/grain).	

Equation 7-5

Below ground produce

$C_{bg} = C_{soil} \times BTF_{bg}$			
Where:			
C_{bg}	=	Concentration of tPCBs in below ground produce due to root uptake	
		(mg/kg wet weight).	
C_{soil}	=	Concentration of tPCBs in soil (mg/kg dry weight). The unity tPCB	
		concentration term (i.e., 1 mg/kg) was initially used.	
BTF_{bg}	=	Soil-to-plant biotransfer factor for below ground produce – 0.00125 ([mg	
		COPC/kg wet weight plant tissue]/[mg COPC/kg dry weight soil]).	

Empirical constants and calculated transfer factors are presented in Table 7-2. Calculated tPCB concentrations in produce based on a tPCB soil concentration of 1 mg/kg are presented in Table 7-3.

7.3.1.3 Prediction of Concentrations in Animal Feed

Total PCB concentrations in pasture grass, silage, and grain were predicted to determine the potential intake of livestock. The BTF_{ag} value derived using Equation 7-1 was applied to the unity tPCB concentration of 1 mg/kg to derive the levels of tPCBs in the feed of animals in the floodplain area (Equation 7-4). Because the animal feed consumption rates are on a dry weight basis, there is no need to convert the grain, silage, and pasture grass to wet weight. Empirical constants and calculated transfer factors are presented in Table 7-2. Calculated tPCB concentrations in animal feed based on a tPCB soil concentration of 1 mg/kg are presented in Table 7-3.

7.3.1.4 Prediction of Concentrations in Animal Products

The potential transfer of tPCBs from soil and food into animal tissue was predicted using regression models. Equations developed by Travis and Arms (1988) have been commonly used to predict contaminant transfer from affected media and food into beef and milk. However, there is a significant amount of uncertainty surrounding the Travis and Arms approach based on the limited log Kow range upon which the regression equation is based and questions surrounding the validity of the underlying biotransfer data set (EPA, 2005). As a result, EPA developed a new methodology for predicting transfer into beef and milk (RTI, 2005). Basically, the updated methodology predicts transfer into animal fat (BTF_{fat}) where lipophilic compounds such as PCBs tend to sequester (see Equation 7-6), The BTF_{fat} values are then adjusted to account for the assumed fat content in animal products.

Equation 7-6

$$\log BTF_{fat} = -0.099 \text{ x (log Kow)}^2 + 1.07 \text{ x log Kow} - 3.56$$

Empirical constants and calculated transfer factors are presented in Table 7-2.

7.3.1.4.1 Beef

PCBs may accumulate in the tissue of beef cattle that graze in the floodplain as a result of

ingesting pasture grass and soil or feed grown in the floodplain. The BTF_{fat} value calculated in

Equation 7-6 was adjusted to account for the assumed fat content in beef on a wet weight basis as

shown in the Equation 7-7.

Equation 7-7

 $BTF_{beef} = 10^{\log BTF_{fat}} \times 0.19$

The beef cattle ingestion rates of food items (forage, silage, and grain) and soil were obtained

from the HHRAP (EPA, 2005). Given the limited transfer of PCBs from soil to animal feed

plants, the incidental ingestion of soil by grazing cattle is the primary contributor to the overall

PCB intake. The beef cattle incidental soil ingestion rate was 0.5 kg/day and was derived as

follows:

Average beef cattle weight: 590 kg (EPA, 2005).

Daily dry matter intake rate: 2% of average body weight.

590 kg x 2% = 11.8 kg DW/day (EPA, 2005).

Soil ingestion: 4% of total dry matter intake (EPA,

Beef cattle ingestion rate: 11.8 kg DW/day x 4% = 0.5

kg/day.

tPCBs in beef tissue were estimated assuming the cattle ingest forage, silage, grain, and soil. In

addition, tPCBs in beef tissue were estimated assuming the cattle ingest forage and soil only (no

silage or grain).

Equation 7-8 presents the general equation for calculating the concentration of tPCBs in beef

tissue on a wet weight basis. The FI terms used in Equation 7-8 were set at different values

(10%, 25%, and 50%) to account for the varying livestock raising practices in the floodplain with

consideration given to the current and hypothetical future uses. The highest FI value (100%) was

not used for cattle because the sizes of the agricultural areas within the floodplain within an EU

do not seem to lend themselves to cattle obtaining 100% of their diet from within the floodplain.

7-8

Equation 7-8

$C_{beef} = \left(\sum (FI_i \times IR_i \times C_i) + FI_{soil} \times IR_{soil} \times C_{soil} \times Bs\right) \times BTF_{beef} \times MF$						
Where:						
C_{beef}	П	Concentration of tPCBs in beef (mg/kg wet weight).				
FI_i	=	Fraction of plant type i (forage, silage, and grain) grown on contaminated soil				
		and ingested by the animal (unitless). For this analysis, the FI term was set at the				
		following values: 10%, 25%, and 50%.				
IR_i	=	Ingestion rate of plant type i eaten by the animal per day (kg dry weight				
		plant/day). Forage – 8.8; Silage – 2.5; and Grain – 0.47.				
C_{i}	=	Concentration of tPCBs in plant type i eaten by the animal – 0.00678 (mg/kg dry				
		weight).				
FI_{soil}	=	Fraction of ingested soil from the floodplain. For this analysis, the FI term was				
	set at the following values: 10%, 25%, and 50%.					
ID	_	Ingestion rate of soil eaten by the animal per day (0.5 kg dry weight/day) (EPA,				
IR_{soil}		2005).				
C_{soil}	П	Concentrations of tPCBs in soil (mg/kg dry weight).				
Bs	Ш	Soil bioavailability factor (unitless). A value of 1.0 was used.				
BTF_{beef}	=	Beef biotransfer factor – 0.031 (day/kg wet weight tissue).				
MF	=	Metabolism factor (unitless). A value of 1.0 was used.				

Empirical constants and calculated transfer factors are presented in Table 7-2. Calculated tPCB concentrations in beef based on a tPCB soil concentration of 1 mg/kg are presented in Table 7-3.

7.3.1.4.2 Dairy Products

Although there are no known dairy operations within OU-4, uptake into dairy products was estimated assuming the potential for future dairy operations. PCBs may accumulate in the milk of dairy cattle that graze in the floodplain as a result of ingesting pasture grass and soil or feed (silage) grown in the floodplain. The BTF_{fat} value calculated in Equation 7-6 were adjusted to account for the assumed fat content in milk on a wet weight basis as shown in the Equation 7-9.

Equation 7-9

$$BTF_{milk} = 10^{\log BTF_{fat}} \ x \ 0.04$$

The dairy cattle ingestion rates of food items (forage, silage, and grain) and soil were obtained from the HHRAP (EPA, 2005). Given the limited transfer of PCBs from soil to animal feed

plants, incidental soil ingestion by the dairy cattle is the primary contributor to the overall PCB intake. The dairy cattle incidental soil ingestion rate was 0.4 kg/day and was derived as follows:

Average dairy cattle weight: 630 kg (EPA, 2005).
Daily dry matter intake rate: 3.2% of average body
weight. $630 \text{ kg x } 3.2\% = 20 \text{ kg DW/day (EPA, } 2005).$
Soil ingestion: 2% of total dry matter intake (EPA,
2005).
Dairy cattle ingestion rate: $20 \text{ kg DW/day x } 2\% = 0.4$
kg/day.

tPCBs in milk were estimated assuming the cattle ingest forage, silage, grain, and soil. In addition, tPCBs in milk were estimated assuming the cattle ingest only forage and soil from the floodplain (i.e., no silage or grain obtained grown within the floodplain).

Equation 7-10 presents the general equation for calculating the concentration of tPCBs in dairy milk on a wet weight basis. The FI terms used in Equation 7-10 were set at different values (10%, 25%, and 50%) to account for the varying livestock raising practices in the floodplain with consideration given to the current and hypothetical future uses. The highest FI value (100%) was not used for dairy cattle since they do not typically graze a significant portion of their time in most dairy operations and the sizes of the agricultural areas within the floodplain within an EU do not seem to lend themselves to cattle obtaining 100% of their diet from within the floodplain. Grazing and subsequent incidental soil ingestion is the most important mechanism for predicting tPCB concentrations in dairy products, and the use of the 100% FI value would be a significant overestimate of potential future exposure to this product.

Equation 7-10

$C_{\text{milk}} = \left(\sum (FI_i \times IR_i \times C_i) + FI_{\text{soil}} \times IR_{\text{soil}} \times C_{\text{soil}} \times Bs\right) \times BTF_{\text{milk}} \times MF$			
Where:			
C_{milk}	=	Concentration of tPCBs in milk (mg/kg wet weight).	
FI_i	=	Fraction of plant type i (forage, silage, and grain) grown on contaminated soil	
		and ingested by the animal (unitless). For this analysis, the FI term was set at the	
		following values: 10%, 25%, and 50%.	
IR_i	=	Ingestion rate of plant type i eaten by the animal per day (kg dry weight	
		plant/day). Forage – 13.2; Silage – 4.1; and Grain – 3.0.	
C_{i}	=	Concentration of tPCBs in plant type i eaten by the animal – 0.00678 (mg/kg dry	
		weight).	

$C_{\text{milk}} = \left(\sum (FI_i \times IR_i \times C_i) + FI_{\text{soil}} \times IR_{\text{soil}} \times C_{\text{soil}} \times Bs\right) \times BTF_{\text{milk}} \times MF$				
Where:	Where:			
$\mathrm{FI}_{\mathrm{soil}}$	=	Fraction of ingested soil from the floodplain. For this analysis, the FI term was set at the following values: 10%, 25%, and 50%.		
IR _{soil}	=	Ingestion rate of soil eaten by the animal per day (0.4 kg dry weight/day) (EPA, 2005).		
C_{soil}	=	Concentrations of tPCBs in soil (mg/kg dry weight).		
Bs	=	Soil bioavailability factor (unitless). A value of 1.0 was used.		
BTF_{milk}	=	Milk biotransfer factor – 0.00652 (day/kg wet weight tissue).		
MF	=	Metabolism factor (unitless). A value of 1.0 was used.		

Empirical constants and calculated transfer factors are presented in Table 7-2. Calculated tPCB concentrations in milk based on a tPCB soil concentration of 1 mg/kg are presented in Table 7-3.

7.3.1.4.3 Chickens and Eggs

PCBs may accumulate in chicken and subsequently eggs as a result of incidentally ingesting floodplain soil or feed (grain) grown in the floodplain. The BTF_{fat} value calculated in Equation 7-6 was adjusted to account for the assumed fat content in chicken and eggs on a wet weight basis as shown in the Equation 7-11.

Equation 7-11

$$BTF_{chicken} = 10^{log BTF_{fat}} \times 0.14$$

$$BTF_{\rm eggs} = 10^{\log BTF_{\rm fat}} \ x \ 0.08$$

The chicken ingestion rates of grain and soil were obtained from the HHRAP (EPA, 2005). Equation 7-12 presents the general equation for calculating the concentration of tPCBs in chickens and eggs on a wet weight basis. The FI terms used in Equation 7-12 were set at different values (10%, 25%, 50%, and 100%) to account for the varying livestock raising practices in the floodplain with consideration given to the current and hypothetical future uses.

Equation 7-12

$$C_{chicken} = (FI_{grain} \ x \ IR_{grain} \ x \ C_{grain} + FI_{soil} \ x \ IR_{soil} \ x \ C_{soil} \times Bs) x \ BTF_{chicken} \ x \ MF$$

$$C_{eggs} = (FI_{grain} \ x \ IR_{grain} \ x \ C_{grain} + FI_{soil} \ x \ IR_{soil} \ x \ C_{soil} \times Bs) x \ BTF_{eggs} \ x \ MF$$

Where:					
$C_{chicken}$	Ш	Concentration of tPCBs in chicken (mg/kg wet weight).			
$C_{ m eggs}$	Ш	Concentration of tPCBs in eggs (mg/kg wet weight).			
FI_{grain}	=	Fraction of grain grown on contaminated soil and ingested by the animal			
		(unitless). For this analysis, the FI term was set at the following values:			
		10%, 25%, 50%, 100%.			
IR_{grain}	Ш	Ingestion rate of grain (0.2 kg dry weight plant/day).			
C_{grain}	Ш	Concentration of tPCBs in grain – 0.00678 (mg/kg dry weight).			
FI_{soil}	=	Fraction of ingested soil from the floodplain. For this analysis, the FI term			
		was set at the following values: 10%, 25%, 50%, and 100%.			
IR_{soil}	Ш	Ingestion rate of soil (0.022 kg dry weight/day) (EPA, 2005).			
$C_{\rm soil}$	Ш	Concentrations of tPCBs in soil (mg/kg dry weight).			
Bs	Ш	Soil bioavailability factor (unitless). A value of 1.0 was used.			
BTF _{chicken}	=	Chicken biotransfer factor – 0.0228 (day/kg wet weight tissue).			
$\mathrm{BTF}_{\mathrm{eggs}}$	=	Eggs biotransfer factor – 0.013 (day/kg wet weight tissue).			
MF	Ш	Metabolism factor (unitless). A value of 1.0 was used.			

Empirical constants and calculated transfer factors are presented in Table 7-2. Calculated tPCB concentrations in chicken and eggs based on a tPCB soil concentration of 1 mg/kg are presented in Table 7-3.

7.3.2 Exposure Parameters

Consumption of home grown vegetables, beef, dairy products (milk), chicken, and eggs were evaluated for the adult and young child using the range of tPCB concentrations in floodplain soil discussed in Section 7.2 (i.e., 1 mg/kg, 5 mg/kg, 20 mg/kg, and 40 mg/kg). Exposure algorithms and the associated input parameters are found on Tables 7-4 and 7-5. Details regarding the derivation of parameter values are presented below. Note that only RME exposures were calculated. CTE exposure parameters were not used in the agricultural assessment because of the hypothetical nature of the exercise along with the use of variable percent grown/raised in the floodplain.

Information presented in EPA's *CSFII Analysis of Food Intake Distributions* (EPA, 2003) was used to estimate the potential exposure resulting from the consumption of food products grown or raised in the floodplain. Per capita food intake estimates on an "as consumed" basis were used. "As consumed" intake rates are based on the weight of the food in the form that it is consumed. As a result, preparation and cooking losses of contaminants were not applied to the intake rates.

For the RME analysis, the average of the 95th percentile intake values across the appropriate age categories was used. The per capita intake rates were multiplied by the fraction of the intake that is home produced to arrive at the estimate of the 'as consumed' home grown intake rate that was used in the HHRA. The fraction of intake that is home produced was obtained from the *Exposure Factors Handbook* (EPA, 1997). Table 7-6 presents the 95th percentile intake rates for each of the agricultural items evaluated. Table 7-7 presents the fraction of these items assumed to be home grown. Table 7-8 applies information in both the previous tables to derive overall agricultural product ingestion rates.

The fraction of produce (above ground and below ground vegetable) that is ingested from the floodplain (the FI term) is typically based on the fraction of the planted area within the floodplain. A range of FI values was used to account for potential changes in farmed areas. For this analysis, the FI term for vegetable ingestion was set at the following values: 10%, 25%, 50%, 75%, and 100%. An EF of 350 days/year was used for the child and adult. The farmer based ED value of 40 years (EPA, 2005) was used in the RME evaluation: 6 years of child exposure and 34 years of adult exposure.

7.4 RISK CHARACTERIZATION

The risk characterization integrates the information developed in the exposure assessment (Section 7.3) and the toxicity assessment (Section 4) into an evaluation of the potential risks associated with exposure to tPCBs. The calculation of risks through the ingestion of agricultural products pathway differs from the fish ingestion risks and direct contact with soil risks in that risk matrices were calculated in this section to account for a range of tPCB concentrations along with a range of farming practices and human consumption rates.

7.4.1 Cancer Risk

Potential cancer risks from ingesting agricultural products were calculated by multiplying the estimated LADD intake that was calculated for a COPC through an exposure route by the exposure route-specific CSF, as follows:

Risk = LADD * CSF

Where:

LADD = Lifetime average daily dose; intake averaged over a 70-year lifetime as mg

COPC/kg-body weight per day.

CSF = COPC- and route-specific cancer slope factor (mg/kg-day)⁻¹.

EPA's cancer risk range is an increased risk of developing cancer, based on a plausible upper-bound estimate of risk, of approximately 1 in 1,000,000 (1E-06) to 1 in 10,000 (1E-04). This range is used to guide remedial actions under CERCLA.

7.4.2 Noncancer Health Effects

Potential noncancer health effects were evaluated by the calculation of hazard quotients (HQs). An HQ is the ratio of the ADD through a given exposure route to the COPC-specific RfD. The HQ-RfD relationship is illustrated by the following equation:

HQ = ADD/RfD

Where:

ADD = Average daily dose; estimated daily intake averaged over the exposure duration

(mg/kg-day).

RfD = Reference dose (mg/kg-day).

HQs of less than one indicate that adverse health effects associated with the specific COPC (i.e., tPCBs) under the exposure scenario are unlikely to occur.

7.4.3 Risk Results

Tables 7-9 through 7-13 present the estimated risks for each of the agricultural products.

7.4.3.1 Vegetable Ingestion

The risk matrix for vegetable ingestion is presented on Table 7-9. Risks were calculated assuming the following scenarios:

- tPCB soil concentrations were set at 1 mg/kg, 5 mg/kg, 20 mg/kg, and 40 mg/kg.
- Fraction of ingested vegetables grown in the floodplain were set at 10%, 25%, 50%, 75%, and 100%.

Even at the highest FI assumption and the highest tPCB soil concentration, the calculated cancer risks were within EPA's risk range. The total HI slightly exceeded the noncancer benchmark of one at the highest tPCB soil concentration of 40 mg/kg and the highest FI assumption of 100%. Given that home grown vegetables are typically raised near the actual residences and the highest soil tPCB concentrations in most of the Ag-EUs are away from the residential areas and closer to the Creek, the potential for any unacceptable risks from consuming home grown vegetables is low.

7.4.3.2 Beef Ingestion

The risk matrix for beef ingestion is presented on Table 7-10. Risks were calculated assuming the following scenarios:

- tPCB soil concentrations were set at 1 mg/kg, 5 mg/kg, 20 mg/kg, and 40 mg/kg.
- Two cattle ingestion scenarios were assumed. The first assumed the cattle ingest forage, silage, grain, and soil from the floodplain. The second cattle ingestion scenario assumed the cattle ingest forage and soil from the floodplain. For both scenarios, the FI terms were set at 10%, 25%, and 50%.

The cancer risks at 1 mg/kg tPCBs in soil for all cattle ingestion scenarios were within EPA risk range of 1E-06 to 1E-04. The HQs at 1 mg/kg tPCBs in soil for all fraction ingested from the floodplain scenarios were less than the noncancer benchmark of one.

The cancer risks at 5 mg/kg tPCBs in soil for all cattle ingestion scenarios were within EPA risk range of 1E-06 to 1E-04. The HQs were slightly greater than one at the 5 mg/kg tPCBs soil level assuming the 50% FI ingestion scenario.

At the 20 mg/kg tPCB soil levels, the cancer risks were greater than 1E-04 for the 50% FI scenario. The HQs were greater than one (up to a maximum of approximately 10) at the 20 mg/kg soil levels for all ingestion scenarios.

At the 40 mg/kg tPCB soil levels, the cancer risks were greater than 1E-04 for the 25% and 50% ingestion scenarios. The HQs were greater than one (up to a maximum of approximately 19) at the 40 mg/kg tPCB soil levels for all ingestion scenarios.

Based on these results, consuming meat on a regular basis over a long period of time from cattle grazed in areas with the highest soil tPCB concentrations found in agricultural areas (20 and 40 mg/kg) would be a potential health concern for local farmers.

7.4.3.3 Dairy Ingestion

The risk matrix for dairy (milk) ingestion is presented on Table 7-11. Risks were calculated assuming the following scenarios:

- tPCB soil concentrations were set at 1 mg/kg, 5 mg/kg, 20 mg/kg, and 40 mg/kg.
- Two cattle ingestion scenarios were assumed. The first assumed the cattle ingest forage, silage, grain, and soil. The second cattle ingestion scenario assumed the cattle ingest forage and soil. For both scenarios, the FI terms were set at 10%, 25%, and 50%.

The cancer risks at 1 mg/kg tPCBs in soil for all cattle ingestion scenarios were within the EPA risk range of 1E-06 to 1E-04. The HQs at 1 mg/kg tPCBs in soil for all cattle ingestion scenarios were less than the noncancer benchmark of one.

At 5 mg/kg tPCBs in soil, the cancer risks were within the EPA risk range for all three fraction ingested from the floodplain scenarios. The HQ was slightly greater than one at the 5 mg/kg tPCB soil level for the 50% FI scenario for forage/silage/grain/soil.

At the 20 mg/kg tPCBs in soil level, the cancer risks were within the EPA risk range for all scenarios. The HQs were greater than one for the 25% and 50% ingestion scenarios (up to a maximum of 6).

At the 40 mg/kg tPCB soil levels, the cancer risks were greater than 1E-04 for the 50% ingestion scenarios. The HQs were greater than one (up to a maximum of 13) at the 40 mg/kg tPCB soil levels for all ingestion scenarios.

Although there are no known dairy farms within the OU-4 floodplain where elevated levels of tPCBs exist, the potential exists for risks to local dairy farmers should they consume milk on a regular basis over a long period of time from dairy cows from a future dairy operation with grazing sited in the highest tPCB concentration areas of the floodplain.

7.4.3.4 Chicken and Eggs Ingestion

The risk matrices for chicken and eggs ingestion are presented on Tables 7-12 and 7-13, respectively. Risks were calculated assuming the following scenarios:

- tPCB soil concentrations were set at 1 mg/kg, 5 mg/kg, 20 mg/kg, and 40 mg/kg.
- The chickens were assumed to ingest grain and soil. The FI terms were set at 10%, 25%, 50%, and 100%.

The calculated cancer risks were either within or less than EPA's risk range. The HQs were less than the noncancer benchmark of one.

Although there are no known chicken raising operations within the floodplain where elevated levels of tPCBs exist, even if such operations were considered in the future, there is little likelihood for any unacceptable health risks from the consumption of locally raised chicken or eggs.

7.5 UNCERTAINTY ANALYSIS

The uncertainty analysis in a risk assessment provides to the appropriate decision makers (i.e., risk managers) information about the key assumptions, their inherent uncertainty and variability, and the impact of this uncertainty and variability on the estimates of risk. The uncertainty analysis shows that risks are relative in nature and do not represent an absolute quantification. The subsections that follow identify the major uncertainties inherent in the agricultural products consumption component of the HHRA to determine if the calculated risks may have been overestimated or underestimated, and the approximate degree to which this may have occurred.

7.5.1 Exposure Assessment

Exposure Point Concentrations – The range of tPCB EPCs used in this analysis were based on the tPCB soil concentrations observed at each Ag-EU. The EPCs, typically represented by a 95% UCL or an upper-bound statistical value, are the tPCB levels for the entire Ag-EU and assume that the evaluated activity (e.g., gardening or grazing) occurs throughout the Ag-EU. This may not be the case. Further, the EPCs were assumed to be unchanged over the duration of exposure (40 years).

Selection of Exposure Parameters – The exposure assumptions directly influence the calculated doses (chronic daily intakes), and ultimately the calculation of risk. The RME concept was used to estimate the exposure potential for each of the receptors that were evaluated in the HHRA. The RME is defined as the "maximum exposure that is reasonably expected to occur at the site" (EPA, 1989). These assumptions contribute to an overestimation of real-life exposures and a resulting overestimation of risk for most individuals, in some cases to a relatively significant degree.

Future Use Assumptions – Risks were calculated for several agricultural products such and dairy, vegetables, chicken and eggs that are without evidence of current production in the floodplain. Although the potential exists for these practices to be used in the future, such an occurrence is unlikely. The most critical product from a risk perspective would be dairy products (i.e., milk). A future dairy operation in the floodplain is an unlikely occurrence as the operation would be expensive to start, it goes against current trends for farming in the general area, and if commercialized, would likely have significantly less grazing than that assumed in this analysis. Therefore, estimated risks from dairy products are likely overestimated to a significant degree.

Consumption Rates – Risks were calculated assuming farmers grow and consume a significant portion of their regular diet from food sourced in the floodplain over a long period of time (40 years). In actuality, based on interviews with local agricultural agents, the consumption of locally-raised beef is not a common occurrence. Most beef cattle are sold off and not consumed by local farming families. To the degree that current practices do not reflect the assumptions used in this assessment relating to locally raised beef consumption rates, the risks would be overestimated, most likely to a significant degree.

Soil Bioavailability Factor (Bs) – in the agricultural exposure assessment, a soil bioavailability factor of one (1.0) was used when calculating the tPCB concentration in animal tissue (beef, dairy products, and poultry) (see Equations 7-8, 7-10, and 7-12). This is the approach recommended by EPA (EPA, 2005) in the absence of specific information supporting a lower Bs, and indicates that all of the PCBs present in soil would be absorbed upon ingestion into the beef cattle or dairy cow, for example. Studies have indicated that compounds like PCBs may not be

100% bioavailable and that some portion is likely to stay associated with the soil and not transfer to meat or milk. However, most of these studies have focused on animals with similar digestive systems to humans, such as pigs, and have not focused on ruminants such as cows, that may be more likely to have a high Bs. Therefore, the body of the report maintained the EPA recommended Bs of 1.0.

However, it is likely that some amount of PCBs in the soil matrix is not completely bioavailable, even to ruminants. In Section 6.0, Risks from Direct Contact Exposure, an Intestinal Absorption Factor (IAF), which is equivalent to the Bs term, of 0.3 or 30% was used to estimate bioavailability from soil ingested by humans. While data are not available to support using this less conservative value for cattle/cows, a value of 50% was selected as a lower end bounding value to gain an understanding of the impact on the estimated risks from using a less conservative Bs.

A sensitivity analysis was conducted to determine the impact on the overall risk estimates of assuming a lower Bs. Only beef and dairy consumption was evaluated because they represented the primary exposure pathways that resulted in risk estimates greater than 1E-04 and/or greater than a hazard index of one. All of the other exposure assumptions remained the same.

Tables 7-14 and 7-15 present the modified risk estimates for beef and dairy ingestion, respectively, assuming the lower end Bs. As shown in Table 7-14, only the most conservative set of assumptions for beef ingestion, including the highest soil concentrations, resulted in predicted cancer risks greater than 1E-04. For noncancer HIs, only soil concentrations at 20 and 40 mg/kg resulted in HIs greater than 1.0.

Table 7-15 shows the risk estimates for dairy consumption. The cancer risk and HIs show similar results in that only the higher soil concentrations and more conservative exposure assumptions result in risks greater than typical benchmarks.

The actual Bs for cattle/cows is most likely somewhere between 50% and 100%, but reliable data are not available to determine a more definitive value. It is very likely that assuming 100% soil bioavailability of PCBs in the risk assessment overestimates risk to some degree.

7.5.2 Toxicity Assessment

A detailed presentation of the key issues associated with toxicity uncertainties was presented in Section 5.4.3 in the Fish Risk Assessment section, and is not repeated here. In general, given the conservative nature of the development of toxicity factors, including the toxicity factors for PCBs, it is likely that the use of these criteria in evaluating exposure and risk through direct contact exposure results in an overestimation of risk.

7.5.3 Risk Characterization

The risks calculated in this section focused on tPCBs (represented by the sum of Aroclors), the primary site COPC. This approach was taken as this section was based on a modeling exercise, a range of tPCB concentrations, current agricultural uses, and hypothetical future agricultural uses within OU-4. Risks were not calculated for other COPCs such as dioxin-like PCB congeners and mercury. This could underestimate the potential risks from the ingestion of agricultural products grown or raised in OU-4.

7.6 RISK SUMMARY

The results of a conservative, modeling-based evaluation of agricultural products currently raised in floodplain areas, and other products from potential future agricultural practices, indicate that minimal, if any, risks from tPCBs are likely to arise from consuming locally raised chicken, eggs, or vegetables.

Although there are no dairy operations in the floodplain areas at the current time, if local farmers were to raise dairy cattle for personal consumption at some point in the future, the potential exists for health impacts at the highest tPCB concentration areas combined with the most conservative FI assumptions. More typical dairy operations, with less grazing and more silage feeding, would be unlikely to raise any health concerns.

Beef cattle are currently raised in the floodplain, and at the tPCB concentrations evaluated, even as low as 5 mg/kg, there is a potential for unacceptable health risks to the farmer who raises and consumes a significant portion of beef from home grown sources over a long period of time.

It should be stressed that beef and dairy exposure and risks are the result of a significant number of assumptions applied to conservative models. It is very likely that these risk estimates are overestimated to a larger degree than the other exposure pathways.

7.7 REFERENCES

Briggs, G.G., R.H. Bromilow, and A.A. Evans. 1982. "Relationships between Lipophilicity and Root Uptake and Translocation of Nonionized Chemicals by Barley." *Pesticide Science*. Volume 13. Pages 495-504.

Browning, B. 2009. Personal communication with Bill Browning, Talladega County Extension Agent, regarding farming and livestock practices in Talladega County along the Choccolocco Creek.

Butler, S. 2009. Personal communication with Scott Butler, Calhoun County Farm Service, regarding farming and livestock practices in Calhoun County along the Choccolocco Creek.

EPA (U.S. Environmental Protection Agency). 1989. *Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual* (Part A) Interim Final. Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-89/002. December 1989.

_____. 1995. Review Draft Development of Human Health-Based and Ecologically-Based Exit Criteria for the Hazardous Waste Identification Project. Volumes I and II. Office of Solid Waste. March 3.

_____. 1997. Exposure Factors Handbook, Volumes I, II, and III. Office of Research and Development, EPA/600/P-95/002F. Washington, DC.

_____. 2003. CSFII Analysis of Food Intake Distributions. National Center for Environmental Assessment. EPA/600/R-03/029. March 2003.

_____. 2005. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities. Final. EPA-530-R-05-006. Office of Solid Waste and Emergency Response. September 2005.

JM Waller, Inc. 2009. Final Pathways Analysis Report for the Baseline Risk Assessment for Anniston PCB Site Operable Unit 4, Anniston, Alabama. Prepared for EPA Region 4. December 2009.

Jurriaans, W. 2009. Personal communication with Wanda Jurriaans, Talladega Calhoun County Extension Agent, regarding farming and livestock practices in Talladega County along the Choccolocco Creek.

RTI (Research Triangle Institute). 2005. *Methodology for Predicting Cattle Biotransfer Factors*. Prepared for U.S. Environmental Protection Agency (EPA) Office of Solid Waste. EPA Contract No. 68-W-03-042. August.

Travis, C.C. and A.D. Arms. 1988. Bioconcentration of organics in beef, milk, and vegetation. *Environ. Sci. Technol.* 22:271-274.

West, D. 2009. Personal communication with David West, Calhoun County Extension Agent, regarding farming and livestock practices in Calhoun County along the Choccolocco Creek.

8 INTEGRATED RISK CHARACTERIZATION

The preceding sections evaluated potential risk from the three primary exposure pathways on an individual basis. This approach was taken because at a site like OU-4, which covers more than 35 creek miles and 6,000 acres of floodplain, there are too many potential combinations of exposures through multiple pathways to quantify total integrated risks in any meaningful manner. In addition, providing a separate evaluation of the key exposure pathways provides all interested parties with a clear understanding of the activities that result in the highest potential risk.

This section evaluates Site-related tPCB risk to individuals who live, work, and recreate along the Choccolocco Creek and have the potential to be exposed to more than a single exposure pathway. Total PCBs are the focus of this section as it is the primary COPC for the Site, it results in the highest estimated risks, and it is the only COPC evaluated across all three of the primary exposure scenarios (i.e., fish ingestion, direct contact with floodplain soil, and agricultural product ingestion). Focusing on tPCBs allows for comparisons to be made among the primary exposure scenarios and determinations to be made as to what exposure scenarios may require further evaluation.

Sections 5, 6, and 7 present the risk results from the fish consumption, direct contact, and agricultural product consumption pathways for all COPCs, respectively. The fish consumption pathway presents the highest potential health risks based on the exposure parameters used in the analysis. Direct contact exposure, even in floodplain areas with the highest tPCB concentrations and/or the most intense exposure activities, does not result in any risks greater than 1E-05, or noncancer hazard indices (HIs) that are above one. The agricultural product consumption pathway shows potentially elevated risk for beef and dairy consumption for the most exposed hypothetical farmers, with the vast majority of agricultural area within OU-4 not likely to be of concern. As noted previously, the risks from agricultural product consumption differ from the fish consumption and direct contact risks in that they are based on uptake and transfer models into edible tissue and not based on empirical, field-collected data.

One way of providing an overall perspective on the relative contributions to risk from each of the exposure pathways is to show their estimated risks in a graphical format. Figure 8-1 presents the RME cancer risks for each of the exposure pathways, ranging from the highest RME risk to the lowest RME risk based on the parameters used in the HHRA. As can be seen in the Figure, fish ingestion represents the highest potential risk, with the range representing differences in locations and types of fish consumed. Because the risk presentation on Figure 8-1 is on a logarithmic scale, adding any of the direct contact exposures to the fish consumption risk would have little impact on the overall results. This means that for people who fish often and consume fish from the Choccolocco Creek regularly, direct contact exposure during fishing activities, or any other of the activities evaluated in the HHRA, would add little risk relative to the cancer risk estimated for fish ingestion. For example, an individual who consumed "all fish" from Location C (cancer risk = 1.21E-03) and also contacted floodplain soil on a regular basis as an adult while recreating in nearby C3S-EU2 (cancer risk = 4.10E-06) would have a combined risk from tPCBs of 1.214E-03, 99.7% of which would be attributable to consuming fish. Please note that while risk levels are typically presented to only 1 significant figure (e.g., 1E-03), risks in this section are presented with additional significant figures to show the relative contributions between various exposure pathways.

The only activity that would have any significant impact on the estimated cancer risks due to fish ingestion (as evaluated in the HHRA), would be consuming beef or dairy products from cattle raised in the floodplain, a practice that does not seem to be common in the area. Figure 8-1 shows that both beef and dairy product consumption can, under certain worst-case soil concentrations, cattle grazing/feeding practices, and human consumption rate assumptions, result in a significant increase in cancer risk. As noted above, fish consumption risk for tPCBs at Location C for "all fish" is 1.21E-03. If a farmer in that same upstream location of the Creek (Ag EUs 1 through 5) raised beef cattle in the contaminated floodplain and consumed a significant amount of that beef over a long time period, the tPCB risk could be as high as 4.45E-04, resulting in a combined risk of 1.66E-03. In this worst case example of an individual who also consumed fish on a regular basis, fish consumption risk would still be the primary contributor to

the total, but the beef consumption risk would be 27% of the tPCB estimated risk, significantly higher than the direct contact contribution.

Figure 8-2 provides similar information for noncancer hazards, considering the same situations as presented above for the cancer risk. Adding fish hazard to direct contact exposure near Location C for the angler would increase the tPCB fish ingestion HI of 71 by 0.2 for a total of 71.2, with direct contact exposure representing a negligible percentage (0.3%) of the total noncancer hazard. Combining the fish ingestion HI (71) to the worst-case beef ingestion HI (19) yields a hazard index of 90, with beef ingestion contributing 21% of the value.

The most important consideration in understanding the risk profile for OU-4 is that fish ingestion risk is the most important exposure pathway. Beef and dairy consumption could be important if an individual raised a significant amount of beef or dairy products for personal consumption in the most highly contaminated areas of the floodplain (Ag EUs 1 through 3) for a long period of time. It is also important to note that the agricultural product risks are based on estimated, not measured concentrations, which are expected to be conservative in nature. Other than this worst case agricultural pathway assumption, combining the direct contact and/or agricultural product risks to risks associated with fish ingestion would have little impact on the overall results. Conversely, if an individual heeded the fish consumption advisory, and did not consume fish from the Choccolocco on a regular basis, most farming and recreational practices would not be likely to result in unacceptable risks.

9 RESULTS

The OU-4 HHRA was developed to characterize the potential exposure and risks associated with consumption of fish from Choccolocco Creek, direct contact with the floodplain soil, and consumption of agricultural products originating in the Choccolocco Creek floodplain. The HHRA was based on the receptors and exposure parameters presented in the Final Pathways Analysis Report (PAR) (JMWA, 2009), and considers the current and future-use exposure pathways by which populations may be exposed to contaminated media. Exposure pathways were identified based on the Conceptual Site Model presented in Subsection 2.1 that discusses the sources and locations of contaminants, the likely environmental fate of the contaminants, and the location and activities of the potentially exposed populations. (Residential exposures and risk are not included in this HHRA, but are evaluated separately by agreement with EPA).

EPA uses a target cancer risk range of 1E-06 to 1E-04 (or 1 in a million to 1 in 10,000) to determine whether a site needs to be remediated. Cancer risks below 1E-06 are typically assumed to be *de minimus* and would require no action to remediate or mitigate human health risks. Risks within this range are usually considered acceptable, but specific decisions are made on a site-specific basis by EPA. Risks that exceed 1E-04 usually require remediation and/or mitigation, however no "bright line" has been established at the upper end of the risk range, and decisions on the need to remediate or mitigate are made on a site-specific basis.

For noncancer hazards, EPA uses a target HI of one. Where HIs exceed this target number, remediation may be warranted; however, similar to the cancer evaluation, risk management decisions are made on a site-specific basis.

The estimates of cancer risk and noncancer HIs summarized below are compared to these benchmarks as a way of providing a perspective on the estimated risk levels for the various stakeholders. Figures 8-1 and 8-2 are visual presentations of tPCB RME cancer risk and hazard indices for each of exposure pathways.

9.1 FISH INGESTION

In general, the RME risk levels from fish ingestion exceeded the EPA cancer risk range (1E-06 to 1E-04). The RME cancer risks from tPCBs were greater than 1E-04 for all locations and fish groupings. The RME cancer risks from PCB dioxin-like congener TEQ and 2,3,7,8-TCDD TEQ were less than the risks from tPCBs and were within or above the EPA risk range. As would be expected, the CTE cancer risks were less than the RME and were within or slightly above the EPA risk range.

Total PCBs resulted in RME HQs greater than 10 for every location. The RME HQs from mercury, PCB dioxin-like congener TEQ, and 2,3,7,8-TCDD TEQ were greater than one at a number of locations but were less than the tPCBs HQs. The CTE HQs were less than the RME, but with HQs for tPCBs still greater than one.

9.2 DIRECT CONTACT EXPOSURE

The results of the direct contact risk calculations are presented below, with the primary COPCs exposure unit (EU) risks presented first, and the risks associated with the other COPCs presented separately. As discussed previously in this report, the amount of analytical data available for the other COPCs were limited and therefore EU-specific risks could not be calculated.

9.2.1 Exposure Unit Risks

Primary COPCs for direct contact exposure were tPCBs, PCB dioxin-like congener TEQ, and mercury. Based on the available toxicity characteristics, cancer risks were estimated for tPCBs and PCB dioxin-like congener TEQs only; whereas HQs were estimated for all three primary COPCs.

The recreational and farmer cancer risks based on both tPCBs and PCB dioxin-like congener TEQ were either within or less than the EPA acceptable cancer risk range of 1E-06 to 1E-04 at all applicable EUs. The utility worker cancer risks for both tPCBs and PCB dioxin-like congener TEQ were less than the EPA acceptable cancer risk range of 1E-06 to 1E-04 at all EUs.

With very minor exceptions, the noncancer recreational exposure HIs were less than one for all three primary COPCs. The utility worker and farmer HIs were also less than one at all direct contact EUs.

Recreational user, utility worker, and farmer CTE cancer risks were less than the EPA acceptable cancer risk range of 1E-06 to 1E-04 and the noncancer benchmark of one at all direct contact and agricultural EUs.

9.2.2 Site-Wide Risks for Other COPCs

Due to limited data, site-wide risks from direct contact with floodplain soil were estimated separately for 2,3,7,8-TCDD TEQ, carcinogenic PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene), aluminum, arsenic, chromium, cobalt, iron, and manganese. To provide an estimate of all potential recreational exposures, risks were estimated assuming high contact and low contact recreational exposure.

The RME site-wide total cancer risks were within the EPA acceptable risk range for the other COPCs. The noncancer HIs were well below the noncancer benchmark of one. All CTE cancer risks and noncancer HIs were below these benchmarks.

9.3 AGRICULTURAL PRODUCT CONSUMPTION

Current and potential future food production activities by the farmer who grows vegetables and crops and raises livestock in the floodplain were evaluated. Risks are not calculated for specific areas, properties, or agricultural practices because to do so would only provide information for a single set of scenarios and would not be useful if/when conditions and farming practices change in the future. Rather, it evaluates where agricultural use is occurring (or could occur) and uses representative tPCB concentrations to generate risk matrices incorporating multiple potential farming practices and home grown ingestion scenarios.

Total PCB soil concentrations were set at 1 mg/kg, 5 mg/kg, 20 mg/kg, and 40 mg/kg to reflect the range of concentrations in floodplain areas used for agricultural purposes. Fraction ingested (FI) assumptions were set at 10%; 25%; 50%; 75%; or 100%. The term indicates the amount of

the home grown product consumed that was grown in the contaminated area of the floodplain. The 100% FI value was not evaluated for beef and dairy cattle because the sizes of the agricultural areas within the EUs would likely preclude cattle from obtaining 100% of their diet from within the floodplain.

9.3.1 Chicken, Egg and Vegetable Ingestion

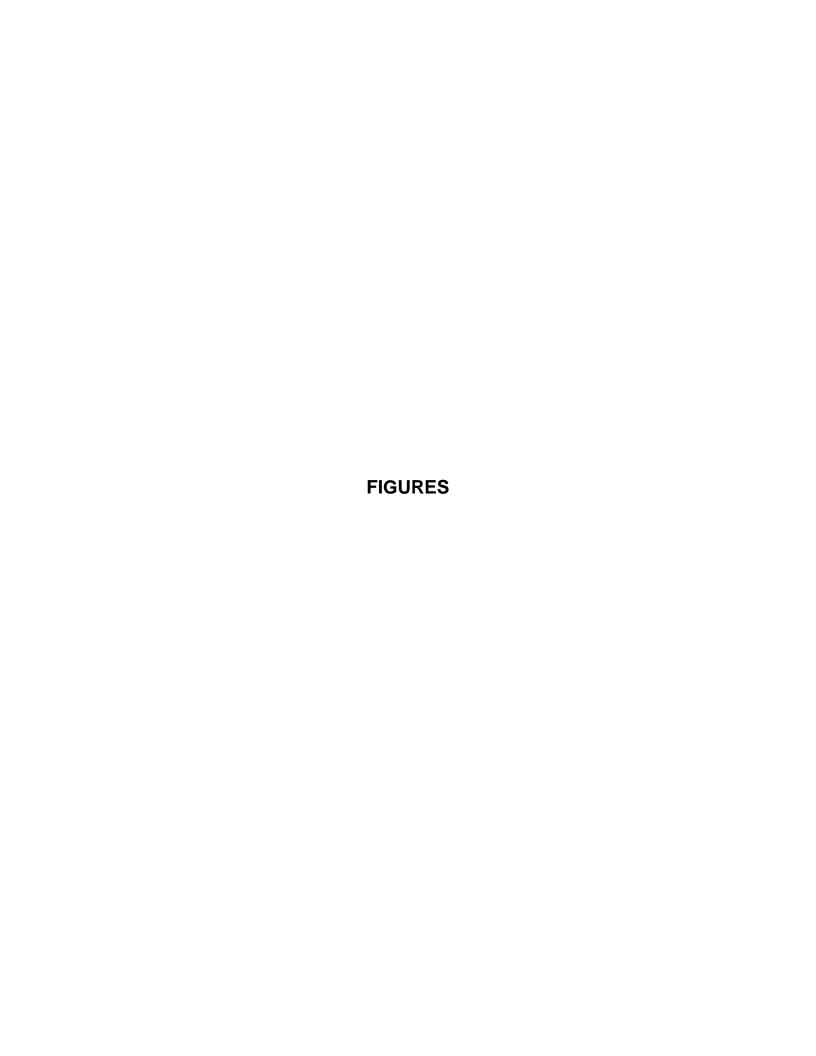
Even at the worst case assumptions of the amount of these products ingested and tPCB soil concentrations, the calculated cancer risks were within EPA's risk range, and with very minor exceptions, the HQs were below one. Based on the conservative assumptions included in the HHRA, the potential for any unacceptable risks from consuming chicken, eggs, and vegetables is minimal.

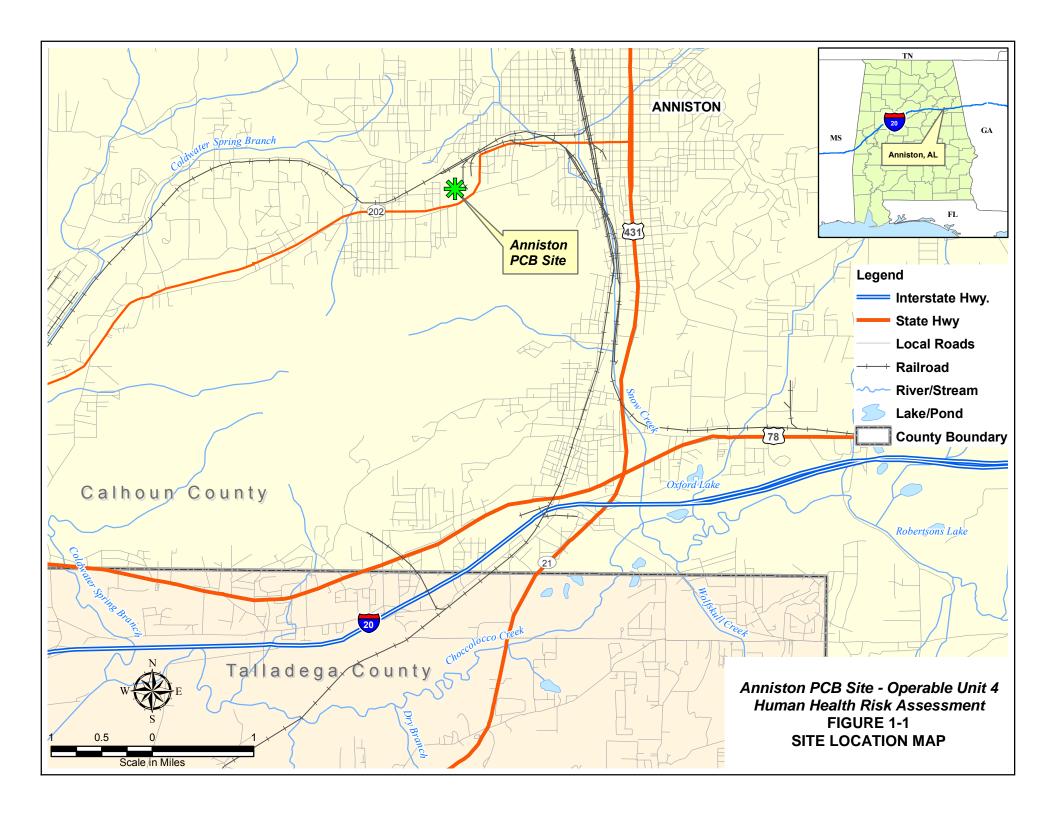
9.3.2 Beef and Dairy Ingestion

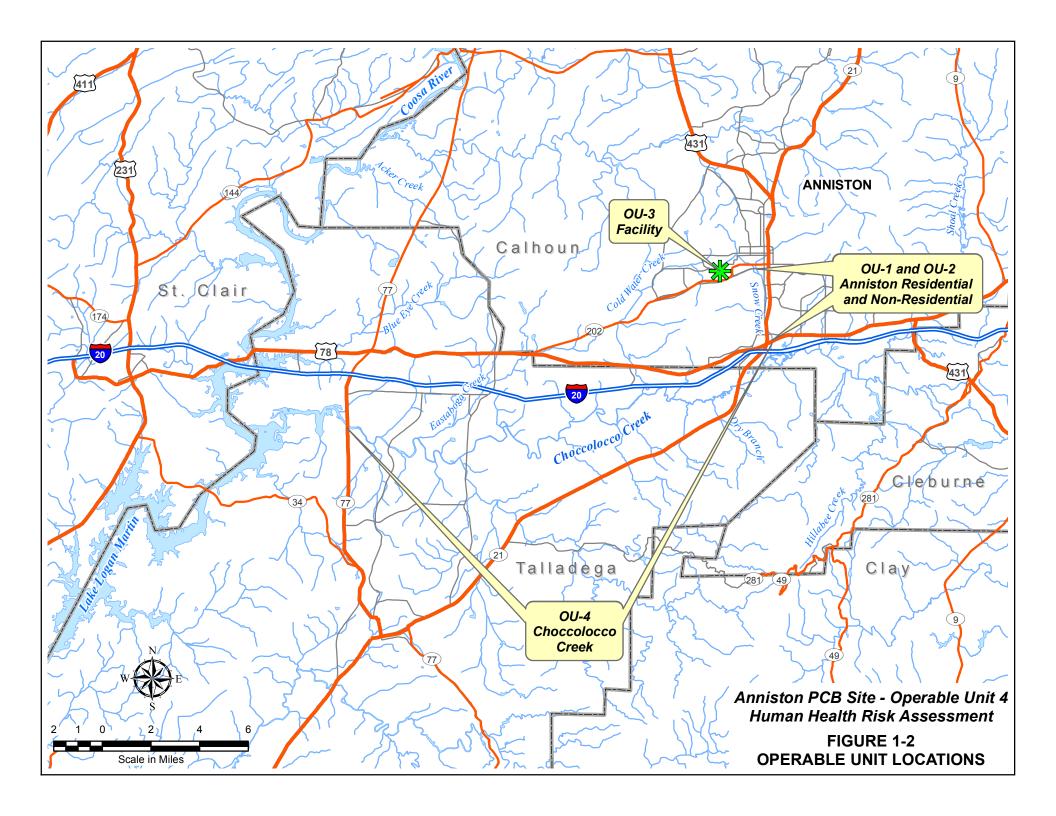
Cancer risks and hazard quotients for beef and dairy ingestion ranged from below to above the EPA benchmarks, depending upon the soil concentration and fraction ingested scenario considered. In general, at the highest tPCB soil concentrations (e.g., 20 and 40 mg/kg) and/or the highest FIs (e.g., 25 and 50%), estimated risks were equal to or greater than the cancer and noncancer benchmarks.

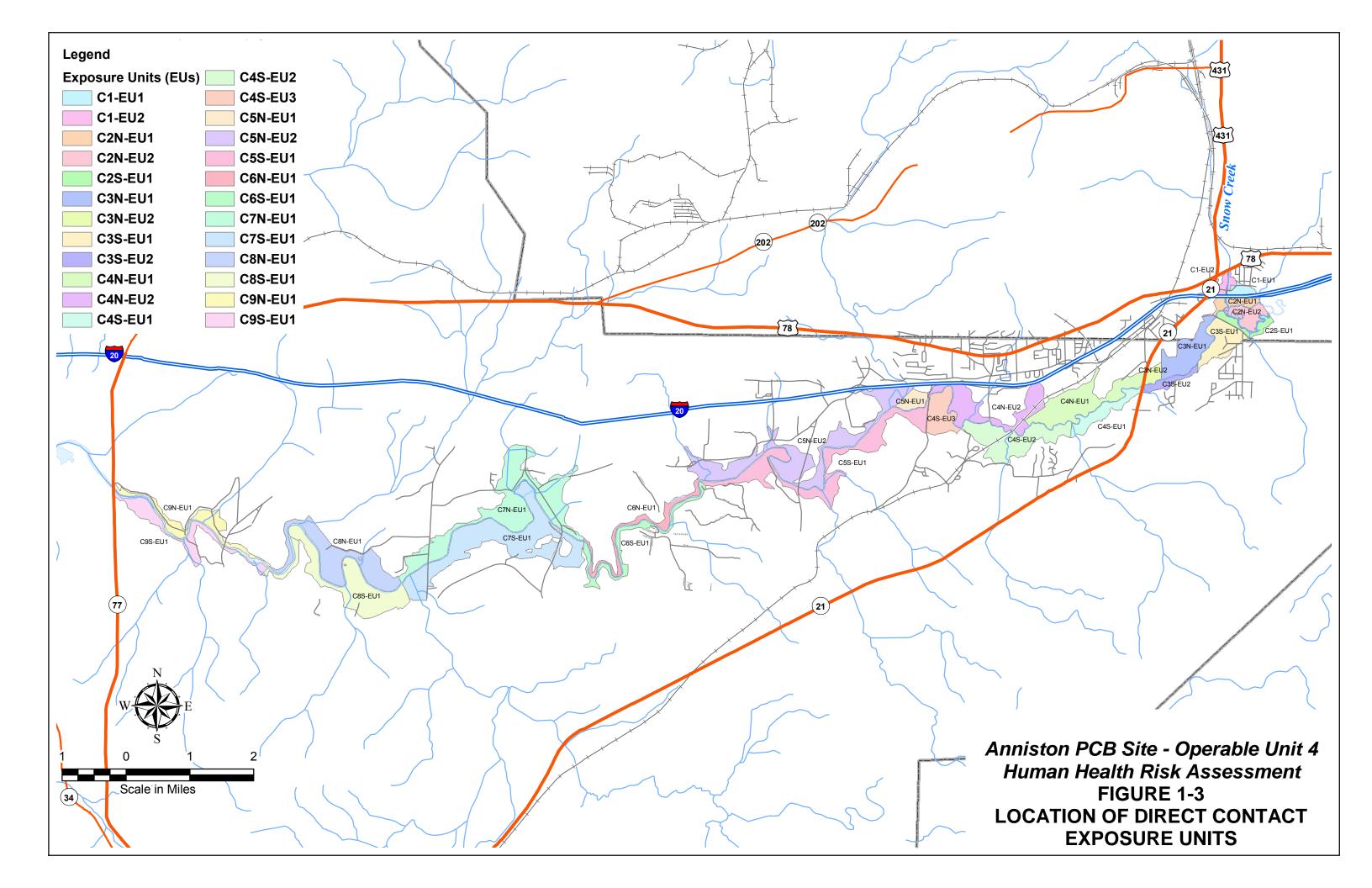
Although there is currently no evidence to suggest that this practice is currently occurring in OU-4, based on these results, consuming meat on a regular basis over a long period of time from cattle grazed in areas with the highest soil tPCB concentrations found in agricultural areas (e.g., 20 and 40 mg/kg) would be a potential health concern for local farmers and their families.

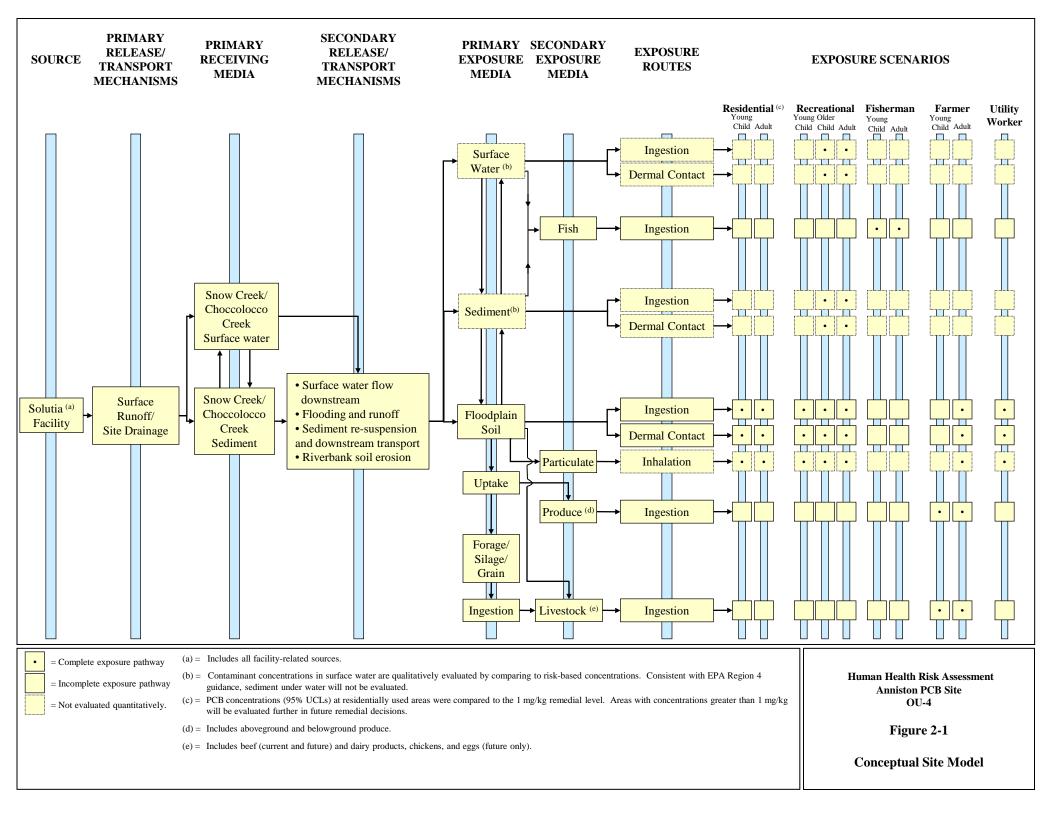
Although there are no known dairy farms within the OU-4 floodplain, if that situation changed in the future, the potential exists for risks to local dairy farmers and their families should they consume milk on a regular basis over a long period of time from dairy cows located at the highest tPCB concentration areas of the floodplain.

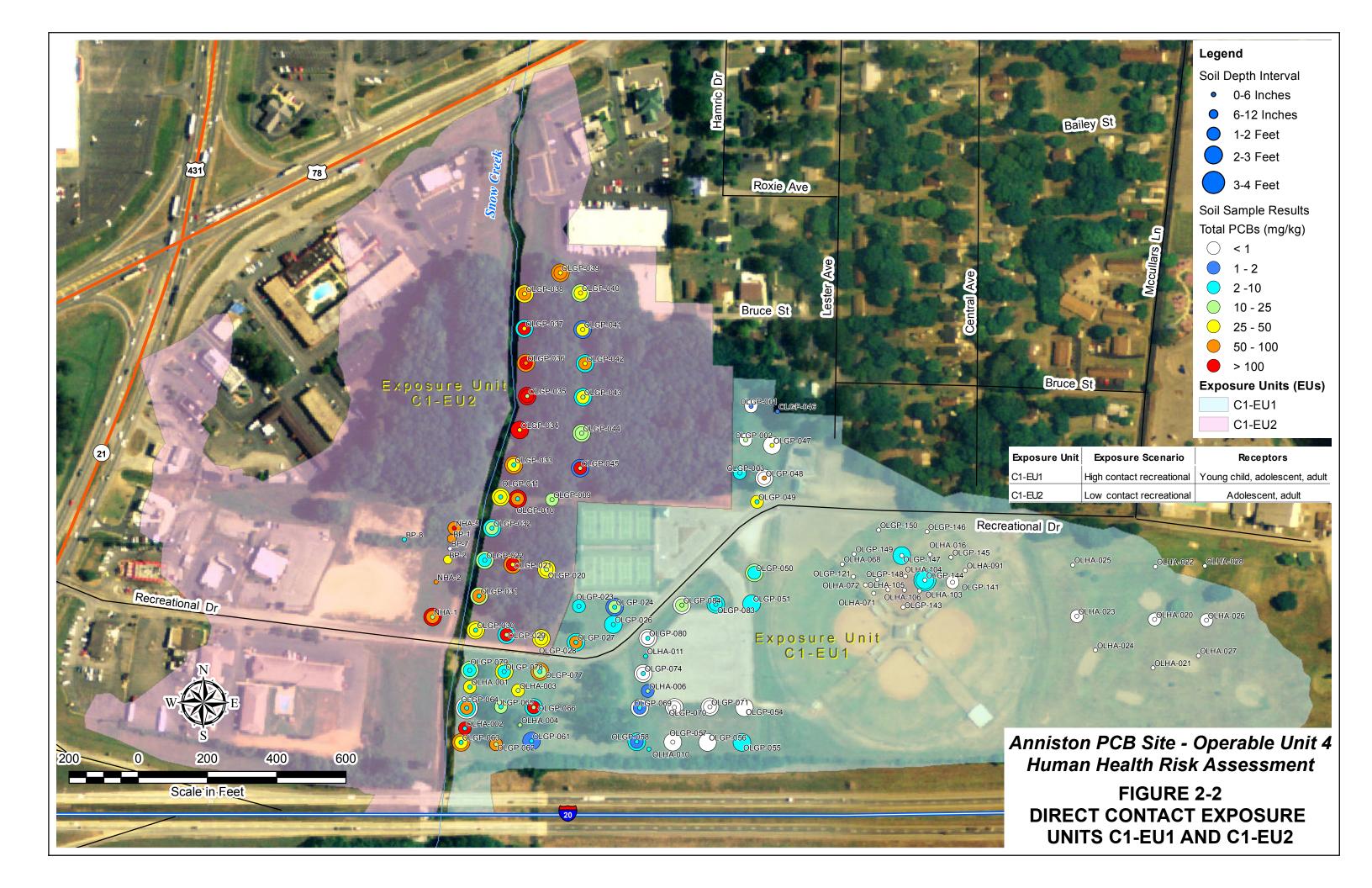

9.4 CONCLUSIONS

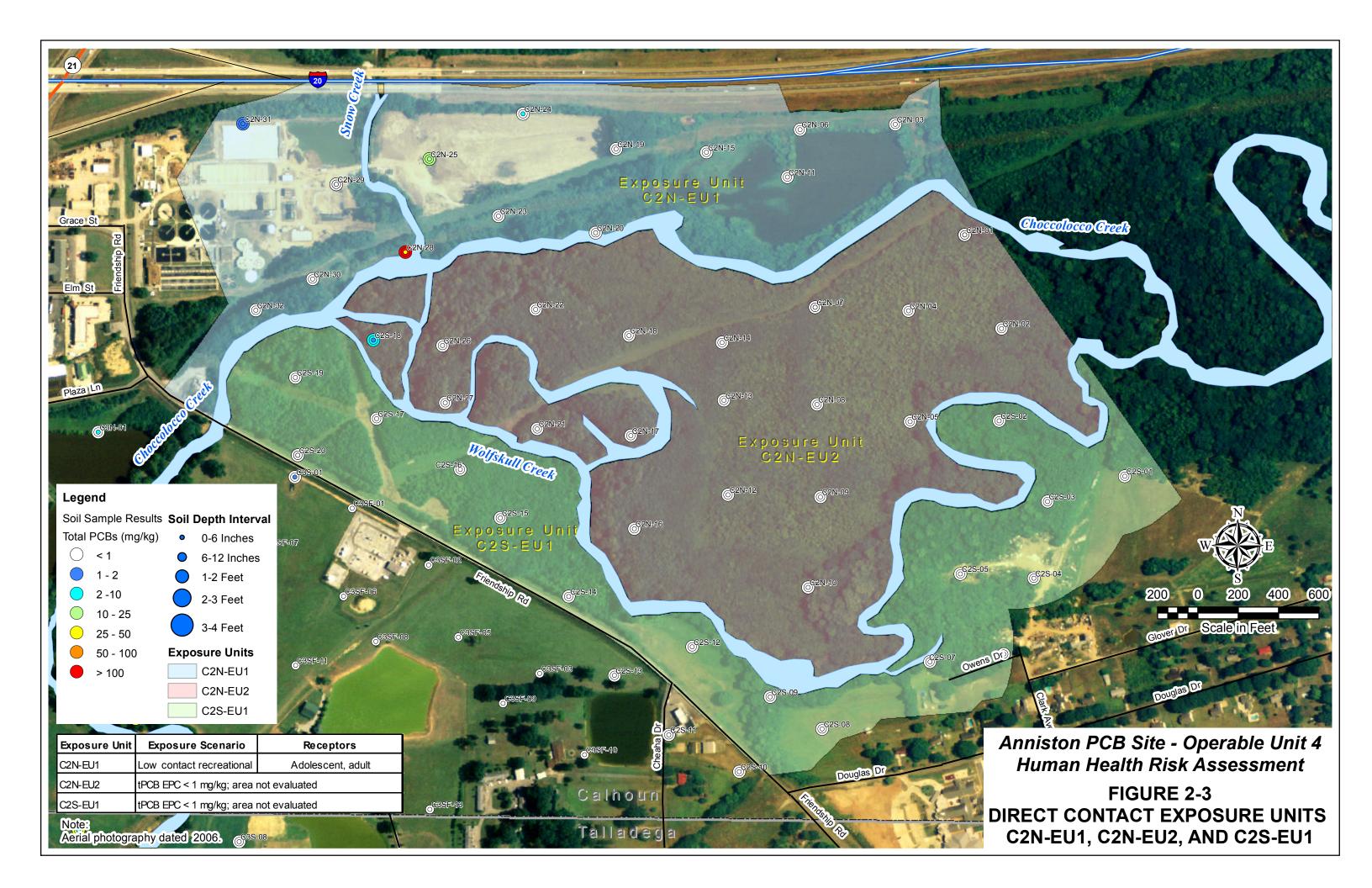

As with any HHRA, there are numerous sources of uncertainty associated with an attempt to estimate current and future potential human health risks. Detailed discussions of the most

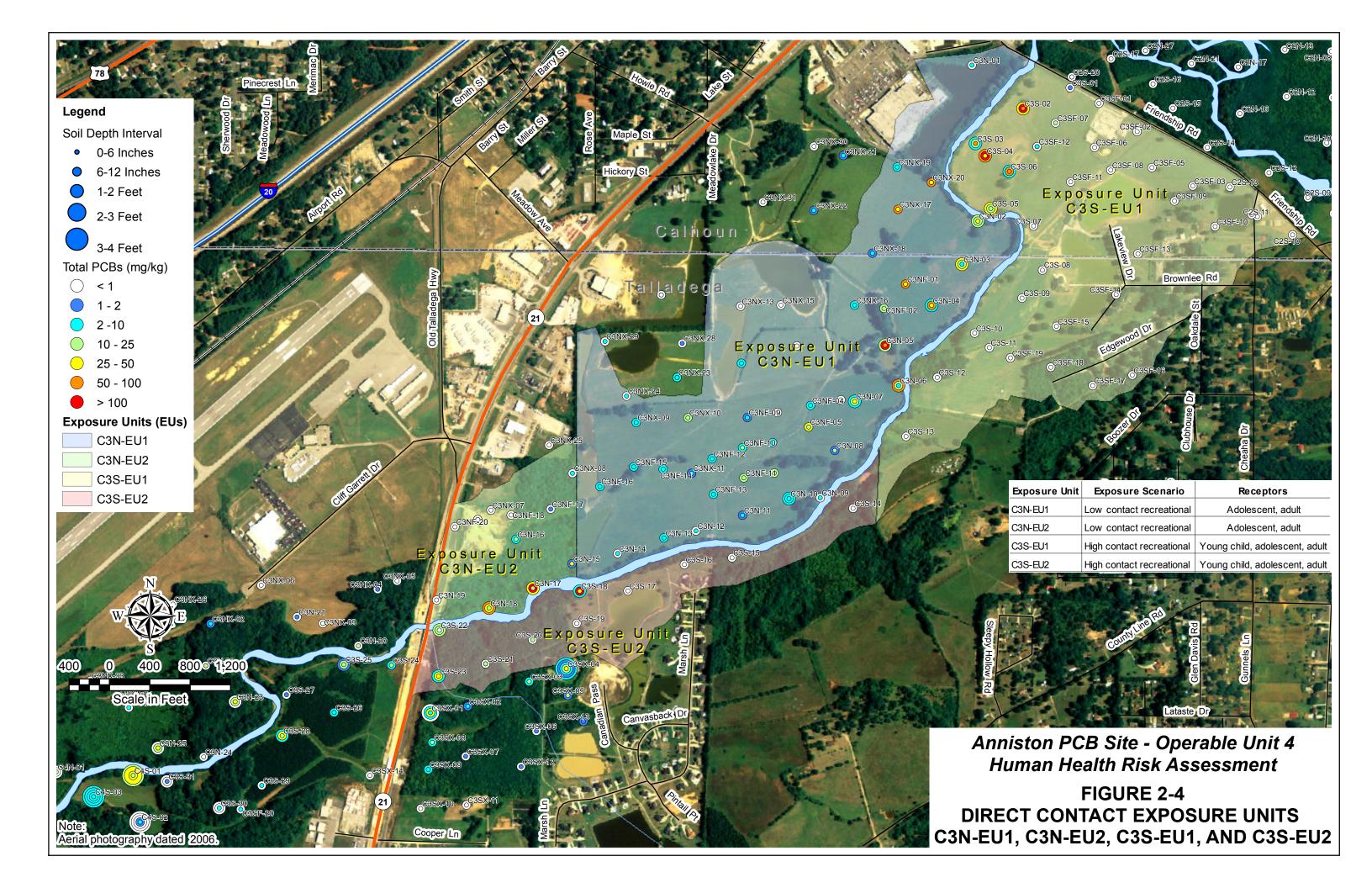

Integrated Human Health Risk Assessment Anniston Polychlorinated Biphenyl Site, OU-4

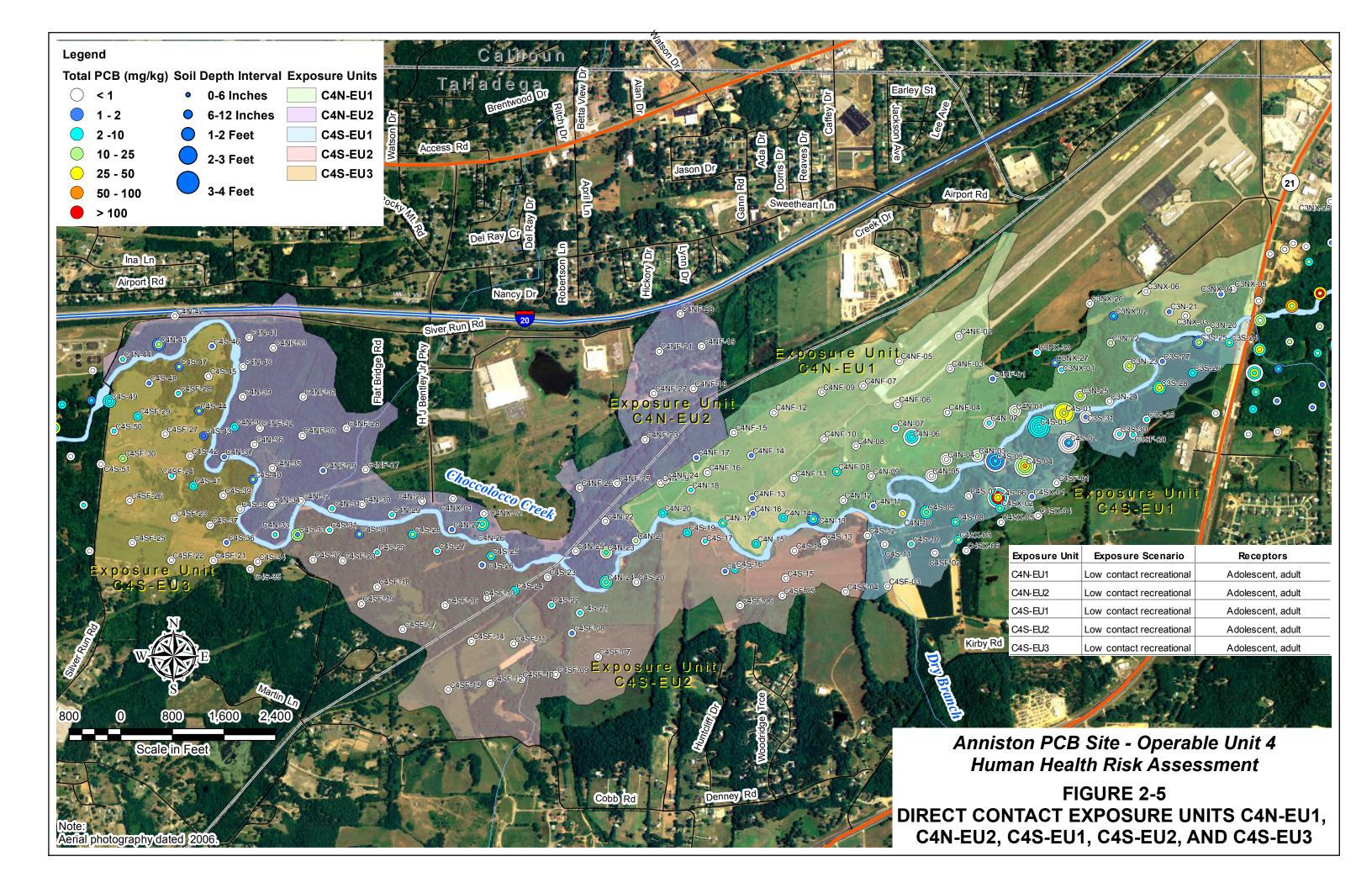

important aspects of uncertainty in the OU-4 HHRA were presented in the individual sections of the report. In general, the uncertainties inherent in the risk assessment process tend to overestimate risk to protect public health. This is also true of this HHRA in that the majority of the assumptions used would tend to overestimate risk to human health. Overall, the following conclusions can be drawn:

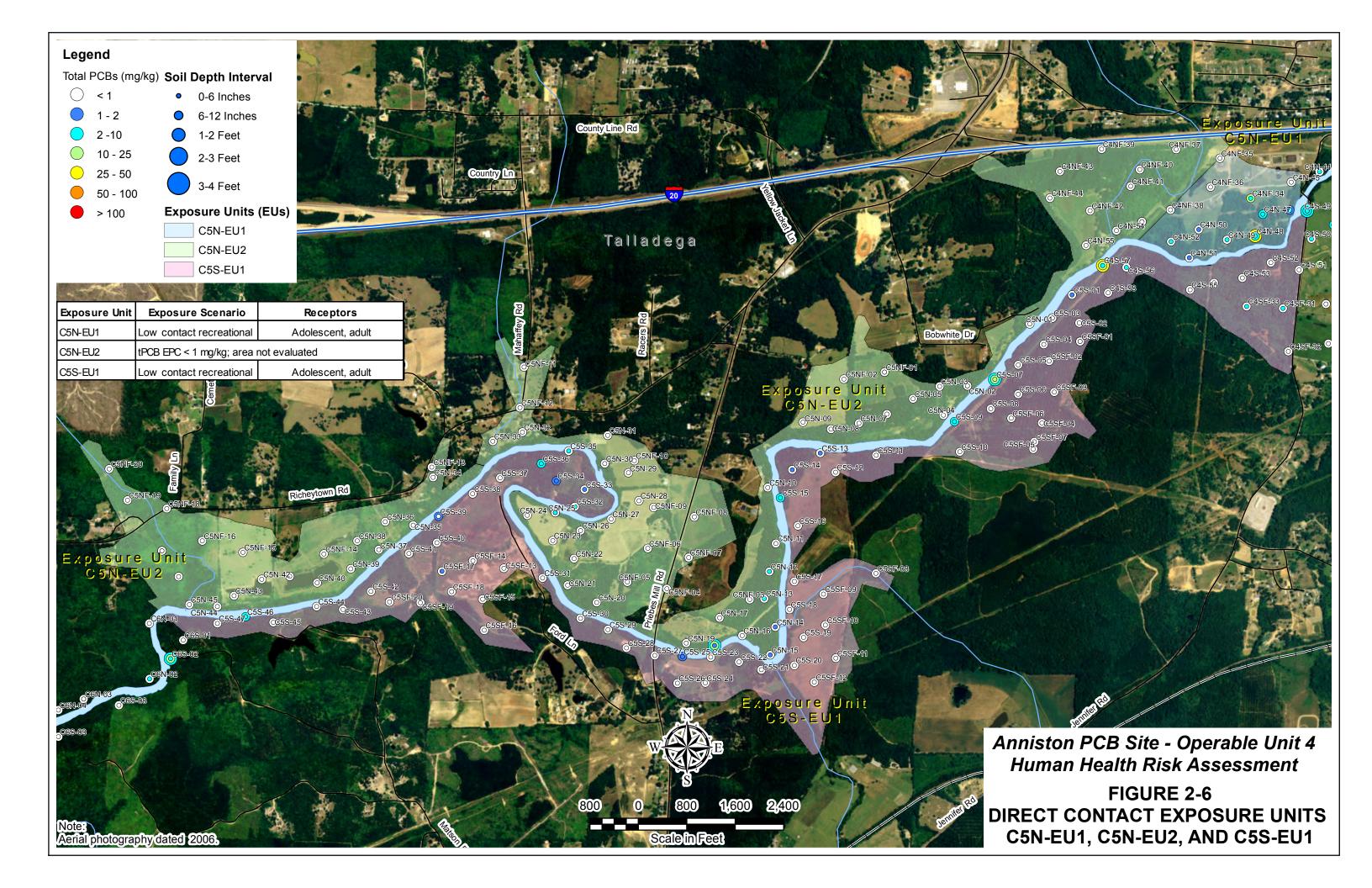

- Fish consumption poses a potentially significant human health risk to those who regularly consume fish from the Choccolocco Creek at or near the levels assumed in the HHRA.
- Risks from consuming locally raised beef and dairy products from the highest concentration areas also could pose health risks if current practices changed and a significant portion of an individual's beef and/or dairy intake was locally raised and consumed over a long period of time. More typical exposures to these products, even if originating from the floodplain, are unlikely to cause any unacceptable health risks.
- Risks from other agricultural product consumption, including chicken, eggs, and vegetables are not likely to be a concern under any current or future circumstances.
- Risks from direct contact exposures are not likely to be of any concern even at the highest concentration areas.

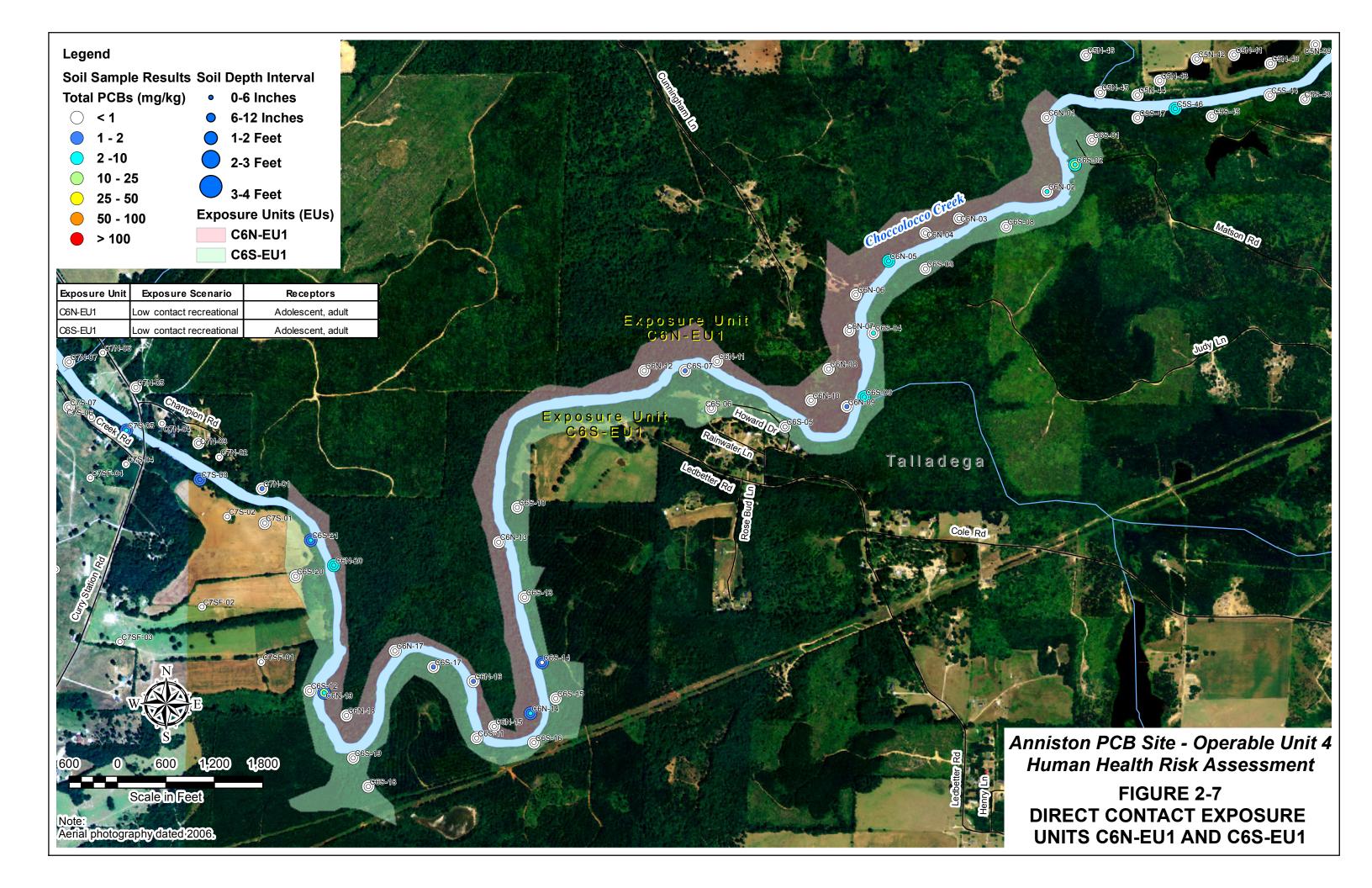


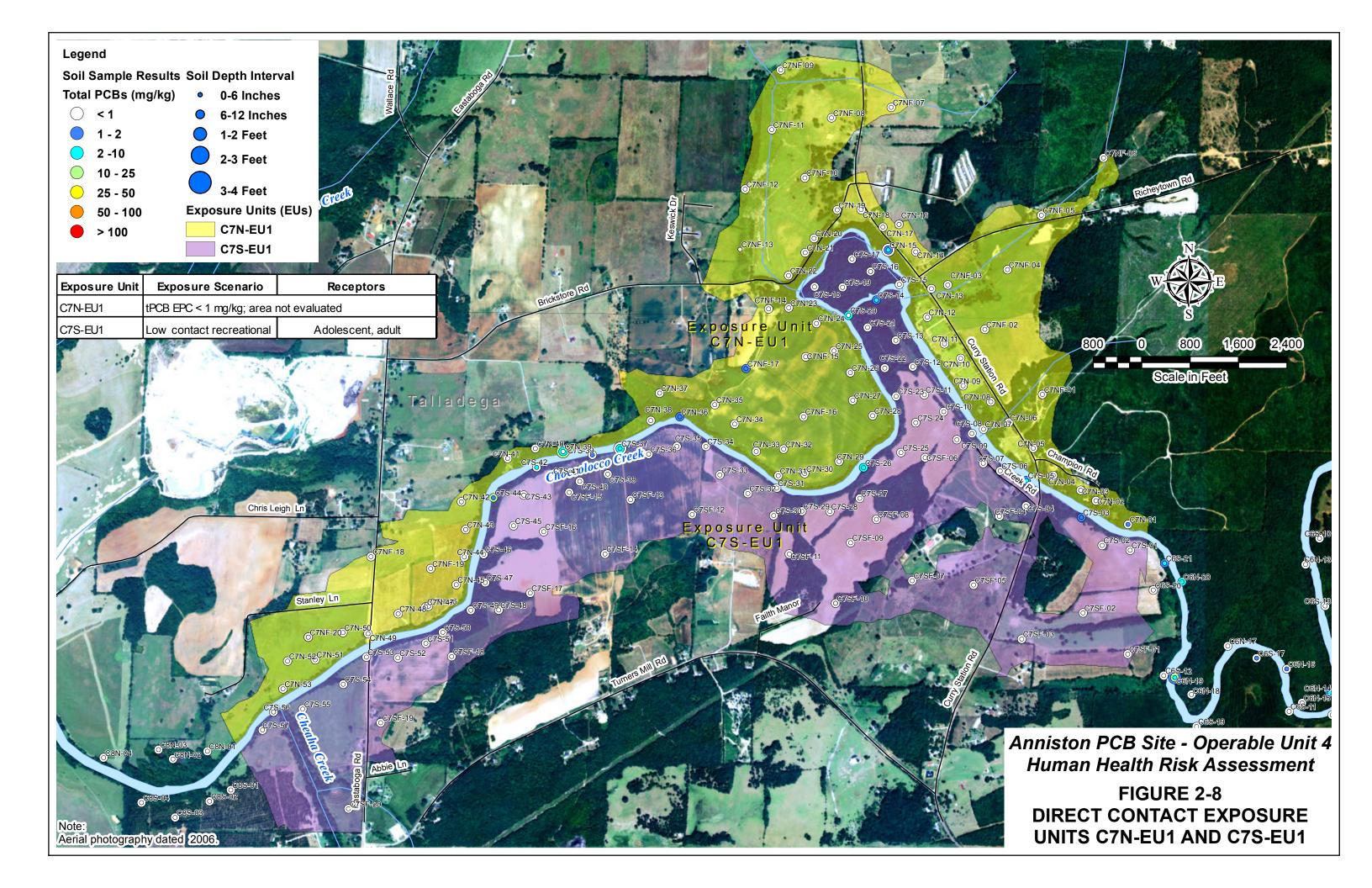


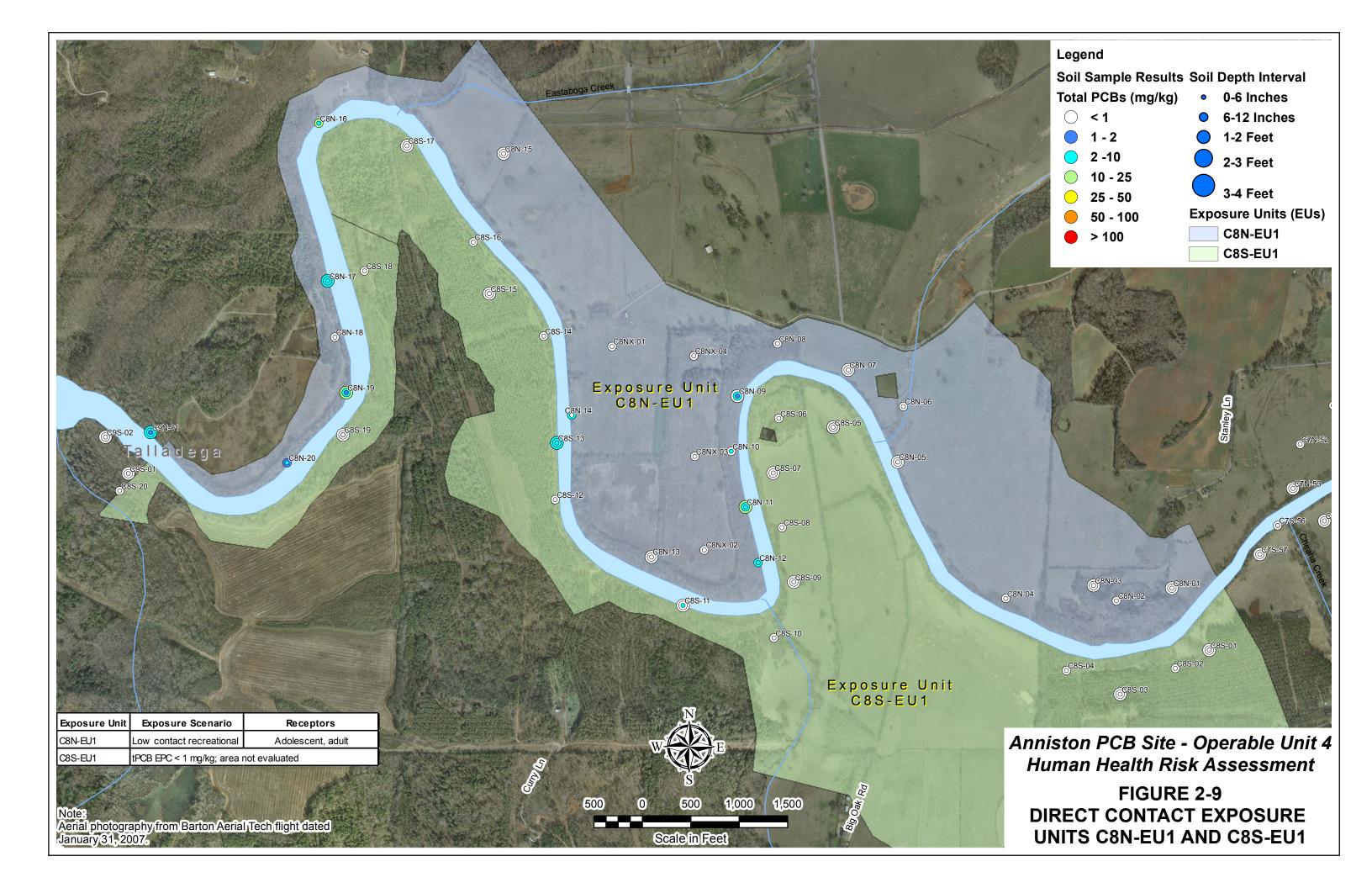


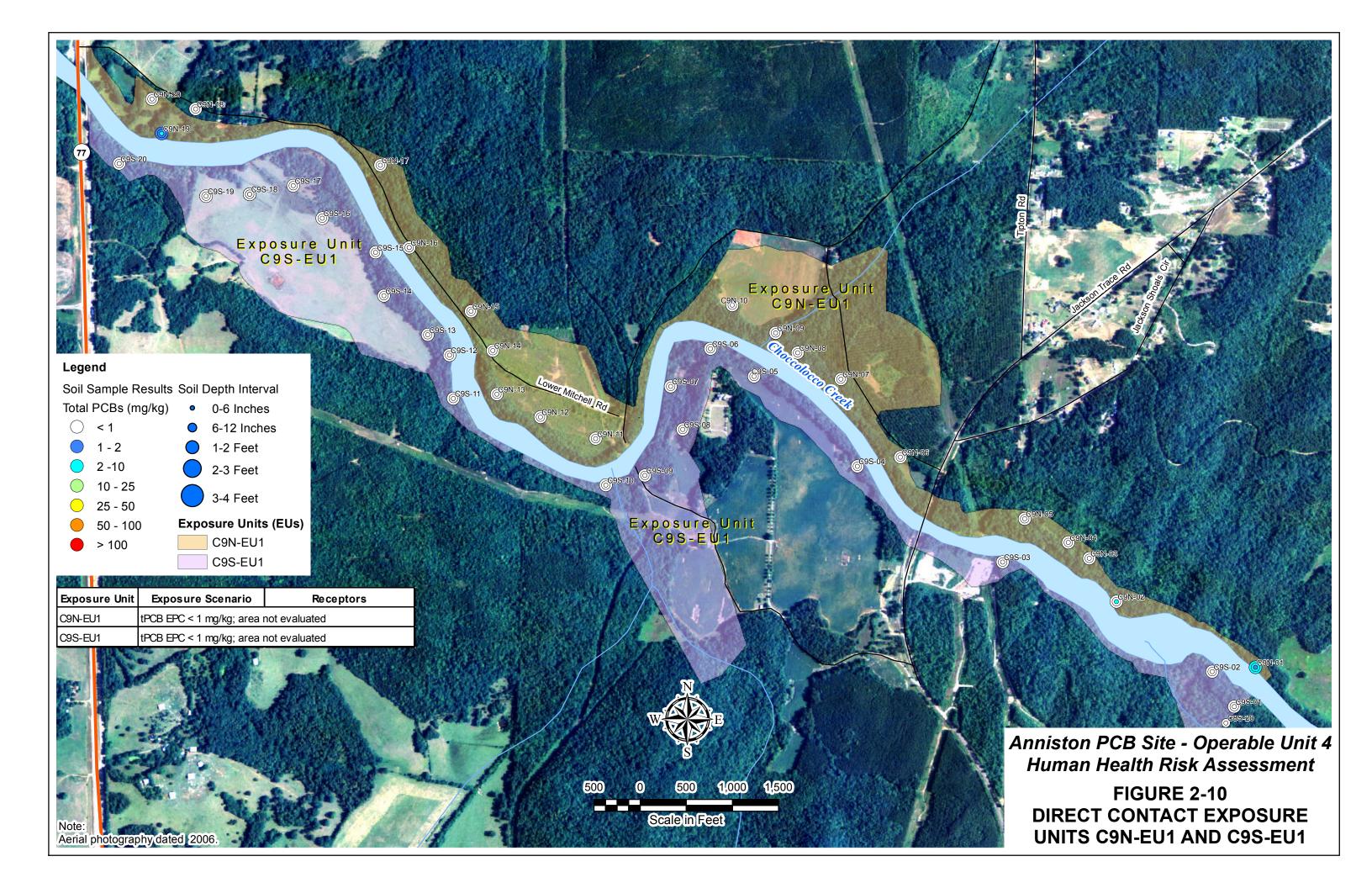


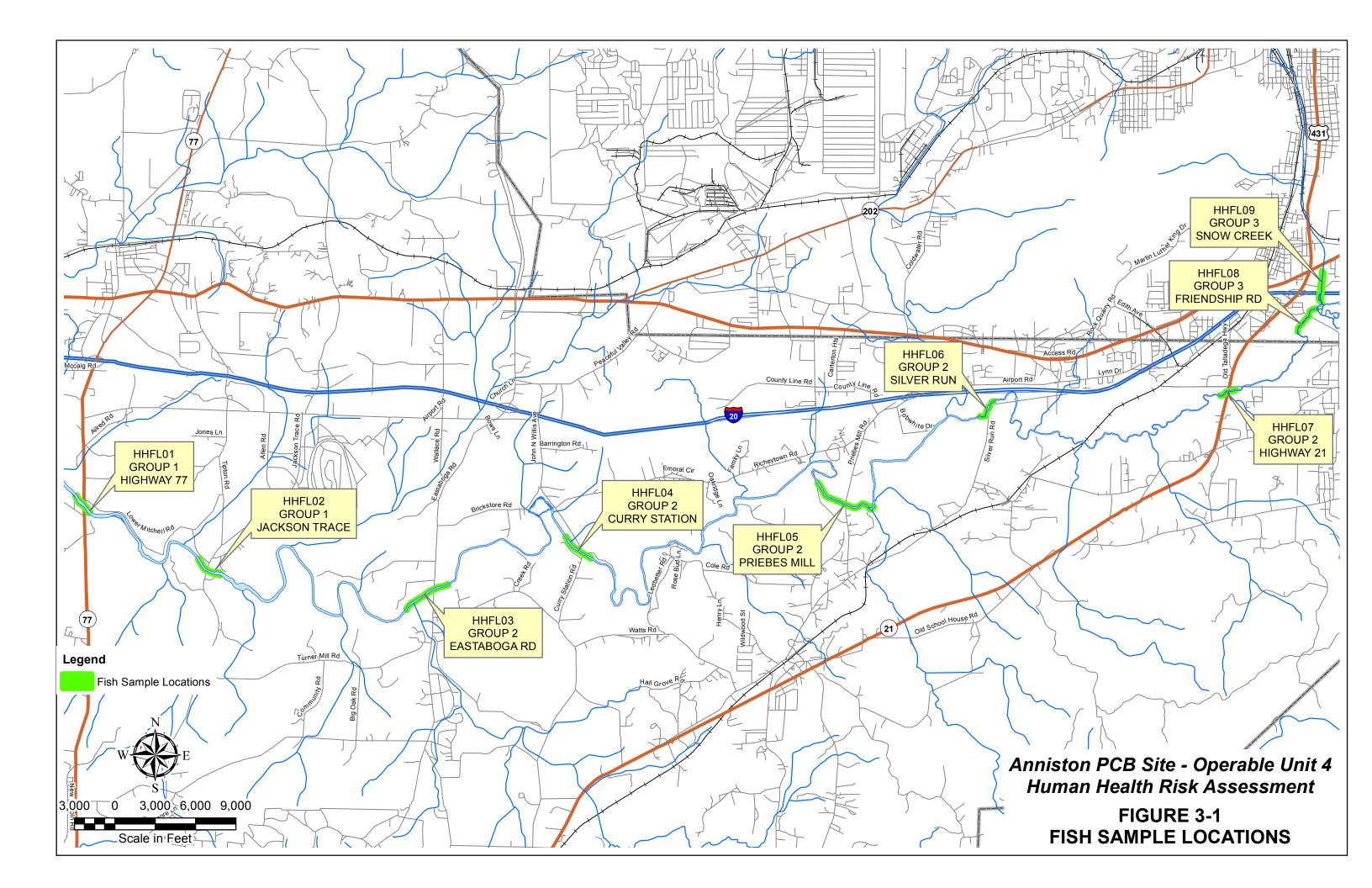


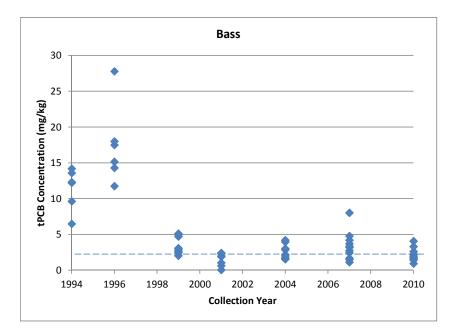


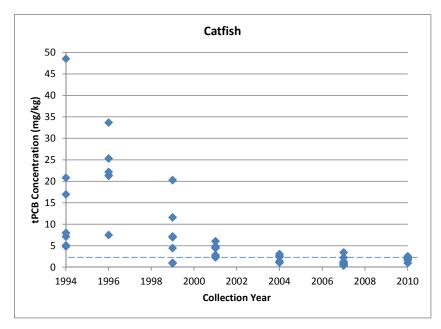


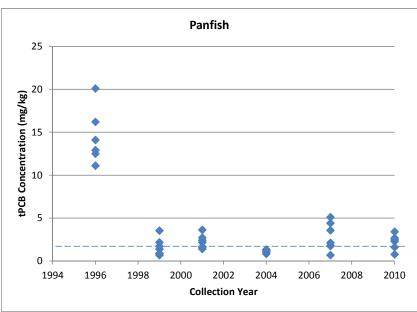
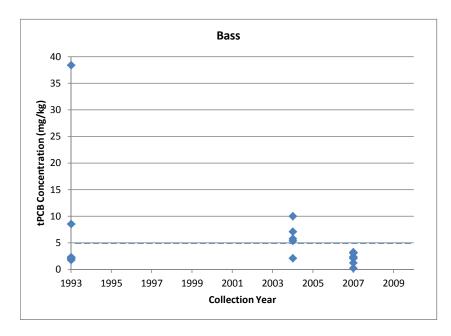


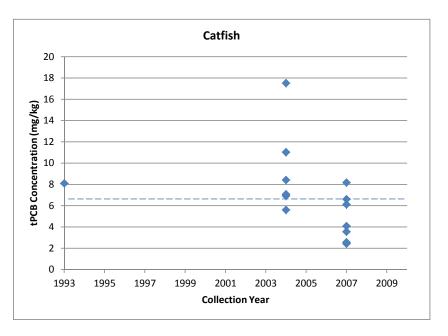








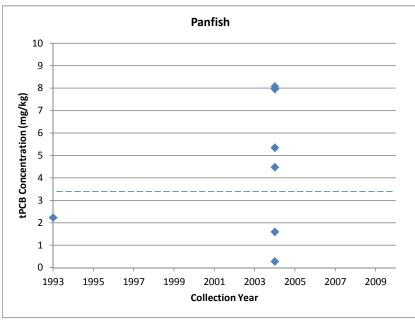



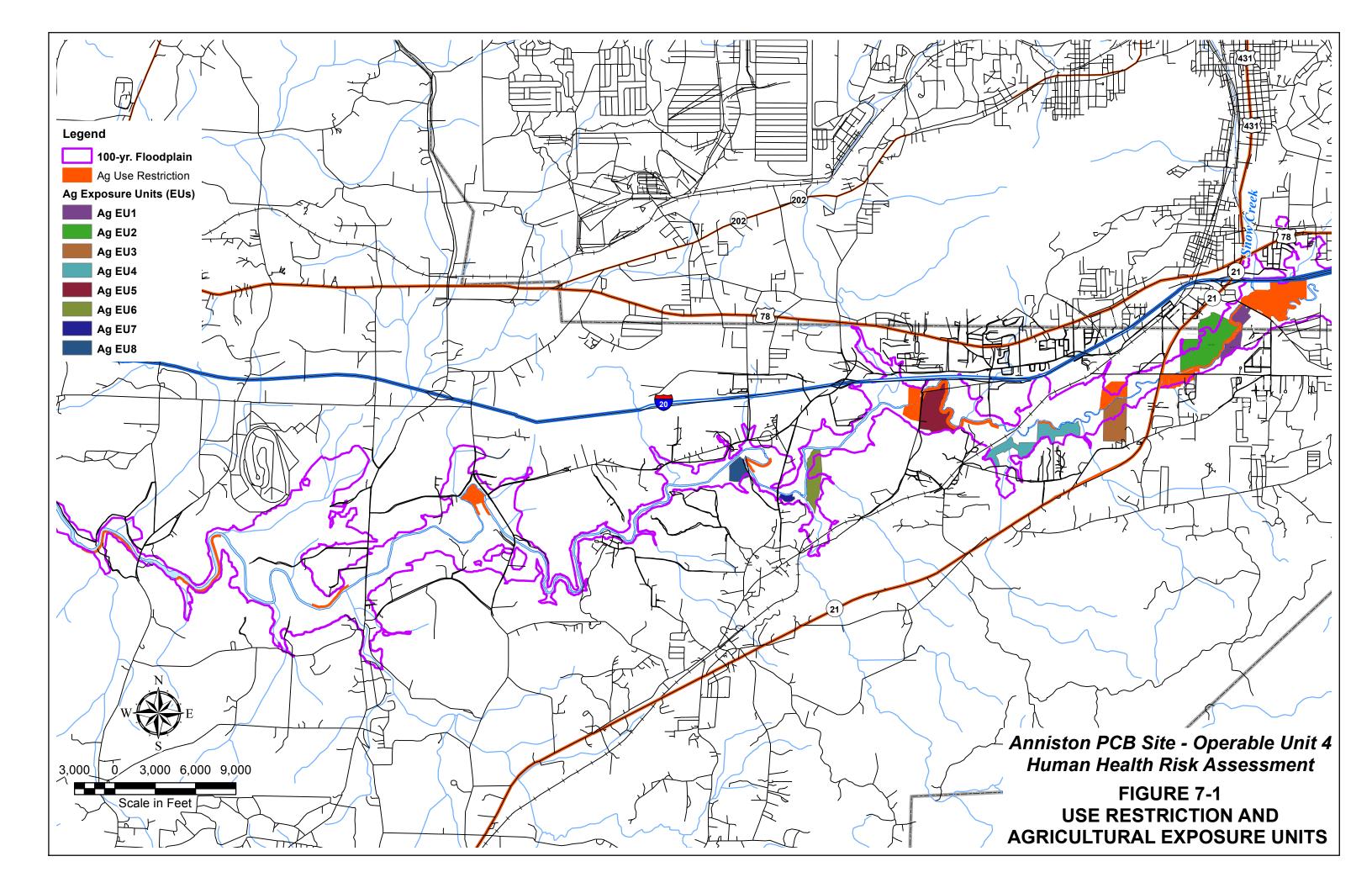

Figure 5-1

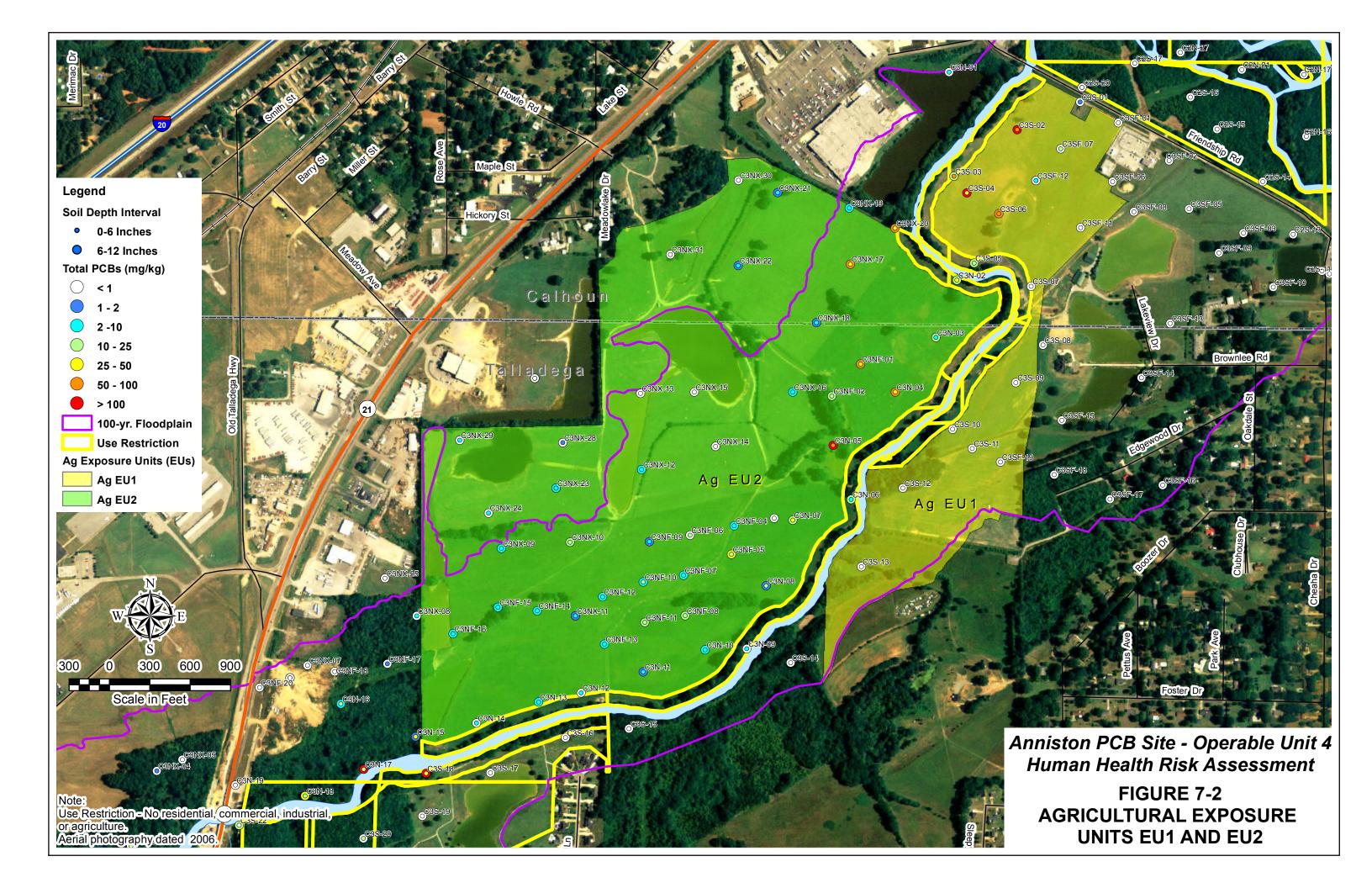
tPCB Concentration Trends
Pell City Collection Area
ADEM Data 1994 - 2010

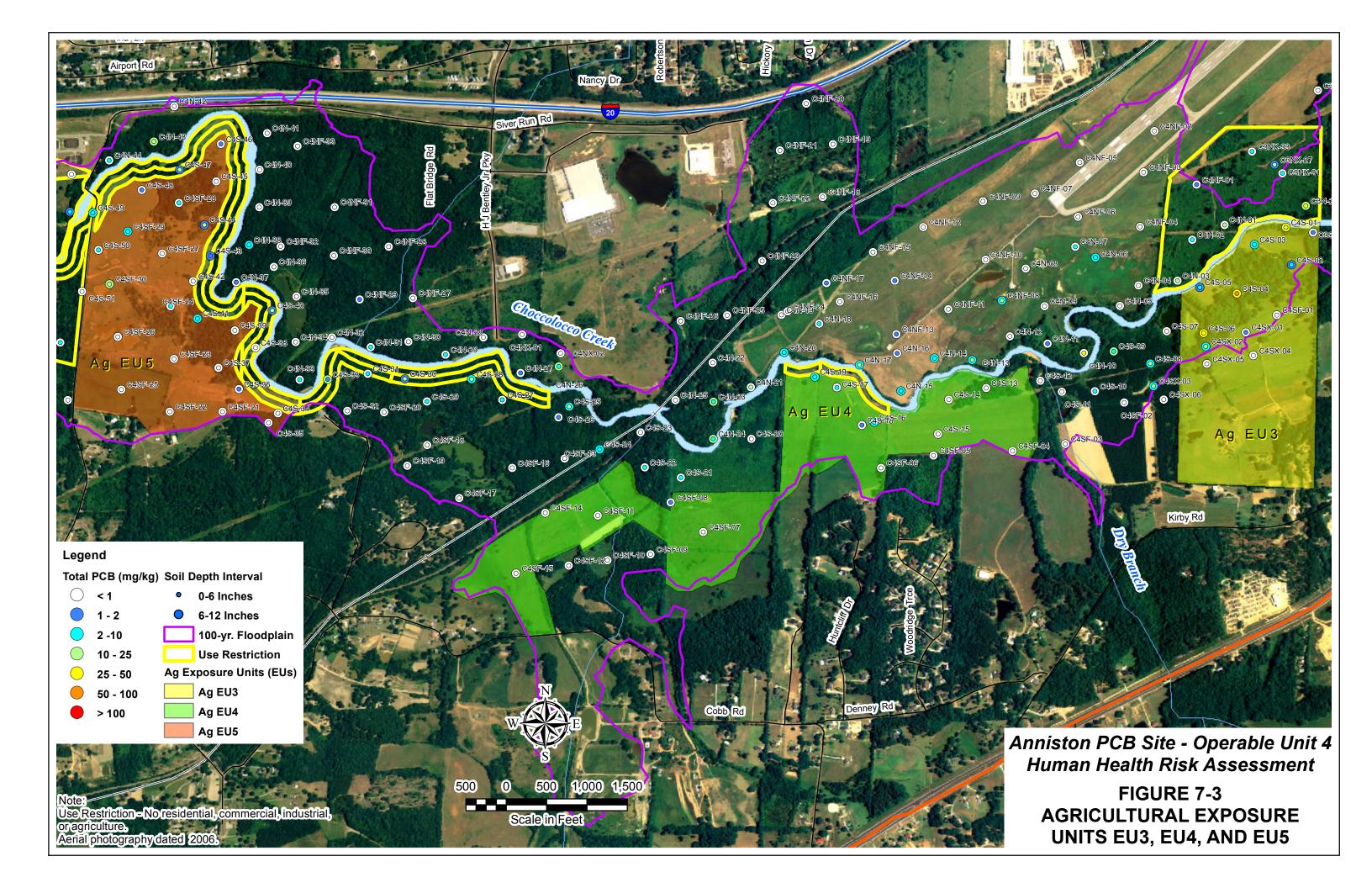
Notes:
Pell City Collection Area falls within fish grouping A.

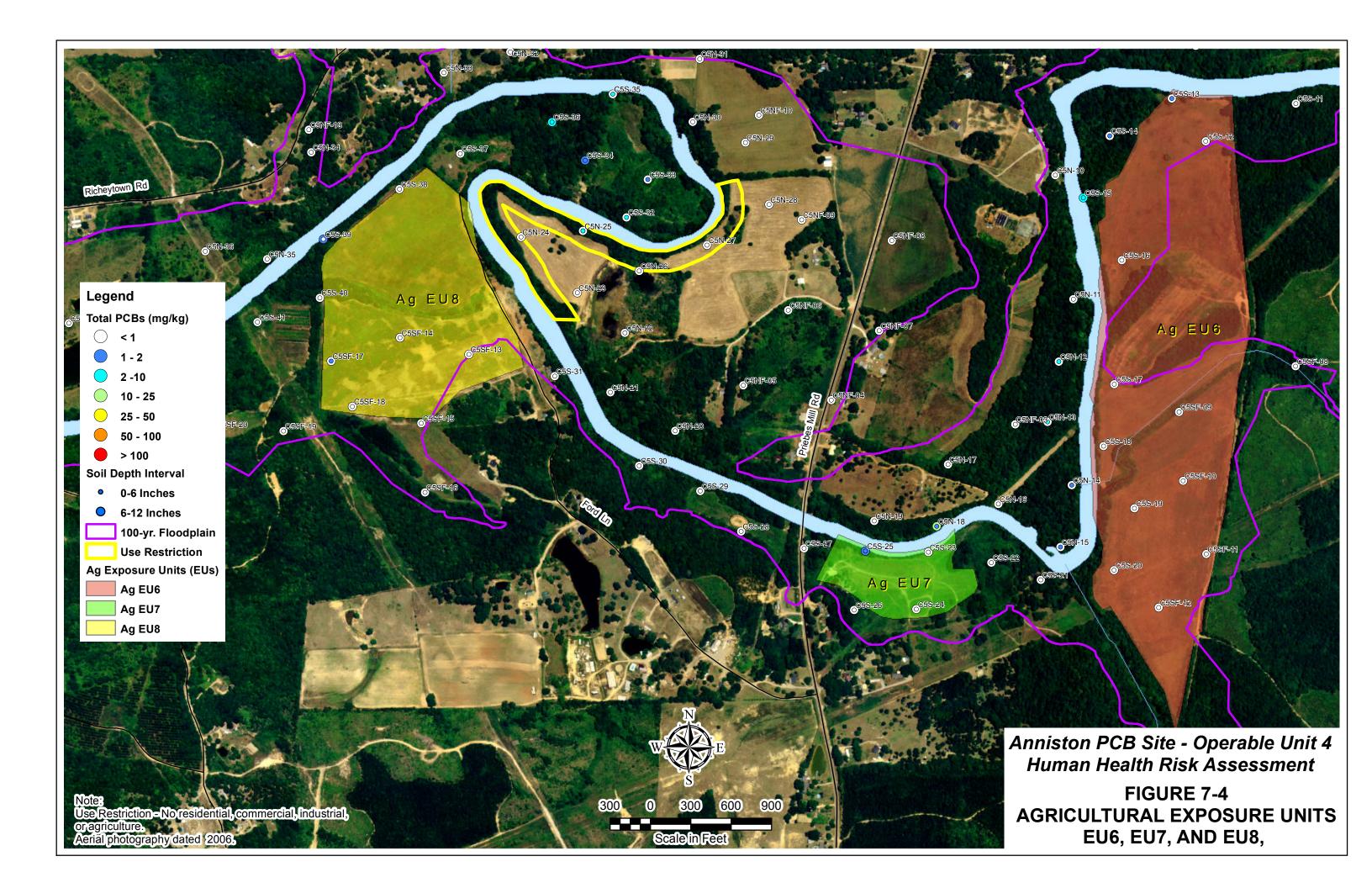
————— Indicates EPC used in HHRA.

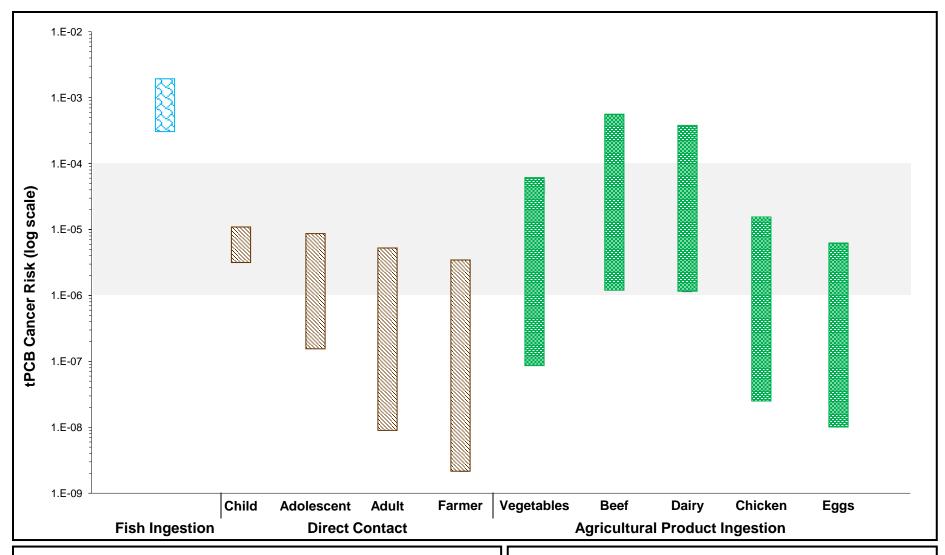



Figure 5-2

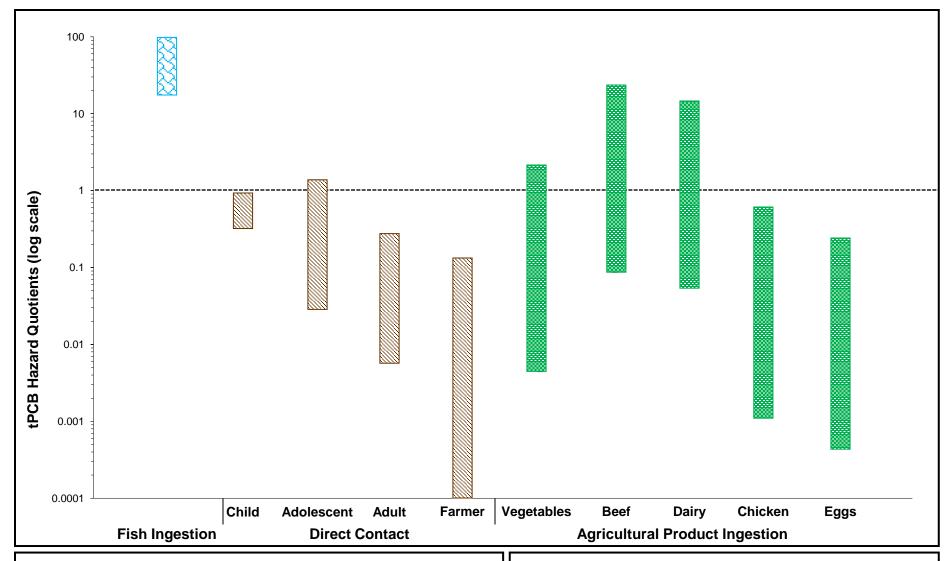

tPCB Concentration Trends Eastaboga Collection Area ADEM Data 1993 - 2010


Notes:


Eastaboga Collection Area falls within fish grouping C.


----- Indicates EPC used in HHRA.

Legend:

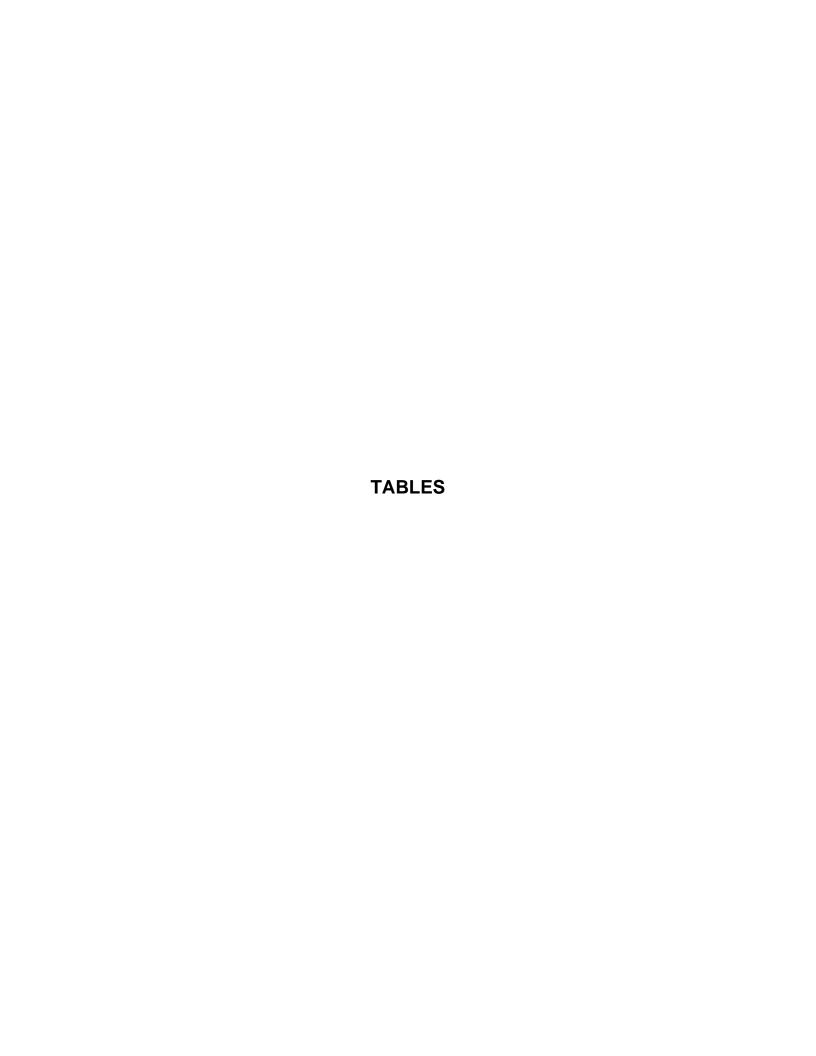

Notes:

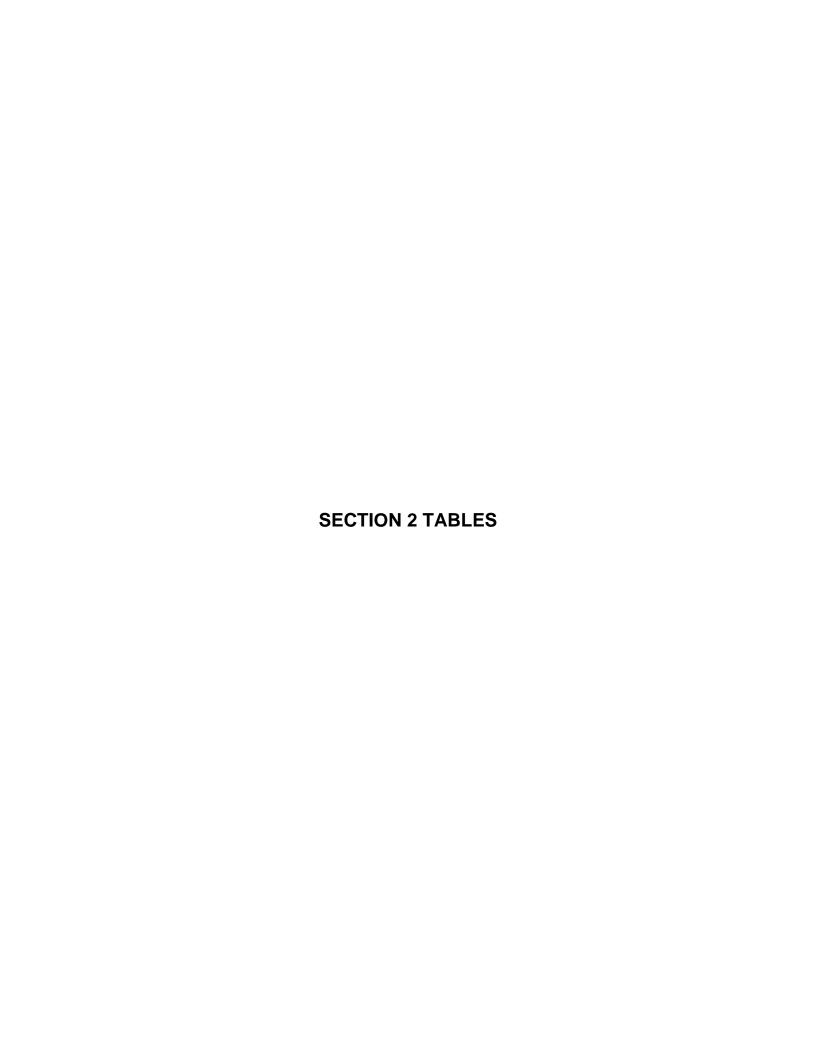
- Fish ingestion risk range represents minimum to maximum RME tPCB risks including all fish species and location groupings.
- 2) Direct contact risk range represents minimum to maximum RME tPCB risks including all EUs at which the receptor was evaluated. Note the adult receptor range includes both recreational and worker exposure.
- Agricultural product ingestion risk ranges represent the minimum to maximum RME tPCB risks calculated for 1 to 40 mg/kg in soil and 10 to 100% floodplain soil exposure, as appropriate for scenario.
 -) Gray shaded area represents EPA's cancer risk range (1E-06 to 1E-04).

FIGURE 8-1

tPCB RME Cancer Risks

ANNISTON PCB SITE – OU4


Legend:


Notes:

- 1) Fish ingestion HQ range represents minimum to maximum RME tPCB HQs including all fish species and location groupings.
- Direct contact HQ ranges represent minimum to maximum RME tPCB HQs including all EUs at which the receptor was evaluated. Note the adult receptor range includes both recreational and worker exposure.
- Agricultural product ingestion HQ ranges represent the minimum to maximum RME tPCB HQs calculated for 1 to 40 mg/kg in soil and 10 to 100% floodplain soil exposure, as appropriate for scenario.
 - Horizontal dashed line represents EPA's noncancer benchmark of one.

FIGURE 8-2

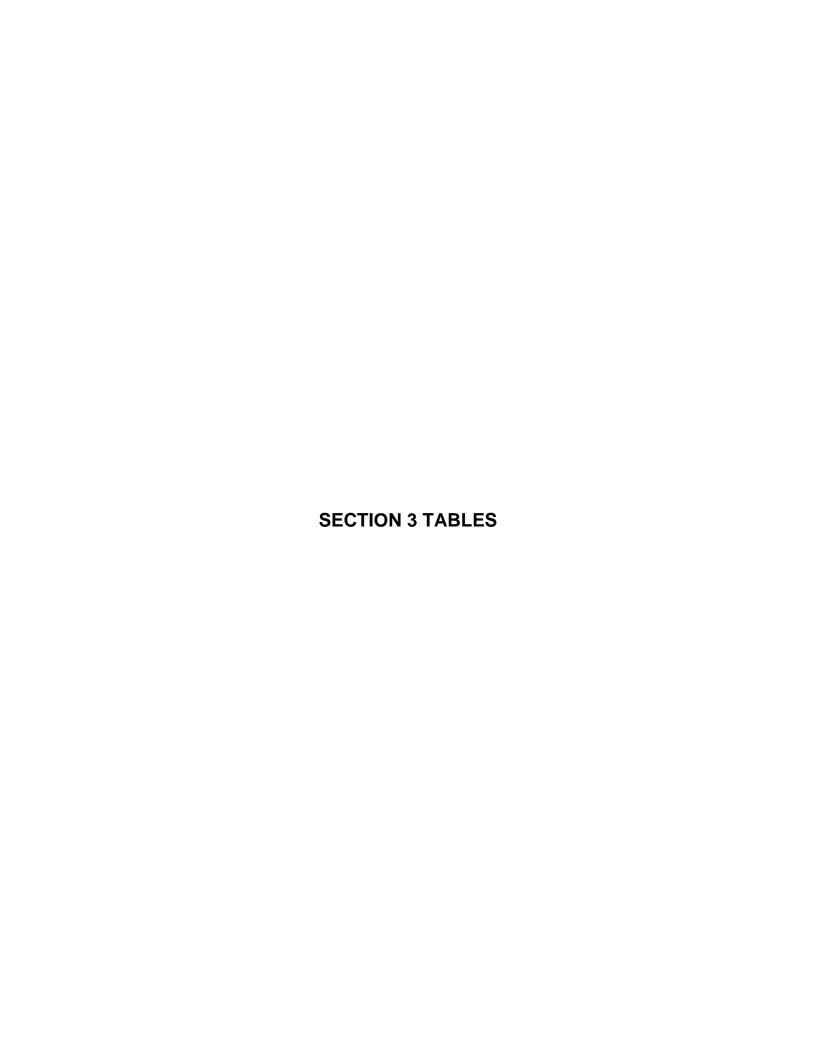

tPCB RME Hazard Quotients ANNISTON PCB SITE - OU4

TABLE 2-1 EXPOSURE SCENARIOS EVALUATED PER EXPOSURE UNIT ANNISTON PCB SITE OU-4

Exposure Unit	Exposure Scenario	Receptors		
C1-EU1	High contact recreational	Young child, adolescent, adult		
C1-EU2	Low contact recreational	Adolescent, adult		
	Worker	Adult		
C2N-EU1	Low contact recreational	Adolescent, adult		
	Worker	Adult		
C3N-EU1	Low contact recreational	Adolescent, adult		
C3N-EU2	Low contact recreational	Adolescent, adult		
C3S-EU1	High contact recreational	Young child, adolescent, adult		
C3S-EU2	High contact recreational	Young child, adolescent, adult		
C4N-EU1	Low contact recreational	Adolescent, adult		
	Worker	Adult		
C4N-EU2	Low contact recreational	Adolescent, adult		
C4S-EU1	Low contact recreational	Adolescent, adult		
C4S-EU2	Low contact recreational	Adolescent, adult		
C4S-EU3	Low contact recreational	Adolescent, adult		
C5N-EU1	Low contact recreational	Adolescent, adult		
	Worker	Adult		
C5S-EU1	Low contact recreational	Adolescent, adult		
C6N-EU1	Low contact recreational	Adolescent, adult		
C6S-EU1	Low contact recreational	Adolescent, adult		
C7S-EU1	Low contact recreational	Adolescent, adult		
C8N-EU1	Low contact recreational	Adolescent, adult		

TABLE 3-1 SAMPLES USED IN HHRA - FISH ANNISTON PCB SITE OU-4

						Analyses				
Location Group	Species Group	Species	Location	Sample ID	Date	PCBs	Mercury	PCB Congeners	Metals	Dioxins/ Furans
А	Bass	Largemouth Bass	HHFL-01	C60058	11/14/2008	Х	X	X	X	X
A	Bass	Largemouth Bass	HHFL-01	C60059	11/14/2008	X	X	^	X	<u> </u>
Α	Bass	Largemouth Bass	HHFL-01	C60060	11/14/2008	Х	Х		Х	1
Α	Bass	Largemouth Bass	HHFL-01	C60061	11/14/2008	Х	Х		Х	
Α	Bass	Largemouth Bass	HHFL-01	C60062	11/14/2008	X	X		X	
A	Bass	Largemouth Bass	HHFL-01	C60063	11/14/2008	X	Х		X	
A	Bass	Largemouth Bass	HHFL-01	C60064	11/14/2008	X	X		X	
A	Bass	Largemouth Bass	HHFL-02	C60220	11/19/2008	X	X	Х	X	Х
A A	Bass Bass	Largemouth Bass Largemouth Bass	HHFL-02	C60221 C60222	11/19/2008 11/19/2008	X	X		X	
A	Bass	Largemouth Bass	HHFL-02	C60223	11/19/2008	X	X		X	+
A	Bass	Largemouth Bass	HHFL-02	C60224	11/19/2008	X	X		X	1
Α	Bass	Largemouth Bass	HHFL-02	C60225	11/19/2008	Х	Х		Х	1
Α	Bass	Spotted Bass	HHFL-01	C60051	11/14/2008	Х	Х	Х	Х	Х
Α	Bass	Spotted Bass	HHFL-01	C60052	11/14/2008	Х	X		Х	
Α	Bass	Spotted Bass	HHFL-01	C60053	11/14/2008	Χ	X		X	
Α	Bass	Spotted Bass	HHFL-01	C60054	11/14/2008	X	Х		X	ļ
A	Bass	Spotted Bass	HHFL-01	C60055	11/14/2008	X	X		X	<u> </u>
A	Bass	Spotted Bass	HHFL-01	C60056	11/14/2008	X	X	V	X	
Α	Bass	Spotted Bass	HHFL-01	C60057	11/14/2008	X	X	Х	X	Х
A	Bass Bass	Spotted Bass Spotted Bass	HHFL-02	C60226 C60227	11/19/2008 11/19/2008	X	X	 	X	1
A	Bass	Spotted Bass	HHFL-02	C60228	11/19/2008	X	X		X	†
A	Bass	Spotted Bass	HHFL-02	C60229	11/19/2008	X	X	Х	X	X
Α	Bass	Spotted Bass	HHFL-02	C60230	11/19/2008	X	X		X	1
Α	Bass	Spotted Bass	HHFL-02	C60231	11/19/2008	X	Х		Х	
Α	Bass	Spotted Bass	HHFL-02	C60232	11/19/2008	X	X		X	
Α	Bass	Spotted Bass	HHFL-02	C60233	11/19/2008	X	Х		X	
A	Catfish	Channel Catfish	HHFL-01	C60079	11/14/2008	X	X		X	_
A	Catfish	Channel Catfish	HHFL-01	C60334	12/2/2008	X	X		X	
A A	Catfish Catfish	Channel Catfish Channel Catfish	HHFL-01	C60335 C60336	12/2/2008 12/2/2008	X	X		X	-
A	Catfish	Channel Catfish	HHFL-01	C60337	12/2/2008	X	X		X	1
A	Catfish	Channel Catrish	HHFL-01	C60338	12/2/2008	X	X		X	
A	Catfish	Channel Catfish	HHFL-01	C60412	12/5/2008	X	X		X	1
Α	Catfish	Channel Catfish	HHFL-01	C60413	12/5/2008	X	X		X	
Α	Catfish	Channel Catfish	HHFL-01	C60414	12/5/2008	Х	Х	Х	Х	X
Α	Catfish	Channel Catfish	HHFL-01	C60415	12/6/2008	Х	Х		Х	
Α	Catfish	Channel Catfish	HHFL-01	C60416	12/6/2008	X	X		X	
A	Catfish	Channel Catfish	HHFL-01	C60417	12/6/2008	X	X		X	
Α .	Catfish	Channel Catfish	HHFL-01	C60418	12/7/2008	X	X		X	<u> </u>
A	Catfish	Channel Catfish	HHFL-01	C60419	12/7/2008	X	X	V	X	
A A	Catfish Catfish	Channel Catfish Channel Catfish	HHFL-02 HHFL-02	C60234 C60235	11/19/2008 11/19/2008	X	X	Х	X	Х
A	Catfish	Channel Catrish	HHFL-02	C60236	11/19/2008	X	X		X	-
A	Catfish	Channel Catfish	HHFL-02	C60237	11/19/2008	X	X		X	-
Α	Catfish	Channel Catfish	HHFL-02	C60238	11/19/2008	X	X		X	
Α	Catfish	Channel Catfish	HHFL-02	C60239	11/19/2008	X	X		X	1
Α	Catfish	Channel Catfish	HHFL-02	C60240	11/19/2008	X	Х		X	
Α	Catfish	Channel Catfish	HHFL-02	C60241	11/19/2008	Х	Х		Х	
Α	Catfish	Channel Catfish	HHFL-02	C60242	11/19/2008	Х	Х		Х	
A	Catfish	Channel Catfish	HHFL-02	C60243	11/19/2008	X	X	ļ	X	
Α	Catfish	Channel Catfish	HHFL-02	C60244	11/19/2008	X	X		X	1
Α	Catfish	Channel Catfish	HHFL-02	C60245	11/19/2008 11/19/2008	X	X	 	X	
A A	Catfish Catfish	Channel Catfish Channel Catfish	HHFL-02	C60246 C60247	11/19/2008	X	X	 	X	+
A	Sunfish	Black Crappie	HHFL-01	C60247	11/19/2008	X	X	Х	X	Х
A	Sunfish	Black Crappie	HHFL-01	C60072	11/14/2008	X	X	X	X	X
A	Sunfish	Black Crappie	HHFL-01	C60074	11/14/2008	X	X		X	† · · · ·
Α	Sunfish	Black Crappie	HHFL-01	C60075	11/14/2008	X	X		X	1
Α	Sunfish	Black Crappie	HHFL-01	C60076	11/14/2008	Х	Х		Х	
Α	Sunfish	Black Crappie	HHFL-01	C60077	11/14/2008	Х	Х		Х	
Α	Sunfish	Black Crappie	HHFL-01	C60078	11/14/2008	X	Х		X	ļ
A	Sunfish	Black Crappie	HHFL-02	C60255	11/19/2008	X	X		X	_
A	Sunfish	Black Crappie	HHFL-02	C60257	11/19/2008	X	X		X	
A A	Sunfish	Black Crappie	HHFL-02	C60258	11/19/2008 11/19/2008	X	X	 	X	
A	Sunfish Sunfish	Black Crappie Black Crappie	HHFL-02	C60259 C60260	11/19/2008	X	X	 	X	+
A	Sunfish	Black Crappie	HHFL-02	C60261	11/19/2008	X	X	 	X	1
A	Sunfish	Redear Sunfish	HHFL-01	C60065	11/14/2008	X	X	 	X	†
A	Sunfish	Redear Sunfish	HHFL-01	C60066	11/14/2008	X	X		X	†
A	Sunfish	Redear Sunfish	HHFL-01	C60067	11/14/2008	X	X	†	X	1
Α	Sunfish	Redear Sunfish	HHFL-01	C60068	11/14/2008	X	X	Х	X	Х
Α	Sunfish	Redear Sunfish	HHFL-01	C60069	11/14/2008	X	Х		Х	<u> </u>
Α	Sunfish	Redear Sunfish	HHFL-01	C60070	11/14/2008	Х	Х	Х	Х	Х

TABLE 3-1 SAMPLES USED IN HHRA - FISH ANNISTON PCB SITE OU-4

						Analyses				
Location Group	Species Group	Species	Location	Sample ID	Date	PCBs	Mercury	PCB Congeners	Metals	Dioxins/ Furans
Α	Sunfish	Redear Sunfish	HHFL-01	C60071	11/14/2008	X	Х		Х	
A	Sunfish	Redear Sunfish	HHFL-02	C60248	11/19/2008	X	X		X	
Α	Sunfish	Redear Sunfish	HHFL-02	C60249	11/19/2008	Х	Х		Х	
Α	Sunfish	Redear Sunfish	HHFL-02	C60250	11/19/2008	Х	X	X	Х	X
Α	Sunfish	Redear Sunfish	HHFL-02	C60251	11/19/2008	X	Х		X	
Α	Sunfish	Redear Sunfish	HHFL-02	C60252	11/19/2008	X	X		X	
A	Sunfish	Redear Sunfish	HHFL-02	C60253	11/19/2008	X	X		X	
Α	Sunfish	Redear Sunfish	HHFL-02	C60254	11/19/2008 11/19/2008	X	X		X	-
A B	Sunfish Bass	White Crappie Largemouth Bass	HHFL-02	C60256 C60369	12/3/2008	X	X		X	+
В	Bass	Largemouth Bass	HHFL-04	C60177	11/17/2008	X	X		X	
В	Bass	Largemouth Bass	HHFL-04	C60178	11/17/2008	X	X		X	
В	Bass	Spotted Bass	HHFL-03	C60361	12/3/2008	Х	Х		Х	
В	Bass	Spotted Bass	HHFL-03	C60362	12/3/2008	Х	Х		Х	
В	Bass	Spotted Bass	HHFL-03	C60363	12/3/2008	Х	Х		Х	
В	Bass	Spotted Bass	HHFL-03	C60364	12/3/2008	Х	Х		Х	
В	Bass	Spotted Bass	HHFL-03	C60365	12/3/2008	Х	X		Χ	
В	Bass	Spotted Bass	HHFL-03	C60366	12/3/2008	X	X	X	X	X
В	Bass	Spotted Bass	HHFL-03	C60367	12/3/2008	X	Х		X	
В	Bass	Spotted Bass	HHFL-03	C60368	12/3/2008	X	X		X	<u> </u>
В	Bass	Spotted Bass	HHFL-03	C60370	12/3/2008	X	X	ļ	X	
В	Bass	Spotted Bass	HHFL-03	C60371	12/3/2008	X	X		X	<u> </u>
В	Bass	Spotted Bass	HHFL-03	C60372	12/3/2008	X	X		X	1
В	Bass	Spotted Bass	HHFL-03	C60373	12/3/2008	X	X	 	X	
B B	Bass Bass	Spotted Bass	HHFL-03	C60374 C60179	12/3/2008 11/17/2008	X	X	 	X	+
В	Bass	Spotted Bass Spotted Bass	HHFL-04	C60179	11/17/2008	X	X	+	X	+
В	Bass	Spotted Bass	HHFL-04	C60181	11/17/2008	X	X		X	+
В	Bass	Spotted Bass	HHFL-04	C60182	11/17/2008	X	X		X	+
В	Bass	Spotted Bass	HHFL-04	C60183	11/17/2008	X	X	Х	X	Х
В	Bass	Spotted Bass	HHFL-04	C60184	11/17/2008	X	X		X	
В	Bass	Spotted Bass	HHFL-04	C60185	11/17/2008	Х	Х		Х	
В	Bass	Spotted Bass	HHFL-04	C60408	12/4/2008	X	Х		Х	
В	Bass	Spotted Bass	HHFL-04	C60409	12/4/2008	X	Х		X	
В	Bass	Spotted Bass	HHFL-04	C60410	12/4/2008	X	Х		X	
В	Bass	Spotted Bass	HHFL-04	C60411	11/17/2008	X	Х		X	
В	Catfish	Channel Catfish	HHFL-03	C60375	12/3/2008	X	X		X	
В	Catfish	Channel Catfish	HHFL-03	C60376	12/3/2008	X	X		X	
В	Catfish	Channel Catfish	HHFL-03	C60377	12/3/2008	X	X		X	
В	Catfish	Channel Catfish	HHFL-03	C60378	12/3/2008	X	Х		X	
В	Catfish	Channel Catfish	HHFL-03	C60379	12/3/2008	X	X		X	
В	Catfish	Channel Catfish	HHFL-03	C60380	12/3/2008	X	X		X	4
В	Catfish	Channel Catfish	HHFL-03	C60381	12/3/2008	X	X		X	+
B B	Catfish	Channel Catfish	HHFL-03	C60382	12/3/2008	X	X	-	X	-
В	Catfish Catfish	Channel Catfish Channel Catfish	HHFL-03	C60383 C60384	12/3/2008 12/3/2008	X	X		X	+
В	Catfish	Channel Catfish	HHFL-03	C60385	12/3/2008	X	X		X	+
В	Catfish	Channel Catfish	HHFL-03	C60386	12/3/2008	X	X	 	X	+
В	Catfish	Channel Catfish	HHFL-03	C60387	12/3/2008	X	X	 	X	†
В	Catfish	Channel Catfish	HHFL-03	C60388	12/3/2008	X	X	Х	X	Х
В	Catfish	Channel Catfish	HHFL-04	C60148	11/17/2008	X	X		X	1
В	Catfish	Channel Catfish	HHFL-04	C60149	11/17/2008	Х	Х		Х	
В	Catfish	Channel Catfish	HHFL-04	C60150	11/17/2008	X	Х		X	
В	Catfish	Channel Catfish	HHFL-04	C60151	11/17/2008	X	Х		Х	
В	Catfish	Channel Catfish	HHFL-04	C60152	11/17/2008	Х	Х		Х	
В	Catfish	Channel Catfish	HHFL-04	C60153	11/17/2008	X	Х		X	<u> </u>
В	Catfish	Channel Catfish	HHFL-04	C60154	11/17/2008	X	X	ļ	X	ļ
В	Catfish	Channel Catfish	HHFL-04	C60155	11/17/2008	X	X	ļ	X	ļ
<u>B</u>	Catfish	Channel Catfish	HHFL-04	C60156	11/17/2008	X	X		X	1
В	Catfish	Channel Catfish	HHFL-04	C60157	11/17/2008	X	X		X	1
В	Catfish	Channel Catfish	HHFL-04	C60158 C60159	11/17/2008	X	X	+ -	X	1
B B	Catfish Catfish	Channel Catfish Channel Catfish	HHFL-04 HHFL-04	C60159 C60160	11/17/2008 11/17/2008	X	X	+	X X	+
В	Catrish	Channel Catrish Channel Catrish	HHFL-04	C60161	11/17/2008	X	X	+	X	+
В	Sunfish	Black Crappie	HHFL-04	C60161	11/17/2008	X	X	Х	X	Х
В	Sunfish	Black Crappie	HHFL-04	C60162	11/17/2008	X	X	^	X	
В	Sunfish	Bluegill	HHFL-03	C60352	12/3/2008	X	X		X	
В	Sunfish	Bluegill	HHFL-03	C60353	12/3/2008	X	X		X	
В	Sunfish	Bluegill	HHFL-03	C60354	12/3/2008	X	X	† 1	X	†
В	Sunfish	Bluegill	HHFL-03	C60357	12/3/2008	X	X		X	1
В	Sunfish	Bluegill	HHFL-03	C60358	12/3/2008	X	X		X	1
В	Sunfish	Bluegill	HHFL-03	C60359	12/3/2008	X	X		X	
В	Sunfish	Bluegill	HHFL-03	C60360	12/3/2008	X	X		X	
В	Sunfish	Bluegill	HHFL-04	C60165	11/17/2008	Х	Х		Х	
В	Sunfish	Bluegill	HHFL-04	C60169	11/17/2008	Х	Х		Х	1

							•	Analyses		
Location Group	Species Group	Species	Location	Sample ID	Date	PCBs	Mercury	PCB Congeners	Metals	Dioxins Furans
В	Sunfish	Bluegill	HHFL-04	C60170	11/17/2008	X	X	J	Х	
В	Sunfish	Bluegill	HHFL-04	C60171	11/17/2008	X	X		X	
В	Sunfish	Bluegill	HHFL-04	C60172	11/17/2008	X	X		X	
В	Sunfish	Bluegill	HHFL-04	C60173	11/17/2008	Х	Х		Х	
В	Sunfish	Bluegill	HHFL-04	C60174	11/17/2008	Х	Х		Х	
В	Sunfish	Bluegill	HHFL-04	C60175	11/17/2008	Х	Х		Х	
В	Sunfish	Bluegill	HHFL-04	C60176	11/17/2008	Х	Х		Х	
В	Sunfish	Redear Sunfish	HHFL-03	C60347	12/3/2008	Х	Х		Х	
В	Sunfish	Redear Sunfish	HHFL-03	C60348	12/3/2008	Х	Х		Х	
В	Sunfish	Redear Sunfish	HHFL-03	C60349	12/3/2008	Х	Х		Х	
В	Sunfish	Redear Sunfish	HHFL-03	C60350	12/3/2008	Х	Х		Х	
В	Sunfish	Redear Sunfish	HHFL-03	C60351	12/3/2008	Х	Х		Х	
В	Sunfish	Redear Sunfish	HHFL-03	C60355	12/3/2008	Х	Х		Х	
В	Sunfish	Redear Sunfish	HHFL-03	C60356	12/3/2008	Χ	X		X	
В	Sunfish	Redear Sunfish	HHFL-04	C60164	11/17/2008	X	X		X	
В	Sunfish	Redear Sunfish	HHFL-04	C60166	11/17/2008	X	X		X	
В	Sunfish	Redear Sunfish	HHFL-04	C60167	11/17/2008	X	X		X	
В	Sunfish	Redear Sunfish	HHFL-04	C60168	11/17/2008	Χ	X		X	
С	Bass	Largemouth Bass	HHFL-07	C60285	11/20/2008	X	X		X	
С	Bass	Largemouth Bass	HHFL-07	C60287	11/20/2008	Χ	X		X	
С	Bass	Largemouth Bass	HHFL-07	C60289	11/20/2008	Х	X		Х	
С	Bass	Largemouth Bass	HHFL-07	C60296	11/20/2008	Х	X		Х	
С	Bass	Largemouth Bass	HHFL-09	C60325	12/2/2008	Х	X		Х	ļ <u> </u>
С	Bass	Largemouth Bass	HHFL-09	C60326	12/2/2008	Х	X	1	X	ļ
С	Bass	Largemouth Bass	HHFL-09	C60327	12/2/2008	X	X		X	
С	Bass	Largemouth Bass	HHFL-09	C60328	12/2/2008	Х	X		X	
С	Bass	Largemouth Bass	HHFL-09	C60329	12/2/2008	X	X		X	
С	Bass	Largemouth Bass	HHFL-09	C60330	12/2/2008	X	X		X	
С	Bass	Largemouth Bass	HHFL-09	C60331	12/2/2008	X	X		X	
С	Bass	Largemouth Bass	HHFL-09	C60332	12/2/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-05	C60200	11/18/2008	Χ	X		X	
С	Bass	Spotted Bass	HHFL-05	C60201	11/18/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-05	C60202	11/18/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-05	C60203	11/18/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-05	C60204	11/18/2008	Х	Х		Х	
С	Bass	Spotted Bass	HHFL-05	C60205	11/18/2008	Х	X		Х	
С	Bass	Spotted Bass	HHFL-05	C60206	11/18/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-05	C60207	11/18/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-05	C60208	11/18/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-05	C60209	11/18/2008	Χ	X		X	
С	Bass	Spotted Bass	HHFL-05	C60210	11/18/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-05	C60211	11/18/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-05	C60212	11/18/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-05	C60213	11/18/2008	Χ	X		X	
С	Bass	Spotted Bass	HHFL-06	C60094	11/15/2008	X	X	X	X	X
С	Bass	Spotted Bass	HHFL-06	C60095	11/15/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-06	C60096	11/15/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-06	C60097	11/15/2008	Х	Х	Х	Х	Х
С	Bass	Spotted Bass	HHFL-06	C60098	11/15/2008	Х	X		Х	
С	Bass	Spotted Bass	HHFL-06	C60099	11/15/2008	Х	X		X	
С	Bass	Spotted Bass	HHFL-06	C60100	11/15/2008	Х	X		Х	
С	Bass	Spotted Bass	HHFL-06	C60101	11/15/2008	Х	X		Х	
С	Bass	Spotted Bass	HHFL-06	C60102	11/15/2008	Х	X		Х	ļ <u> </u>
С	Bass	Spotted Bass	HHFL-06	C60103	11/15/2008	Х	Х		Х	
С	Bass	Spotted Bass	HHFL-06	C60104	11/15/2008	Х	X		Х	
С	Bass	Spotted Bass	HHFL-06	C60105	11/15/2008	Х	Х		Х	
С	Bass	Spotted Bass	HHFL-06	C60106	11/15/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-06	C60107	11/15/2008	X	X	ļl	X	<u> </u>
С	Bass	Spotted Bass	HHFL-07	C60286	11/20/2008	X	X	ļ	X	
С	Bass	Spotted Bass	HHFL-07	C60288	11/20/2008	X	X	ļ	X	
С	Bass	Spotted Bass	HHFL-07	C60290	11/20/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-07	C60291	11/20/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-07	C60292	11/20/2008	X	X	ļ	X	<u> </u>
С	Bass	Spotted Bass	HHFL-07	C60293	11/20/2008	X	X		X	<u> </u>
С	Bass	Spotted Bass	HHFL-07	C60294	11/20/2008	Х	X		Х	
С	Bass	Spotted Bass	HHFL-07	C60295	11/20/2008	Х	Х		Х	
С	Bass	Spotted Bass	HHFL-07	C60297	11/20/2008	Χ	X		X	
С	Bass	Spotted Bass	HHFL-07	C60298	11/20/2008	Х	X	X	Х	X
С	Bass	Spotted Bass	HHFL-08	C60120	11/16/2008	Х	X		Х	
С	Bass	Spotted Bass	HHFL-08	C60121	11/16/2008	Х	Х		Х	
С	Bass	Spotted Bass	HHFL-08	C60122	11/16/2008	Х	Х	X	Х	Х
С	Bass	Spotted Bass	HHFL-08	C60123	11/16/2008	Х	Х		Х	
С	Bass	Spotted Bass	HHFL-08	C60124	11/16/2008	Х	Х	Х	Х	Х
С	Bass	Spotted Bass	HHFL-08	C60125	11/16/2008	Х	Х		Х	
С	Bass	Spotted Bass	HHFL-08	C60126	11/16/2008	Х	Х		Х	1

								Analyses		
Location Group	Species Group	Species	Location	Sample ID	Date	PCBs	Mercury	PCB Congeners	Metals	Dioxins/ Furans
С	Bass	Spotted Bass	HHFL-08	C60127	11/16/2008	Х	Х	Х	Х	Х
С	Bass	Spotted Bass	HHFL-08	C60128	11/16/2008	Х	Х		Х	
С	Bass	Spotted Bass	HHFL-08	C60129	11/16/2008	Х	Х		Х	
С	Bass	Spotted Bass	HHFL-08	C60130	11/16/2008	Х	X		Х	
С	Bass	Spotted Bass	HHFL-08	C60131	11/16/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-08	C60132	11/16/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-08	C60133	11/16/2008	X	Х		X	
С	Bass	Spotted Bass	HHFL-09	C60333	12/2/2008	X	X		X	
С	Bass	Spotted Bass	HHFL-09	C60397	11/19/2008	X	X		X	
C	Bass	Spotted Bass	HHFL-09	C60398	11/19/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-05	C60214	11/18/2008	X	X		X	
C	Catfish Catfish	Channel Catfish Channel Catfish	HHFL-05	C60215 C60216	11/18/2008 11/18/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-05	C60216	11/18/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-05	C60217	11/18/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-05	C60219	11/18/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-05	C60389	12/4/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-05	C60390	12/4/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-05	C60391	12/4/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-05	C60392	12/4/2008	X	X	†	X	
C	Catfish	Channel Catfish	HHFL-05	C60393	12/4/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-05	C60394	12/4/2008	X	X		X	
С	Catfish	Channel Catfish	HHFL-05	C60395	12/4/2008	Х	Х		Х	
C	Catfish	Channel Catfish	HHFL-05	C60396	12/4/2008	Х	Х		Х	
С	Catfish	Channel Catfish	HHFL-06	C60108	11/15/2008	Х	Х		Х	
С	Catfish	Channel Catfish	HHFL-06	C60109	11/15/2008	Х	Х		Х	
С	Catfish	Channel Catfish	HHFL-06	C60110	11/15/2008	X	X		X	
С	Catfish	Channel Catfish	HHFL-06	C60111	11/15/2008	X	X		X	
С	Catfish	Channel Catfish	HHFL-06	C60112	11/15/2008	Х	Х		Х	
С	Catfish	Channel Catfish	HHFL-06	C60343	12/2/2008	X	X		X	
С	Catfish	Channel Catfish	HHFL-06	C60344	12/2/2008	X	X		X	
С	Catfish	Channel Catfish	HHFL-06	C60346	12/3/2008	X	X	Х	X	X
С	Catfish	Channel Catfish	HHFL-06	C60403	11/15/2008	X	X		X	
С	Catfish	Channel Catfish	HHFL-06	C60404	11/15/2008	X	X		X	
С	Catfish	Channel Catfish	HHFL-06	C60405	11/15/2008	X	X		X	
С	Catfish	Channel Catfish	HHFL-06	C60406	11/15/2008	Х	X		X	
С	Catfish	Channel Catfish	HHFL-06	C60407	11/15/2008		X		X	
C	Catfish Catfish	Channel Catfish Channel Catfish	HHFL-06	C60420	12/8/2008 12/8/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-07	C60421 C60299	11/20/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-07	C60300	11/20/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-07	C60300	11/20/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-07	C60302	11/20/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-07	C60303	11/20/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-07	C60304	11/20/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-07	C60305	11/20/2008	X	X		X	
C	Catfish	Channel Catfish	HHFL-07	C60306	11/20/2008	Х	Х		Х	
С	Catfish	Channel Catfish	HHFL-07	C60307	11/20/2008	Х	Х		Х	
С	Catfish	Channel Catfish	HHFL-07	C60308	11/20/2008	Х	Х		Х	
С	Catfish	Channel Catfish	HHFL-07	C60309	11/20/2008	Х	Х		Х	
С	Catfish	Channel Catfish	HHFL-07	C60310	11/20/2008	Х	Х		Х	
С	Catfish	Channel Catfish	HHFL-07	C60311	11/20/2008	Х	Х		Х	
С	Catfish	Channel Catfish	HHFL-07	C60312	11/20/2008	X	Х		Χ	
С	Catfish	Channel Catfish	HHFL-08	C60134	11/16/2008	X	X	ļ	X	
С	Catfish	Channel Catfish	HHFL-08	C60135	11/16/2008	X	X	ļ	X	
С	Catfish	Channel Catfish	HHFL-08	C60136	11/16/2008	X	X		X	
С	Catfish	Channel Catfish	HHFL-08	C60137	11/16/2008	X	X		X	
С	Catfish	Channel Catfish	HHFL-08	C60138	11/16/2008	X	X		X	1
С	Catfish	Channel Catfish Channel Catfish	HHFL-08	C60139 C60140	11/16/2008	X	X	 	X	
C	Catfish Catfish	Channel Catrish	HHFL-08	C60140	11/16/2008 11/16/2008	X	X	 	X	
C	Catfish	Channel Catrish	HHFL-08	C60141	11/16/2008	X	X	Х	X	X
C	Catfish	Channel Catfish	HHFL-08	C60142	11/16/2008	X	X	^	X	^
C	Catfish	Channel Catfish	HHFL-08	C60143	11/16/2008	X	X	 	X	1
С	Catfish	Channel Catrish	HHFL-08	C60145	11/16/2008	X	X	Х	X	Х
C	Catfish	Channel Catrish	HHFL-08	C60145	11/16/2008	X	X		X	
С	Catfish	Channel Catfish	HHFL-08	C60147	11/16/2008	X	X	Х	X	Х
С	Sunfish	Bluegill	HHFL-05	C60187	11/18/2008	X	X	 	X	
C	Sunfish	Bluegill	HHFL-05	C60188	11/18/2008	X	X	†	X	
C	Sunfish	Bluegill	HHFL-05	C60190	11/18/2008	X	X	†	X	
C	Sunfish	Bluegill	HHFL-05	C60191	11/18/2008	X	X	†	X	
C	Sunfish	Bluegill	HHFL-05	C60192	11/18/2008	X	X	†	X	
C	Sunfish	Bluegill	HHFL-05	C60193	11/18/2008	X	X	†	X	
C	Sunfish	Bluegill	HHFL-05	C60194	11/18/2008	X	X		X	
С	Sunfish	Bluegill	HHFL-05	C60195	11/18/2008	Х	Х		Х	1

								Analyses		
Location	Species							PCB		Dioxins/
Group	Group	Species	Location	Sample ID	Date	PCBs	Mercury	Congeners	Metals	Furans
С	Sunfish	Bluegill	HHFL-05	C60196	11/18/2008	X	Х	X	X	Х
С	Sunfish	Bluegill	HHFL-05	C60197	11/18/2008	Х	Х	X	Х	Х
С	Sunfish	Bluegill	HHFL-05	C60198	11/18/2008	X	X		X	
С	Sunfish	Bluegill	HHFL-05	C60199	11/18/2008	X	Х		X	
С	Sunfish	Bluegill	HHFL-06	C60080	11/15/2008	X	X		X	
С	Sunfish	Bluegill	HHFL-06	C60081	11/15/2008	X	X		X	
C	Sunfish	Bluegill	HHFL-06	C60082	11/15/2008	X	X		X	
C	Sunfish	Bluegill	HHFL-06	C60083	11/15/2008	X	X		X	
C	Sunfish Sunfish	Bluegill Bluegill	HHFL-06	C60084 C60085	11/15/2008 11/15/2008	X	X		X	
C	Sunfish	Bluegill	HHFL-06	C60086	11/15/2008	X	X		X	
C	Sunfish	Bluegill	HHFL-06	C60087	11/15/2008	X	X	Х	X	Х
C	Sunfish	Bluegill	HHFL-06	C60088	11/15/2008	X	X		X	
C	Sunfish	Bluegill	HHFL-06	C60089	11/15/2008	X	X		X	
C	Sunfish	Bluegill	HHFL-07	C60271	11/20/2008	Х	Х		Х	
С	Sunfish	Bluegill	HHFL-07	C60272	11/20/2008	X	Х		X	
С	Sunfish	Bluegill	HHFL-07	C60273	11/20/2008	X	Х	X	X	Х
С	Sunfish	Bluegill	HHFL-07	C60274	11/20/2008	X	Х		X	
С	Sunfish	Bluegill	HHFL-07	C60275	11/20/2008	X	Х		X	
С	Sunfish	Bluegill	HHFL-07	C60276	11/20/2008	Х	X		X	
С	Sunfish	Bluegill	HHFL-07	C60277	11/20/2008	X	X		X	
С	Sunfish	Bluegill	HHFL-07	C60278	11/20/2008	X	Х		X	
С	Sunfish	Bluegill	HHFL-07	C60279	11/20/2008	X	X		X	
C	Sunfish	Bluegill	HHFL-07	C60280	11/20/2008	X	X		X	
С	Sunfish	Bluegill	HHFL-07	C60281	11/20/2008	X	X		X	
C	Sunfish Sunfish	Bluegill	HHFL-08	C60115	11/16/2008	X	X		X	
C	Sunfish	Bluegill Bluegill	HHFL-08 HHFL-08	C60116 C60117	11/16/2008 11/16/2008	X	X		X	
C	Sunfish	Bluegill	HHFL-08	C60117	11/16/2008	X	X	Х	X	Х
C	Sunfish	Bluegill	HHFL-08	C60119	11/16/2008	X	X	Α	X	^
C	Sunfish	Bluegill	HHFL-08	C60264	11/16/2008	X	X		X	
C	Sunfish	Bluegill	HHFL-08	C60265	11/16/2008	X	X		X	
C	Sunfish	Bluegill	HHFL-08	C60266	11/16/2008	X	X		X	
C	Sunfish	Bluegill	HHFL-08	C60267	11/16/2008	Х	Х	X	Х	Х
С	Sunfish	Bluegill	HHFL-08	C60268	11/16/2008	X	X		X	
С	Sunfish	Bluegill	HHFL-09	C60316	12/2/2008	X	Х		X	
С	Sunfish	Bluegill	HHFL-09	C60317	12/2/2008	X	X		X	
С	Sunfish	Bluegill	HHFL-09	C60318	12/2/2008	Х	X		Х	
С	Sunfish	Bluegill	HHFL-09	C60319	12/2/2008	X	Х		X	
С	Sunfish	Bluegill	HHFL-09	C60320	12/2/2008	X	X		X	
С	Sunfish	Bluegill	HHFL-09	C60321	12/2/2008	X	X		X	
C	Sunfish	Bluegill	HHFL-09	C60322	12/2/2008	X	X		X	
C	Sunfish Sunfish	Bluegill Bluegill	HHFL-09 HHFL-09	C60323 C60324	12/2/2008 12/2/2008	X	X		X	
C	Sunfish	Redbreasted Sunfish	HHFL-06	C60090	11/15/2008	X	X		X	<u> </u>
C	Sunfish	Redbreasted Sunfish	HHFL-06	C60090	11/15/2008	X	X		X	1
C	Sunfish	Redbreasted Sunfish	HHFL-08	C60262	11/16/2008	X	X		X	1
C	Sunfish	Redbreasted Sunfish	HHFL-08	C60263	11/16/2008	X	X		X	
C	Sunfish	Redbreasted Sunfish	HHFL-09	C60269	11/19/2008	X	X	Х	X	Х
C	Sunfish	Redbreasted Sunfish	HHFL-09	C60270	11/19/2008	X	X		X	
C	Sunfish	Redbreasted Sunfish	HHFL-09	C60313	12/2/2008	Х	Х	Х	Х	
С	Sunfish	Redbreasted Sunfish	HHFL-09	C60314	12/2/2008	X	Х		X	
С	Sunfish	Redbreasted Sunfish	HHFL-09	C60315	12/2/2008	X	Х		X	
С	Sunfish	Redear Sunfish	HHFL-05	C60186	11/18/2008	X	Х	X	X	X
С	Sunfish	Redear Sunfish	HHFL-05	C60189	11/18/2008	Х	Х		Х	
С	Sunfish	Redear Sunfish	HHFL-06	C60092	11/15/2008	X	Х		X	
С	Sunfish	Redear Sunfish	HHFL-06	C60093	11/15/2008	X	X		X	<u> </u>
С	Sunfish	Redear Sunfish	HHFL-07	C60282	11/20/2008	X	X		X	
C	Sunfish	Redear Sunfish	HHFL-07	C60283	11/20/2008	X	X	X	X	X
<u>C</u>	Sunfish	Redear Sunfish	HHFL-07	C60284	11/20/2008	X	X		X	1
С	Sunfish	Redear Sunfish	HHFL-08	C60113	11/16/2008	X	X		X	1
С	Sunfish	Redear Sunfish	HHFL-08	C60114	11/16/2008	X	Х		X	

									Analyses				
Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C1-EU1	OLGP-001	OLGP-001 (0-6)	N	8/8/2000	0-0.5	Х							
C1-EU1	OLGP-001	OLGP-001 (12-18)	N	8/8/2000	1-1.5	X							
C1-EU1 C1-EU1	OLGP-002 OLGP-002	OLGP-002 (0-6) OLGP-002 (12-18)	N N	8/8/2000 8/8/2000	0-0.5 1-1.5	X					-		
C1-EU1	OLGP-002	OLGP-002 (12-16)	N	8/8/2000	0-0.5	X					1		
C1-EU1	OLGP-003	OLGP-003 (12-18)	N	8/8/2000	1-1.5	Х							
C1-EU1	OLGP-003	OLGP-003 (30-36)	N	8/8/2000	2.5-3	Х							
C1-EU1	OLGP-023	OLGP-023 (0-6)	N	8/9/2000	0-0.5	X							
C1-EU1 C1-EU1	OLGP-023 OLGP-024	OLGP-023 (12-18) OLGP-024 (0-6)	N N	8/9/2000 8/9/2000	1-1.5 0-0.5	X					-		
C1-EU1	OLGP-024	OLGP-024 (12-18)	N	8/9/2000	1-1.5	X							
C1-EU1	OLGP-024	OLGP-024 (24-30)	N	8/9/2000	2-2.5	Χ							
C1-EU1	OLGP-024	OLGP-024 (42-48)	N	8/9/2000 8/9/2000	3.5-4	X							
C1-EU1	OLGP-026	OLGP-026 (0-6) OLGP-026 (24-30)	N N	8/9/2000	0-0.5 2-2.5	X					1		
C1-EU1	OLGP-027	OLGP-027 (0-6)	N	8/9/2000	0-0.5	X							
C1-EU1	OLGP-027	OLGP-027 (12-18)	N	8/9/2000	1-1.5	Χ							
C1-EU1	OLGP-027	OLGP-027 (24-32)	N	8/9/2000	2-2.67	X							
C1-EU1 C1-EU1	OLGP-027 OLGP-028	OLGP-027 (42-48) OLGP-028 (0-6)	N N	8/9/2000 8/9/2000	3.5-4 0-0.5	X		ļ					
C1-EU1	OLGP-028	OLGP-028 (0-6)	N	8/9/2000	1-1.5	X							
C1-EU1	OLGP-028	OLGP-028 (24-30)	N	8/9/2000	2-2.5	X							
C1-EU1	OLGP-029	OLGP-029 (0-6)	N	8/9/2000	0-0.5	Χ							
C1-EU1	OLGP-029	OLGP-029 (12-18)	N	8/9/2000	1-1.5	X							
C1-EU1 C1-EU1	OLGP-029 OLGP-030	OLGP-029 (24-30) OLGP-030 (0-6)	N N	8/9/2000 8/9/2000	2-2.5 0-0.5	X					-		
C1-EU1	OLGP-030	OLGP-030 (12-18)	N	8/9/2000	1-1.5	X							
C1-EU1	OLGP-030	OLGP-030 (24-30)	N	8/9/2000	2-2.5	X							
C1-EU1	OLGP-030	OLGP-030 (42-48)	N	8/9/2000	3.5-4	Χ							
C1-EU1	OLGP-046	OLGP-046 (0-6)	N	8/10/2000	0-0.5	X							
C1-EU1 C1-EU1	OLGP-047 OLGP-047	OLGP-047 (0-6) OLGP-047 (24-30)	N N	8/10/2000 8/10/2000	0-0.5 2-2.5	X							
C1-EU1	OLGP-047	OLGP-047 (24-30)	N	8/10/2000	0-0.5	X							
C1-EU1	OLGP-048	OLGP-048 (12-18)	N	8/10/2000	1-1.5	X							
C1-EU1	OLGP-048	OLGP-048 (24-30)	N	8/10/2000	2-2.5	Χ							
C1-EU1	OLGP-049	OLGP-049 (0-6)	N	8/10/2000	0-0.5	X							
C1-EU1	OLGP-049	OLGP-049 (12-18)	N N	8/10/2000	1-1.5	X							
C1-EU1 C1-EU1	OLGP-050 OLGP-050	OLGP-050 (12-18) OLGP-050 (24-30)	N N	8/10/2000 8/10/2000	1-1.5 2-2.5	X		1					
C1-EU1	OLGP-050	OLGP-050 (34-40)	N	8/10/2000	2.83-3.33	X							
C1-EU1	OLGP-051	OLGP-051 (24-30)	N	8/10/2000	2-2.5	Χ							
C1-EU1	OLGP-051	OLGP-051 (42-48)	N	8/10/2000	3.5-4	X							
C1-EU1 C1-EU1	OLGP-054 OLGP-054	OLGP-054 (24-30) OLGP-054 (42-48)	N N	8/10/2000 8/10/2000	2-2.5 3.5-4	X		ļ					
C1-EU1	OLGP-055	OLGP-055 (24-30)	N	8/10/2000	2-2.5	X							
C1-EU1	OLGP-055	OLGP-055 (33-39)	N	8/10/2000	2.75-3.25	X							
C1-EU1	OLGP-056	OLGP-056 (24-30)	N	8/10/2000	2-2.5	Χ							
C1-EU1	OLGP-056	OLGP-056 (34-40)	N	8/10/2000	2.83-3.33	Х							
C1-EU1 C1-EU1	OLGP-057 OLGP-057	OLGP-057 (0-6) OLGP-057 (24-30)	N N	8/10/2000 8/10/2000	0-0.5 2-2.5	X							
C1-EU1	OLGP-057	OLGP-057 (24-30)	N	8/10/2000	2.67-3.17	X					1		
C1-EU1	OLGP-058	OLGP-058 (0-6)	N	8/10/2000	0-0.5	X							
C1-EU1	OLGP-058	OLGP-058 (12-18)	N	8/10/2000	1-1.5	Χ							
C1-EU1	OLGP-058	OLGP-058 (24-30)	N	8/10/2000	2-2.5	X							
C1-EU1	OLGP-058	OLGP-058 (42-48) OLGP-061 (0-6)	N N	8/10/2000 8/10/2000	3.5-4 0-0.5	X	 	 			<u> </u>		
C1-EU1	OLGP-061	OLGP-061 (0-6) OLGP-061 (12-18)	N N	8/10/2000	1-1.5	X							
C1-EU1	OLGP-061	OLGP-061 (24-30)	N	8/10/2000	2-2.5	X							
C1-EU1	OLGP-061	OLGP-061 (42-48)	N	8/10/2000	3.5-4	Х							
C1-EU1	OLGP-062	OLGP-062 (0-6)	N	8/10/2000	0-0.5	X							
C1-EU1	OLGP-062 OLGP-062	OLGP-062 (12-18) OLGP-062 (12-18) DUP	N FD	8/10/2000 8/10/2000	1-1.5 1-1.5	X	 	 			 		
C1-EU1	OLGP-062	OLGP-062 (12-16) DOP OLGP-062 (24-30)	N N	8/10/2000	2-2.5	X	†						
C1-EU1	OLGP-062	OLGP-062 (32-38)	N	8/10/2000	2.67-3.17	X							
C1-EU1	OLGP-063	OLGP-063 (0-6)	N	8/10/2000	0-0.5	Χ							
C1-EU1	OLGP-063	OLGP-063 (12-18)	N	8/10/2000	1-1.5	X	ļ	ļ					
C1-EU1	OLGP-063	OLGP-063 (24-30) OLGP-063 (42-48)	N N	8/10/2000 8/10/2000	2-2.5 3.5-4	X	 	 			<u> </u>		
C1-EU1	OLGP-063 OLGP-064	OLGP-063 (42-48) OLGP-064 (0-6)	N N	8/10/2000	3.5-4 0-0.5	X	 	 			<u> </u>		
C1-EU1	OLGP-064	OLGP-064 (12-18)	N	8/10/2000	1-1.5	X							
C1-EU1	OLGP-064	OLGP-064 (24-30)	N	8/10/2000	2-2.5	Х							
C1-EU1	OLGP-064	OLGP-064 (36-42)	N	8/10/2000	3-3.5	X							
C1-EU1	OLGP-065	OLGP-065 (0-6)	N	8/10/2000	0-0.5	X					<u> </u>	ļ	
C1-EU1	OLGP-065	OLGP-065 (12-18) OLGP-065 (24-30)	N N	8/10/2000 8/10/2000	1-1.5 2-2.5	X	 	 					
C1-EU1	OLGP-065	OLGP-065 (24-30) OLGP-065 (30-36)	N N	8/10/2000	2.5-3	X					 		
C1-EU1	OLGP-066	OLGP-066 (0-6)	N	8/10/2000	0-0.5	X							
C1-EU1	OLGP-066	OLGP-066 (12-18)	N	8/10/2000	1-1.5	Х							

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses	•			
Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C1-EU1	OLGP-066	OLGP-066 (24-30)	N	8/10/2000	2-2.5	Χ							
C1-EU1	OLGP-066	OLGP-066 (42-48)	N	8/10/2000	3.5-4	X							
C1-EU1 C1-EU1	OLGP-069	OLGP-069 (0-6) OLGP-069 (12-18)	N N	8/11/2000 8/11/2000	0-0.5 1-1.5	X					1		
C1-EU1	OLGP-069	OLGP-069 (24-30)	N	8/11/2000	2-2.5	X							
C1-EU1	OLGP-069	OLGP-069 (42-48)	N	8/11/2000	3.5-4	X							
C1-EU1	OLGP-070	OLGP-070 (0-6)	N	8/11/2000	0-0.5	Χ							
C1-EU1	OLGP-070	OLGP-070 (12-18)	N N	8/11/2000	1-1.5	X					-		
C1-EU1 C1-EU1	OLGP-070 OLGP-070	OLGP-070 (24-30) OLGP-070 (42-48)	N N	8/11/2000 8/11/2000	2-2.5 3.5-4	X							
C1-EU1	OLGP-071	OLGP-071 (0-6)	N	8/11/2000	0-0.5	X							
C1-EU1	OLGP-071	OLGP-071 (12-18)	N	8/11/2000	1-1.5	Х							
C1-EU1	OLGP-071	OLGP-071 (24-30)	N	8/11/2000	2-2.5	X					ļ		
C1-EU1	OLGP-071 OLGP-074	OLGP-071 (42-48) OLGP-074 (0-6)	N N	8/11/2000 8/11/2000	3.5-4 0-0.5	X					-		
C1-EU1	OLGP-074	OLGP-074 (12-18)	N	8/11/2000	1-1.5	X							1
C1-EU1	OLGP-074	OLGP-074 (24-30)	N	8/11/2000	2-2.5	Х							
C1-EU1	OLGP-074	OLGP-074 (42-44)	N	8/11/2000	3.5-3.67	Χ							
C1-EU1	OLGP-077	OLGP-077 (0-6)	N	8/11/2000	0-0.5	X							
C1-EU1 C1-EU1	OLGP-077 OLGP-077	OLGP-077 (12-18) OLGP-077 (24-30)	N N	8/11/2000 8/11/2000	1-1.5 2-2.5	X					1	 	
C1-EU1	OLGP-077	OLGP-077 (42-48)	N	8/11/2000	3.5-4	X							
C1-EU1	OLGP-078	OLGP-078 (0-6)	N	8/11/2000	0-0.5	Χ							
C1-EU1	OLGP-078	OLGP-078 (12-18)	N N	8/11/2000	1-1.5	X							
C1-EU1	OLGP-078	OLGP-078 (24-32) OLGP-078 (42-48)	N N	8/11/2000 8/11/2000	2-2.67 3.5-4	X					1	1	
C1-EU1	OLGP-079	OLGP-079 (0-6)	N	8/11/2000	0-0.5	X						1	
C1-EU1	OLGP-079	OLGP-079 (12-18)	N	8/11/2000	1-1.5	Χ							
C1-EU1	OLGP-079	OLGP-079 (24-30)	N	8/11/2000	2-2.5	X					ļ		
C1-EU1 C1-EU1	OLGP-079 OLGP-080	OLGP-079 (42-48) OLGP-080 (0-6)	N N	8/11/2000 8/11/2000	3.5-4 0-0.5	X					1		
C1-EU1	OLGP-080	OLGP-080 (0-0)	N	8/11/2000	1-1.5	X					1		
C1-EU1	OLGP-080	OLGP-080 (12-18) DUP	FD	8/11/2000	1-1.5	X							
C1-EU1	OLGP-080	OLGP-080 (24-30)	N	8/11/2000	2-2.5	Χ							
C1-EU1	OLGP-080	OLGP-080 (42-48)	N N	8/11/2000	3.5-4	X					ļ		ļ
C1-EU1 C1-EU1	OLGP-083	OLGP-083 (0-6) OLGP-083 (12-18)	N N	8/11/2000 8/11/2000	0-0.5 1-1.5	X							
C1-EU1	OLGP-083	OLGP-083 (24-30)	N	8/11/2000	2-2.5	X							
C1-EU1	OLGP-083	OLGP-083 (32-38)	N	8/11/2000	2.67-3.17	Х							
C1-EU1	OLGP-084	OLGP-084 (0-6)	N	8/11/2000	0-0.5	X							
C1-EU1	OLGP-084 OLGP-084	OLGP-084 (0-6) DUP OLGP-084 (12-18)	FD N	8/11/2000 8/11/2000	0-0.5 1-1.5	X					1		
C1-EU1	OLGP-084	OLGP-084 (24-30)	N	8/11/2000	2-2.5	X							
C1-EU1	OLGP-084	OLGP-084 (42-48)	N	8/11/2000	3.5-4	Χ							
C1-EU1	OLGP-121	OLGP-121 (0-3)	N	8/25/2000	0-0.25	Х							
C1-EU1 C1-EU1	OLGP-141	OLGP-141 (0-3) OLGP-141 (12-18)	N N	8/25/2000 8/25/2000	0-0.25 1-1.5	X					ļ		ļ
C1-EU1	OLGP-141	OLGP-141 (12-18)	N N	8/28/2000	0-0.25	X							
C1-EU1	OLGP-144	OLGP-144 (0-3)	N	8/28/2000	0-0.25	X							
C1-EU1	OLGP-144	OLGP-144 (24-30)	N	8/25/2000	2-2.5	Χ							
C1-EU1	OLGP-144	OLGP-144 (36-42)	N N	8/25/2000	3-3.5	X							
C1-EU1 C1-EU1	OLGP-145	OLGP-145 (0-3) OLGP-145 (0-3) DUP	N FD	8/28/2000 8/28/2000	0-0.25 0-0.25	X	-				+		
C1-EU1	OLGP-145	OLGP-145 (0-3) DOF	N N	8/28/2000	0-0.25	X							
C1-EU1	OLGP-147	OLGP-147 (0-3)	N	8/28/2000	0-0.25	Х							
C1-EU1	OLGP-147	OLGP-147 (24-30)	N	8/25/2000	2-2.5	X							<u> </u>
C1-EU1	OLGP-147 OLGP-148	OLGP-147 (30-36) OLGP-148 (0-3)	N N	8/25/2000 8/28/2000	2.5-3 0-0.25	X					-	1	
C1-EU1	OLGP-149	OLGP-148 (0-3)	N	8/28/2000	0-0.25	X					 		
C1-EU1	OLGP-150	OLGP-150 (0-3)	N	8/28/2000	0-0.25	Х							
C1-EU1	OLGP-150	OLGP-150 (30-36)	N	8/28/2000	2.5-3	X							
C1-EU1 C1-EU1	OLGP-150 OLHA-001	OLGP-150 (30-36) DUP OLHA-001 (0-6)	FD N	8/28/2000 6/23/2000	2.5-3 0-0.5	X					1	1	
C1-EU1	OLHA-001	OLHA-001 (0-6) OLHA-001 (12-18)	N N	6/23/2000	0-0.5 1-1.5	X					 	 	
C1-EU1	OLHA-002	OLHA-002 (0-6)	N	6/23/2000	0-0.5	X							
C1-EU1	OLHA-002	OLHA-002 (12-18)	N	6/23/2000	1-1.5	Х							
C1-EU1	OLHA-003	OLHA-003 (0-6)	N N	6/23/2000 6/23/2000	0-0.5	X					-	-	<u> </u>
C1-EU1 C1-EU1	OLHA-003 OLHA-004	OLHA-003 (12-18) OLHA-004 (0-6)	N N	6/23/2000	1-1.5 0-0.5	X					-	1	
C1-EU1	OLHA-004	OLHA-004 (12-18)	N	6/23/2000	1-1.5	X							
C1-EU1	OLHA-006	OLHA-006 (0-6)	N	6/23/2000	0-0.5	Χ							
C1-EU1	OLHA-006	OLHA-006 (12-18)	N	6/29/2000	1-1.5	X							
C1-EU1	OLHA-010 OLHA-011	OLHA-010 (0-6)	N N	6/29/2000 6/29/2000	0-0.5	X					-	1	ļ
C1-EU1 C1-EU1	OLHA-011 OLHA-016	OLHA-011 (0-6) OLHA-016 (0-6)	N N	6/29/2000	0-0.5 0-0.5	X					1	 	
C1-EU1	OLHA-020	OLHA-010 (0-0)	N	6/29/2000	0-0.5	X							
C1-EU1	OLHA-020	OLHA-020 (12-18)	N	6/29/2000	1-1.5	Χ							
C1-EU1	OLHA-021	OLHA-021 (0-6)	N	6/29/2000	0-0.5	Χ							1

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

I									Analyses				
Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C1-EU1	OLHA-022	OLHA-022 (0-6)	N	6/29/2000	0-0.5	Х	,	J					
C1-EU1	OLHA-023	OLHA-023 (0-6)	N	6/30/2000	0-0.5	Х							
C1-EU1	OLHA-023	OLHA-023 (12-18)	N	6/30/2000	1-1.5	Χ							
C1-EU1	OLHA-024	OLHA-024 (0-6)	N	6/30/2000	0-0.5	X							
C1-EU1 C1-EU1	OLHA-025 OLHA-026	OLHA-025 (0-6) OLHA-026 (0-6)	N N	6/30/2000 6/30/2000	0-0.5 0-0.5	X							
C1-EU1	OLHA-026 OLHA-026	OLHA-026 (0-6) OLHA-026 (12-18)	N N	6/30/2000	1-1.5	X							
C1-EU1	OLHA-027	OLHA-027 (0-6)	N	6/30/2000	0-0.5	X	1						
C1-EU1	OLHA-028	OLHA-028 (0-6)	N	6/30/2000	0-0.5	X							
C1-EU1	OLHA-068	OLHA-068 (0-3)	N	8/25/2000	0-0.25	Χ							
C1-EU1	OLHA-071	OLHA-071 (0-3)	N	8/25/2000	0-0.25	Χ							
C1-EU1	OLHA-072	OLHA-072 (0-3)	N	8/25/2000	0-0.25	Х							
C1-EU1	OLHA-091	OLHA-091 (0-3)	N N	8/25/2000	0-0.25 0-0.25	X							
C1-EU1 C1-EU1	OLHA-103 OLHA-104	OLHA-103 (0-3) OLHA-104 (0-3)	N	8/28/2000 8/28/2000	0-0.25	X							
C1-EU1	OLHA-105	OLHA-105 (0-3)	N	8/28/2000	0-0.25	X	1						
C1-EU1	OLHA-106	OLHA-106 (0-3)	N	8/28/2000	0-0.25	Х							
C1-EU2	BP-1	BP-1	N	8/8/2001	0.5-1	Х							
C1-EU2	BP-2	BP-2	N	8/8/2001	0.5-1	Χ							
C1-EU2	BP-7	BP-7	N	8/8/2001	0-0.5	X							
C1-EU2	BP-8	BP-8	N	8/8/2001	0-0.5	X					<u> </u>		
C1-EU2 C1-EU2	NHA-1 NHA-1	NHA-1 NHA-1	N N	2/28/2001 2/28/2001	0-0.5 1-1.5	X					<u> </u>		
C1-EU2	NHA-1	NHA-1 NHA-1	N N	2/28/2001	2-2.5	X							
C1-EU2	NHA-2	NHA-2	N	2/28/2001	0-0.5	X							
C1-EU2	NHA-2	NHA-2	N	2/28/2001	1-1.5	Х							
C1-EU2	NHA-2	NHA-2	N	2/28/2001	2-2.5	Χ							
C1-EU2	NHA-5	NHA-5	N	2/28/2001	0-0.5	Χ							
C1-EU2	NHA-5	NHA-5	N	2/28/2001	1-1.5	X							
C1-EU2	NHA-5	NHA-5 (DUP)	FD N	2/28/2001	0-0.5	X							
C1-EU2 C1-EU2	OLGP-009	OLGP-009 (0-6) OLGP-009 (12-18)	N N	8/8/2000 8/8/2000	0-0.5 1-1.5	X							
C1-EU2	OLGP-009	OLGP-009 (30-36)	N	8/8/2000	2.5-3	X					1		
C1-EU2	OLGP-009	OLGP-009 (42-48)	N	8/8/2000	3.5-4	X							
C1-EU2	OLGP-010	OLGP-010 (0-6)	N	8/9/2000	0-0.5	Х							
C1-EU2	OLGP-010	OLGP-010 (12-18)	N	8/9/2000	1-1.5	Χ							
C1-EU2	OLGP-010	OLGP-010 (24-30)	N	8/9/2000	2-2.5	Х							
C1-EU2	OLGP-010	OLGP-010 (24-30) DUP	FD	8/9/2000	2-2.5	X							
C1-EU2 C1-EU2	OLGP-010 OLGP-011	OLGP-010 (42-48) OLGP-011 (0-6)	N N	8/9/2000 8/9/2000	3.5-4 0-0.5	X							
C1-EU2	OLGP-011	OLGP-011 (12-18)	N	8/9/2000	1-1.5	X							
C1-EU2	OLGP-011	OLGP-011 (24-30)	N	8/9/2000	2-2.5	X							
C1-EU2	OLGP-011	OLGP-011 (42-48)	N	8/9/2000	3.5-4	Х							
C1-EU2	OLGP-020	OLGP-020 (0-6)	N	8/9/2000	0-0.5	Χ							
C1-EU2	OLGP-020	OLGP-020 (12-18)	N	8/9/2000	1-1.5	X							
C1-EU2	OLGP-020	OLGP-020 (24-30)	N	8/9/2000	2-2.5	X							
C1-EU2 C1-EU2	OLGP-021 OLGP-021	OLGP-021 (0-6) OLGP-021 (12-18)	N N	8/9/2000 8/9/2000	0-0.5 1-1.5	X					1		
C1-EU2	OLGP-021	OLGP-021 (12-18)	N	8/9/2000	2-2.5	X					-		
C1-EU2	OLGP-021	OLGP-021 (42-48)	N	8/9/2000	3.5-4	X							
C1-EU2	OLGP-022	OLGP-022 (0-6)	N	8/9/2000	0-0.5	X					1		
C1-EU2	OLGP-022	OLGP-022 (12-18)	N	8/9/2000	1-1.5	Χ							
C1-EU2	OLGP-022	OLGP-022 (24-30)	N	8/9/2000	2-2.5	Х							
C1-EU2	OLGP-022	OLGP-022 (30-36)	N	8/9/2000	2.5-3	X					<u> </u>		
C1-EU2	OLGP-031 OLGP-031	OLGP-031 (0-6) OLGP-031 (12-18)	N	8/9/2000 8/9/2000	0-0.5	X					1		
C1-EU2 C1-EU2	OLGP-031 OLGP-031	OLGP-031 (12-18) OLGP-031 (24-30)	N N	8/9/2000	1-1.5 2-2.5	X						-	
C1-EU2	OLGP-031	OLGP-031 (24-30)	N	8/9/2000	0-0.5	X					1		
C1-EU2	OLGP-032	OLGP-032 (12-18)	N	8/9/2000	1-1.5	X					<u> </u>		
C1-EU2	OLGP-032	OLGP-032 (24-30)	N	8/9/2000	2-2.5	Х							
C1-EU2	OLGP-032	OLGP-032 (42-48)	N	8/9/2000	3.5-4	Χ							
C1-EU2	OLGP-033	OLGP-033 (0-6)	N	8/9/2000	0-0.5	X							
C1-EU2	OLGP-033	OLGP-033 (12-18)	N	8/9/2000	1-1.5	X					<u> </u>		
C1-EU2 C1-EU2	OLGP-033 OLGP-033	OLGP-033 (24-30) OLGP-033 (42-48)	N N	8/9/2000 8/9/2000	2-2.5 3.5-4	X							
C1-EU2	OLGP-033 OLGP-034	OLGP-033 (42-48)	N N	8/9/2000	0-0.5	X					1		
C1-EU2	OLGP-034	OLGP-034 (0-6) DUP	FD	8/9/2000	0-0.5	X	1						
C1-EU2	OLGP-034	OLGP-034 (12-18)	N	8/9/2000	1-1.5	X							
C1-EU2	OLGP-034	OLGP-034 (24-30)	N	8/9/2000	2-2.5	Χ							
C1-EU2	OLGP-034	OLGP-034 (42-48)	N	8/9/2000	3.5-4	Χ							
C1-EU2	OLGP-035	OLGP-035 (0-6)	N	8/9/2000	0-0.5	Χ							
C1-EU2	OLGP-035	OLGP-035 (12-18)	N	8/9/2000	1-1.5	X	1						
C1-EU2	OLGP-035	OLGP-035 (24-30)	N	8/9/2000	2-2.5	X					<u> </u>		
C1-EU2	OLGP-035 OLGP-036	OLGP-035 (34-40)	N N	8/9/2000 8/9/2000	2.83-3.33 0-0.5	X					1		
C1-EU2 C1-EU2	OLGP-036 OLGP-036	OLGP-036 (0-6) OLGP-036 (12-18)	N N	8/9/2000	0-0.5 1-1.5	X					<u> </u>		
01 202		OLGP-036 (24-30)	N	8/9/2000	2-2.5	X					1		
C1-EU2	OLGP-036												

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C1-EU2	OLGP-037	OLGP-037 (0-6)	N	8/9/2000	0-0.5	Х							
C1-EU2	OLGP-037	OLGP-037 (12-18)	N	8/9/2000	1-1.5	X							
C1-EU2 C1-EU2	OLGP-037 OLGP-037	OLGP-037 (24-30) OLGP-037 (42-48)	N N	8/9/2000 8/9/2000	2-2.5 3.5-4	X							
C1-EU2	OLGP-038	OLGP-038 (0-6)	N	8/9/2000	0-0.5	X							
C1-EU2	OLGP-038	OLGP-038 (12-18)	N	8/9/2000	1-1.5	Х							
C1-EU2	OLGP-038	OLGP-038 (24-30)	N	8/9/2000	2-2.5	X							
C1-EU2 C1-EU2	OLGP-038 OLGP-039	OLGP-038 (42-48) OLGP-039 (0-6)	N N	8/9/2000 8/9/2000	3.5-4 0-0.5	X					1		
C1-EU2	OLGP-039	OLGP-039 (12-18)	N	8/9/2000	1-1.5	X							
C1-EU2	OLGP-039	OLGP-039 (24-30)	N	8/9/2000	2-2.5	Χ							
C1-EU2	OLGP-039	OLGP-039 (42-48)	N	8/9/2000	3.5-4	X							
C1-EU2 C1-EU2	OLGP-040 OLGP-040	OLGP-040 (0-6) OLGP-040 (12-18)	N N	8/10/2000 8/10/2000	0-0.5 1-1.5	X							
C1-EU2	OLGP-040	OLGP-040 (12-18)	N	8/10/2000	2-2.5	X							
C1-EU2	OLGP-040	OLGP-040 (42-48)	N	8/9/2000	3.5-4	X							
C1-EU2	OLGP-041	OLGP-041 (0-6)	N	8/10/2000	0-0.5	Х							
C1-EU2 C1-EU2	OLGP-041 OLGP-041	OLGP-041 (12-18) OLGP-041 (24-30)	N N	8/10/2000 8/10/2000	1-1.5 2-2.5	X					1		
C1-EU2	OLGP-041 OLGP-042	OLGP-041 (24-30) OLGP-042 (0-6)	N	8/10/2000	0-0.5	X							
C1-EU2	OLGP-042	OLGP-042 (12-18)	N	8/10/2000	1-1.5	X							
C1-EU2	OLGP-042	OLGP-042 (24-30)	N	8/10/2000	2-2.5	X							
C1-EU2	OLGP-042	OLGP-042 (33-35)	N	8/10/2000	2.75-2.97	X							
C1-EU2 C1-EU2	OLGP-043 OLGP-043	OLGP-043 (0-6) OLGP-043 (0-6) DUP	N FD	8/10/2000 8/10/2000	0-0.5 0-0.5	X	1				1	1	
C1-EU2	OLGP-043	OLGP-043 (12-18)	N	8/10/2000	1-1.5	X							
C1-EU2	OLGP-043	OLGP-043 (24-30)	N	8/10/2000	2-2.5	Χ							
C1-EU2	OLGP-044	OLGP-044 (0-6)	N	8/10/2000	0-0.5	X							
C1-EU2 C1-EU2	OLGP-044 OLGP-044	OLGP-044 (12-18) OLGP-044 (24-30)	N N	8/10/2000 8/10/2000	1-1.5 2-2.5	X					-		
C1-EU2	OLGP-044	OLGP-045 (0-6)	N	8/10/2000	0-0.5	X							
C1-EU2	OLGP-045	OLGP-045 (12-18)	N	8/10/2000	1-1.5	Х							
C1-EU2	OLGP-045	OLGP-045 (24-30)	N	8/10/2000	2-2.5	Х							
C2N-EU1	C2N-03 C2N-03	C70755 C70756	N N	2/18/2009 2/18/2009	0-0.5 0.5-1	X	X				1		
C2N-EU1	C2N-03	C70756	N	2/18/2009	0.5-1	X	X				1		
C2N-EU1	C2N-06	C70765	N	2/18/2009	0.5-1	X	X						
C2N-EU1	C2N-11	C70782	N	2/18/2009	0-0.5	Χ	Х		X				
C2N-EU1	C2N-11	C70783	N	2/18/2009	0.5-1	X	X		Х		-		
C2N-EU1	C2N-15 C2N-15	C70794 C70795	N N	2/18/2009 2/18/2009	0-0.5 0.5-1	X	X						
C2N-EU1	C2N-19	C70806	N	2/18/2009	0-0.5	X	X						
C2N-EU1	C2N-19	C70807	N	2/18/2009	0.5-1	Χ	Х						
C2N-EU1	C2N-20	C70809	N	2/19/2009	0-0.5	X	X						
C2N-EU1	C2N-20 C2N-23	C70810 C70818	N N	2/19/2009 2/18/2009	0.5-1 0-0.5	X	X				-		
C2N-EU1	C2N-23	C70819	N	2/18/2009	0.5-1	X	X						
C2N-EU1	C2N-24	C70821	N	2/18/2009	0-0.5	Χ	Х	Х		Х			
C2N-EU1	C2N-24	C70822	N	2/18/2009	0.5-1	X	X	Х		X	ļ		
C2N-EU1	C2N-25 C2N-25	C70824 C70825	N N	2/18/2009 2/18/2009	0-0.5 0.5-1	X	X				1		
C2N-EU1	C2N-25	C70826	N	2/18/2009	1-2	X	^					 	
C2N-EU1	C2N-28	C70833	N	2/19/2009	0-0.5	X	Х						
C2N-EU1	C2N-28	C70834	N	2/19/2009	0.5-1	Х	Х						
C2N-EU1	C2N-28	C70835	N N	2/19/2009	1-2	X					1	1	
C2N-EU1	C2N-29 C2N-29	C70836 C70837	N FD	2/19/2009 2/19/2009	0-0.5 0-0.5	X	X				1	 	
C2N-EU1	C2N-29	C70838	N	2/19/2009	0.5-1	X	X						
C2N-EU1	C2N-29	C70839	FD	2/19/2009	0.5-1	Χ	Х						
C2N-EU1	C2N-30	C70842	N	2/18/2009 2/18/2009	0-0.5	X	X						
C2N-EU1	C2N-30 C2N-31	C70843 C70845	N N	2/18/2009	0.5-1 0-0.5	X	X	Х	X	X		1	
C2N-EU1	C2N-31	C70846	N	2/18/2009	0.5-1	X	X	X	X	X		1	
C2N-EU1	C2N-32	C70848	N	2/18/2009	0-0.5	Х	Х						
C2N-EU1	C2N-32	C70849	N	2/18/2009	0.5-1	X	X						
C2N-EU2	C2N-01 C2N-01	C70746 C70747	N FD	2/18/2009 2/18/2009	0-0.5 0-0.5	X	X		X		-		
C2N-EU2	C2N-01	C70747	N N	2/18/2009	0-0.5	X	X		X		 		
C2N-EU2	C2N-01	C70749	FD	2/18/2009	0.5-1	X	Х		X				
C2N-EU2	C2N-02	C70752	N	2/18/2009	0-0.5	X	Х						
C2N-EU2	C2N-02	C70753	N N	2/18/2009	0.5-1	X	X				-	1	
C2N-EU2	C2N-04 C2N-04	C70758 C70759	N N	2/18/2009 2/18/2009	0-0.5 0.5-1	X	X				1	 	
C2N-EU2	C2N-04	C70759	N	2/18/2009	0-0.5	X	X						
C2N-EU2	C2N-05	C70762	N	2/18/2009	0.5-1	Χ	Х						
C2N-EU2	C2N-07	C70767 C70768	N FD	2/19/2009	0-0.5	X	X					<u> </u>	
C2N-EU2	C2N-07			2/19/2009	0-0.5	X	X	i l			1		1

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

				1					A				
Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C2N-EU2	C2N-07	C70770	FD	2/19/2009	0.5-1	Х	Х						
C2N-EU2	C2N-08	C70773	N	2/19/2009	0-0.5	X	X						
C2N-EU2	C2N-08 C2N-09	C70774 C70776	N N	2/19/2009 2/19/2009	0.5-1 0-0.5	X	X				1		
C2N-EU2	C2N-09	C70777	N	2/19/2009	0.5-1	X	X						
C2N-EU2	C2N-10	C70779	N	2/19/2009	0-0.5	Х	Х						
C2N-EU2	C2N-10	C70780	N	2/19/2009	0.5-1	Χ	Х						
C2N-EU2	C2N-12 C2N-12	C70785 C70786	N N	2/19/2009 2/19/2009	0-0.5 0.5-1	X	X				1		
C2N-EU2	C2N-12	C70788	N N	2/19/2009	0.5-1	X	X				1		
C2N-EU2	C2N-13	C70789	N	2/19/2009	0.5-1	Х	Х						
C2N-EU2	C2N-14	C70791	N	2/19/2009	0-0.5	Χ	Х						
C2N-EU2	C2N-14 C2N-16	C70792 C70797	N N	2/19/2009	0.5-1 0-0.5	X	X				-		
C2N-EU2	C2N-16	C70797	N N	2/19/2009 2/19/2009	0.5-1	X	X						
C2N-EU2	C2N-17	C70800	N	2/19/2009	0-0.5	X	X						
C2N-EU2	C2N-17	C70801	N	2/19/2009	0.5-1	Χ	Х						
C2N-EU2	C2N-18	C70803	N N	2/19/2009	0-0.5 0.5-1	X	X						
C2N-EU2	C2N-18 C2N-21	C70804 C70812	N N	2/19/2009 2/19/2009	0.5-1	X	X		X				
C2N-EU2	C2N-21	C70813	N	2/19/2009	0.5-1	X	X		X		1		
C2N-EU2	C2N-22	C70815	N	2/19/2009	0-0.5	Χ	Х						
C2N-EU2	C2N-22	C70816	N N	2/19/2009	0.5-1	X	X					ļ	
C2N-EU2	C2N-26 C2N-26	C70827 C70828	N N	2/19/2009 2/19/2009	0-0.5 0.5-1	X	X				1	1	
C2N-EU2	C2N-27	C70830	N	2/19/2009	0-0.5	X	X						
C2N-EU2	C2N-27	C70831	N	2/19/2009	0.5-1	Χ	Х	Х		X			
C2N-EU2	C2S-18	C70902	N	2/19/2009	0-0.5	X	X	X		X			
C2N-EU2 C2S-EU1	C2S-18 C2S-01	C70903 C70851	N N	2/19/2009 2/20/2009	0.5-1 0-0.5	X	X	Х		Х	-		
C2S-EU1	C2S-01	C70852	N	2/20/2009	0.5-1	X	X						
C2S-EU1	C2S-02	C70854	N	2/20/2009	0-0.5	Х	Х						
C2S-EU1	C2S-02	C70855	N	2/20/2009	0.5-1	Х	Х						
C2S-EU1	C2S-03 C2S-03	C70857 C70858	N N	2/20/2009 2/20/2009	0-0.5 0.5-1	X	X				1		
C2S-EU1	C2S-03	C70860	N N	2/20/2009	0.5-1	X	X				1		
C2S-EU1	C2S-04	C70861	N	2/20/2009	0.5-1	X	X						
C2S-EU1	C2S-05	C70863	N	2/20/2009	0-0.5	Χ	Х						
C2S-EU1	C2S-05	C70864	N	2/20/2009	0.5-1	X	X						
C2S-EU1	C2S-06 C2S-06	C70866 C70867	N N	2/20/2009 2/20/2009	0-0.5 0.5-1	X	X				1		
C2S-EU1	C2S-07	C70869	N	2/20/2009	0-0.5	X	X						
C2S-EU1	C2S-07	C70870	N	2/20/2009	0.5-1	Χ	Х						
C2S-EU1	C2S-08	C70872	N	2/20/2009	0-0.5	X	X				1		
C2S-EU1	C2S-08 C2S-09	C70873 C70875	N N	2/20/2009 2/20/2009	0.5-1 0-0.5	X	X		Х				
C2S-EU1	C2S-09	C70876	N	2/20/2009	0.5-1	X	X		X		1		
C2S-EU1	C2S-12	C70884	N	2/20/2009	0-0.5	Χ	Х						
C2S-EU1	C2S-12	C70885	N	2/20/2009	0.5-1	X	X						
C2S-EU1	C2S-14 C2S-14	C70890 C70891	N N	2/20/2009 2/20/2009	0-0.5 0.5-1	X	X				1		
C2S-EU1	C2S-14	C70893	N N	2/20/2009	0.5-1	X	X				1	 	
C2S-EU1	C2S-15	C70894	N	2/20/2009	0.5-1	X	X						
C2S-EU1	C2S-16	C70896	N	2/20/2009	0-0.5	Х	Х						
C2S-EU1	C2S-16 C2S-17	C70897 C70899	N N	2/20/2009 2/19/2009	0.5-1 0-0.5	X	X				1	 	
C2S-EU1	C2S-17	C70899 C70900	N N	2/19/2009	0-0.5	X	X				1		
C2S-EU1	C2S-19	C70905	N	2/19/2009	0-0.5	X	X		Х		L		
C2S-EU1	C2S-19	C70906	N	2/19/2009	0.5-1	X	Х		Χ				
C2S-EU1	C2S-20	C70908 C70909	N FD	2/19/2009	0-0.5 0-0.5	X	X				1		
C2S-EU1	C2S-20 C2S-20	C70909 C70910	N N	2/19/2009 2/19/2009	0-0.5	X	X	Х		Х	1		
C2S-EU1	C2S-20	C70911	FD	2/19/2009	0.5-1	X	X	X		X			
C3N-EU1	C3N-01	C70914	N	3/31/2009	0-0.5	Χ	Х	Х	_	Х			
C3N-EU1	C3N-01	C70915	N N	3/31/2009	0.5-1	X	X						
C3N-EU1	C3N-02 C3N-02	C70917 C70918	N N	3/31/2009 3/31/2009	0-0.5 0.5-1	X	X				-	-	
C3N-EU1	C3N-02	C70919	N	3/31/2009	1-2	X	_^_				1		
C3N-EU1	C3N-03	C70920	N	3/31/2009	0-0.5	Х	Х						
C3N-EU1	C3N-03	C70921	N	3/31/2009	0.5-1	X	Х						
C3N-EU1	C3N-03 C3N-04	C70922 C70923	N N	3/31/2009 3/31/2009	1-2 0-0.5	X	X				1	1	
C3N-EU1	C3N-04	C70923	N N	3/31/2009	0-0.5	X	X				1		
C3N-EU1	C3N-04	C70925	N	3/31/2009	1-2	X							
C3N-EU1	C3N-05	C70926	N	3/31/2009	0-0.5	X	X						
C3N-EU1	C3N-05	C70927	N N	3/31/2009	0.5-1	X	Х				1		
C3N-EU1	C3N-05	C70928 C70929	N N	3/31/2009 3/31/2009	1-2 0-0.5	X	X				1		

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

				1					Analyses				
Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C3N-EU1	C3N-06	C70930	N	3/31/2009	0.5-1	Х	Х						
C3N-EU1	C3N-06	C70931	N	3/31/2009	1-2	Χ							
C3N-EU1	C3N-07	C70932	N	3/31/2009	0-0.5	X	X				-		
C3N-EU1	C3N-07 C3N-07	C70933 C70934	N N	3/31/2009 3/31/2009	0.5-1 1-2	X	Х						
C3N-EU1	C3N-07	C70935	N	3/31/2009	0-0.5	X	Х						
C3N-EU1	C3N-08	C70936	N	3/31/2009	0.5-1	X	X						
C3N-EU1	C3N-09	C70938	N	3/31/2009	0-0.5	Х	Х	X	Χ	Х			
C3N-EU1	C3N-09	C70939	N	3/31/2009	0.5-1	X	X		Х				
C3N-EU1	C3N-10	C70941	N N	3/31/2009 3/31/2009	0-0.5	X	X						
C3N-EU1	C3N-10 C3N-10	C70942 C70943	N N	3/31/2009	0.5-1 1-2	X	^						
C3N-EU1	C3N-11	C70944	N	3/31/2009	0-0.5	X	Х	Х		Х			
C3N-EU1	C3N-11	C70945	N	3/31/2009	0.5-1	Χ	Х						
C3N-EU1	C3N-12	C70947	N	3/31/2009	0-0.5	Χ	Х	Х		X			
C3N-EU1	C3N-12	C70948	N	3/31/2009	0.5-1	X	X						
C3N-EU1	C3N-13 C3N-13	C70950 C70951	N N	3/31/2009 3/31/2009	0-0.5 0.5-1	X	X				1		
C3N-EU1	C3N-14	C70953	N	3/31/2009	0-0.5	X	X						
C3N-EU1	C3N-14	C70954	N	3/31/2009	0.5-1	Х	Х	Х		Х			
C3N-EU1	C3NF-01	C70992	N	3/31/2009	0-0.5	Х	Х						
C3N-EU1	C3NF-01	C70993	N	3/31/2009	0.5-1	X	.,				1		
C3N-EU1	C3NF-02 C3NF-02	C70994 C70995	N N	3/31/2009 3/31/2009	0-0.5 0.5-1	X	Х				+	 	
C3N-EU1	C3NF-02 C3NF-03	C70995 C70996	N N	3/31/2009	0.5-1	X	Х				1		
C3N-EU1	C3NF-03	C70997	N	3/31/2009	0.5-1	X							
C3N-EU1	C3NF-04	C70998	N	3/31/2009	0-0.5	Х	Х		Х				
C3N-EU1	C3NF-04	C70999	N	3/31/2009	0.5-1	Χ							
C3N-EU1	C3NF-05	C71000	N	3/31/2009	0-0.5	X	Х				1		
C3N-EU1	C3NF-05 C3NF-06	C71001 C71002	N N	3/31/2009 3/31/2009	0.5-1 0-0.5	X	Х				-		
C3N-EU1	C3NF-06	C71002	N	3/31/2009	0-0.5	X	_^_						
C3N-EU1	C3NF-07	C71004	N	3/31/2009	0-0.5	X	Х	Х		Х			
C3N-EU1	C3NF-07	C71005	N	3/31/2009	0.5-1	Χ							
C3N-EU1	C3NF-08	C71006	N	3/31/2009	0-0.5	Х	Х						
C3N-EU1	C3NF-08	C71007	N	3/31/2009	0.5-1	X	V				-		
C3N-EU1	C3NF-09 C3NF-09	C71008 C71009	N N	3/31/2009 3/31/2009	0-0.5 0.5-1	X	Х						
C3N-EU1	C3NF-10	C71009	N	3/31/2009	0-0.5	X	Х						
C3N-EU1	C3NF-10	C71011	N	3/31/2009	0.5-1	Х							
C3N-EU1	C3NF-11	C71012	N	3/31/2009	0-0.5	Χ	Х						
C3N-EU1	C3NF-11	C71013	N	3/31/2009	0.5-1	X							
C3N-EU1	C3NF-12 C3NF-12	C71014 C71015	N N	3/31/2009 3/31/2009	0-0.5 0.5-1	X	Х				-		
C3N-EU1	C3NF-12	C71016	N N	3/31/2009	0.5-1	X	Х	Х		X	1		
C3N-EU1	C3NF-13	C71017	N	3/31/2009	0.5-1	X							
C3N-EU1	C3NF-14	C71018	N	3/31/2009	0-0.5	Χ	Х		Χ				
C3N-EU1	C3NF-14	C71019	N	3/31/2009	0.5-1	Х							
C3N-EU1	C3NF-15	C71020	N	3/31/2009	0-0.5	X	Х						
C3N-EU1	C3NF-15 C3NF-16	C71021 C71022	N N	3/31/2009 3/31/2009	0.5-1 0-0.5	X	X				1		
C3N-EU1	C3NF-16	C71023	N	3/31/2009	0.5-1	X							
C3N-EU1	C3NX-09	C72717	N	8/3/2011	0-0.5	X	Х						
C3N-EU1	C3NX-09	C72718	N	8/3/2011	0.5-1	X	Х		-				
C3N-EU1	C3NX-10	C72719	N N	8/3/2011	0-0.5	X	X				1		
C3N-EU1	C3NX-10 C3NX-11	C72720 C72721	N N	8/3/2011 8/3/2011	0.5-1 0-0.5	X	X	X		X	1		
C3N-EU1	C3NX-11	C72721	FD	8/3/2011	0-0.5		_^_	^		^	1		
C3N-EU1	C3NX-11	C72722	N	8/3/2011	0.5-1	Х	Х	Х		Х			
C3N-EU1	C3NX-11	C72723	FD	8/3/2011	0.5-1	Χ	Х	Х		X			
C3N-EU1	C3NX-12	C72724	N	8/3/2011	0-0.5	X	Х	Х		Х	<u> </u>		
C3N-EU1	C3NX-12 C3NX-12	C72724 C72725	FD N	8/3/2011 8/3/2011	0-0.5 0.5-1	Х	Х				+	 	
C3N-EU1	C3NX-12	C72725 C72726	N N	8/3/2011	0-0.5	X	X				+	<u> </u>	
C3N-EU1	C3NX-13	C72727	N	8/3/2011	0.5-1	X	X				1	1	
C3N-EU1	C3NX-14	C72728	N	8/3/2011	0-0.5	Х	Х						
C3N-EU1	C3NX-14	C72729	N	8/3/2011	0.5-1	Х	Х						
C3N-EU1	C3NX-15	C72730	N N	8/3/2011	0-0.5	X	X		X		1		
C3N-EU1	C3NX-15 C3NX-16	C72731 C72732	N N	8/3/2011 8/3/2011	0.5-1 0-0.5	X	X		X		+	1	
C3N-EU1	C3NX-16	C72733	N	8/3/2011	0.5-1	X	X				1	1	
C3N-EU1	C3NX-17	C72734	N	8/3/2011	0-0.5	X	X						
C3N-EU1	C3NX-17	C72735	N	8/3/2011	0.5-1	Х	Х						
C3N-EU1	C3NX-18	C72736	N	8/3/2011	0-0.5	Х	Х	Х	-	Х			
C3N-EU1	C3NX-18	C72736	FD	8/3/2011	0-0.5	· ·	V						
C3N-EU1	C3NX-18	C72737 C72738	N N	8/3/2011 8/3/2011	0.5-1 0-0.5	X	X				1	 	
C3N-EU1	C3NX-19			0/0/2011	0-0.5	^	. ^				1		ı

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

				l					Analyses				
Exposure			Sample	Collection	Depth			PCB	Allalyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C3N-EU1	C3NX-20	C72740	N	8/3/2011	0-0.5	Х	Х						
C3N-EU1	C3NX-20	C72741	FD	8/3/2011	0-0.5	Х	Х						
C3N-EU1	C3NX-20	C72742	N	8/3/2011	0.5-1	X	X						
C3N-EU1	C3NX-21 C3NX-21	C72776 C72777	N N	9/28/2011 9/28/2011	0-0.5 0.5-1	X	X						
C3N-EU1	C3NX-21	C72778	N	9/28/2011	0-0.5	X	X						
C3N-EU1	C3NX-22	C72779	N	9/28/2011	0.5-1	X	X						
C3N-EU1	C3NX-23	C72780	N	9/28/2011	0-0.5	Χ	Х						
C3N-EU1	C3NX-23	C72781	FD	9/28/2011	0-0.5	X	X						
C3N-EU1	C3NX-23 C3NX-23	C72782 C72783	N N	9/28/2011 9/28/2011	0.5-1 0.5-1	Х	Х	Х			-		
C3N-EU1	C3NX-23	C72783	FD	9/28/2011	0.5-1	Х	Х	^					
C3N-EU1	C3NX-24	C72784	N	9/28/2011	0-0.5	X	X						
C3N-EU1	C3NX-24	C72785	N	9/28/2011	0.5-1	Х	Х						
C3N-EU1	C3NX-28	C72792	N	9/28/2011	0-0.5	X	Х						
C3N-EU1	C3NX-28 C3NX-29	C72793 C72794	N N	9/28/2011 9/28/2011	0.5-1 0-0.5	X	X						
C3N-EU1	C3NX-29	C72795	N	9/28/2011	0.5-1	X	X						
C3N-EU1	C3NX-30	C72812	N	11/15/2011	0-0.5	X	X		Х				
C3N-EU1	C3NX-30	C72812	FD	11/15/2011	0-0.5								
C3N-EU1	C3NX-30	C72813	N	11/15/2011	0.5-1	Χ	Х						
C3N-EU1	C3NX-31	C72814	N	11/15/2011	0-0.5	X	X				1		
C3N-EU1	C3NX-31 C3NX-32	C72815 C72816	N N	11/15/2011 11/15/2011	0.5-1 0-0.5	X	X				1	<u> </u>	
C3N-EU1	C3NX-32 C3NX-32	C72816 C72817	FD	11/15/2011	0-0.5	X	X				1	 	
C3N-EU1	C3NX-32	C72818	N	11/15/2011	0.5-1	X	X				1		
C3N-EU1	C3NX-32	C72819	FD	11/15/2011	0.5-1	Х	Х						
C3N-EU2	C3N-15	C70956	N	4/1/2009	0-0.5	Х	Х						
C3N-EU2	C3N-15	C70957	N	4/1/2009	0.5-1	X	X	X		Х			
C3N-EU2	C3N-16 C3N-16	C70959 C70960	N N	4/1/2009 4/1/2009	0-0.5 0.5-1	X	X						
C3N-EU2	C3N-17	C70962	N	4/1/2009	0-0.5	X	X						
C3N-EU2	C3N-17	C70963	N	4/1/2009	0.5-1	Х	Х						
C3N-EU2	C3N-17	C70964	N	4/1/2009	1-2	Χ							
C3N-EU2	C3N-18	C70965	N	4/1/2009	0-0.5	X	X				1		
C3N-EU2	C3N-18 C3N-18	C70966 C70967	N N	4/1/2009 4/1/2009	0.5-1 1-2	X	Х				1		
C3N-EU2	C3N-19	C70968	N	4/1/2009	0-0.5	X	Х		Х				
C3N-EU2	C3N-19	C70969	N	4/1/2009	0.5-1	X	X		X				
C3N-EU2	C3NF-17	C71024	N	4/1/2009	0-0.5	Χ	Х						
C3N-EU2	C3NF-17	C71025	N	4/1/2009	0.5-1	Х							
C3N-EU2	C3NF-18 C3NF-18	C71026	N N	4/1/2009	0-0.5 0.5-1	X	Х						
C3N-EU2	C3NF-16	C71027 C71028	N	4/1/2009 4/1/2009	0.5-1	X	Х				1		
C3N-EU2	C3NF-19	C71029	FD	4/1/2009	0-0.5	X	X						
C3N-EU2	C3NF-19	C71030	N	4/1/2009	0.5-1	Χ							
C3N-EU2	C3NF-19	C71031	FD	4/1/2009	0.5-1	X							
C3N-EU2	C3NF-20 C3NF-20	C71032	N N	4/1/2009 4/1/2009	0-0.5 0.5-1	X	Х						
C3N-EU2	C3NY-20 C3NX-07	C71033 C72713	N	8/2/2011	0-0.5	X	Х				1		
C3N-EU2	C3NX-07	C72714	N	8/2/2011	0.5-1	X	X						
C3N-EU2	C3NX-08	C72715	N	8/3/2011	0-0.5	Χ	Х						
C3N-EU2	C3NX-08	C72716	N	8/3/2011	0.5-1	X	X						
C3N-EU2	C3NX-25 C3NX-25	C72786 C72787	N N	9/29/2011 9/29/2011	0-0.5 0.5-1	X	X		X		-	1	
C3N-EU2	C3NX-25 C2S-10	C72787 C70878	N N	2/20/2009	0.5-1	X	X		^		1	 	
C3S-EU1	C2S-10	C70879	N	2/20/2009	0.5-1	X	X				†		
C3S-EU1	C2S-11	C70881	N	2/20/2009	0-0.5	Х	Х						
C3S-EU1	C2S-11	C70882	N	2/20/2009	0.5-1	X	X				1		
C3S-EU1	C2S-13	C70887 C70888	N N	2/20/2009	0-0.5	X	X				1	1	
C3S-EU1	C2S-13 C3S-01	C70888	N N	2/20/2009 3/31/2009	0.5-1 0-0.5	X	X	Х		Х	1	1	
C3S-EU1	C3S-01	C71034	N	3/31/2009	0.5-1	X	X	^		^	1	1	
C3S-EU1	C3S-02	C71037	N	3/31/2009	0-0.5	Х	Х						
C3S-EU1	C3S-02	C71038	N	3/31/2009	0.5-1	X	Х						
C3S-EU1	C3S-02	C71039	N N	3/31/2009	1-2	X		<u> </u>			1		
C3S-EU1	C3S-03 C3S-03	C71040 C71041	N N	3/31/2009 3/31/2009	0-0.5 0.5-1	X	X				1	-	
C3S-EU1	C3S-03	C71041	N	3/31/2009	1-2	X					1	1	
C3S-EU1	C3S-04	C71043	N	3/31/2009	0-0.5	X	Х		Х		L		
C3S-EU1	C3S-04	C71044	N	3/31/2009	0.5-1	Х	Х		Х				
C3S-EU1	C3S-04	C71045	N	3/31/2009	1-2	X					1		
C3S-EU1	C3S-05	C71046	N N	3/31/2009	0-0.5 0.5-1	X	X				1	1	
C3S-EU1	C3S-05 C3S-05	C71047 C71048	N N	3/31/2009 3/31/2009	0.5-1 1-2	X	^				1	1	
C3S-EU1	C3S-05	C71049	N	3/31/2009	0-0.5	X	Х				1		
C3S-EU1	C3S-06	C71050	N	3/31/2009	0.5-1	Χ	X						
C3S-EU1	C3S-06	C71051	N	3/31/2009	1-2	Χ							

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

	1			l					Analyses				
Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C3S-EU1	C3S-07	C71052	N	3/31/2009	0-0.5	Χ	X						
C3S-EU1	C3S-07	C71053	N	3/31/2009	0.5-1	Х	Х						
C3S-EU1	C3S-08	C71055	N	3/30/2009	0-0.5	X	X						
C3S-EU1	C3S-08 C3S-09	C71056 C71058	N N	3/30/2009 3/30/2009	0.5-1 0-0.5	X	X				1		
C3S-EU1	C3S-09	C71059	N	3/30/2009	0.5-1	X	X						
C3S-EU1	C3S-10	C71061	N	3/30/2009	0-0.5	Х	Х						
C3S-EU1	C3S-10	C71062	N	3/30/2009	0.5-1	Χ	X						
C3S-EU1	C3S-11	C71064	N	3/30/2009	0-0.5	X	X				ļ		
C3S-EU1	C3S-11 C3S-12	C71065 C71067	N N	3/30/2009 3/30/2009	0.5-1 0-0.5	X	X						
C3S-EU1	C3S-12	C71067	N	3/30/2009	0.5-1	X	X						
C3S-EU1	C3S-13	C71070	N	3/30/2009	0-0.5	X	X						
C3S-EU1	C3S-13	C71071	N	3/30/2009	0.5-1	Χ	Х	Х		Х			
C3S-EU1	C3SF-01	C71134	N	3/31/2009	0-0.5	Χ	Х						
C3S-EU1	C3SF-01	C71135	N	3/31/2009	0.5-1	X							
C3S-EU1	C3SF-02 C3SF-02	C71136 C71137	N N	3/31/2009 3/31/2009	0-0.5 0.5-1	X	Х				-		
C3S-EU1	C3SF-02	C71138	N	3/31/2009	0-0.5	X	Х		Х				
C3S-EU1	C3SF-03	C71139	N	3/31/2009	0.5-1	X							
C3S-EU1	C3SF-04	C71140	N	3/30/2009	0-0.5	Х	Х						
C3S-EU1	C3SF-04	C71141	N	3/30/2009	0.5-1	X							
C3S-EU1	C3SF-05	C71142	N	3/31/2009	0-0.5	X	Х				1		
C3S-EU1	C3SF-05 C3SF-06	C71143 C71144	N N	3/31/2009 3/31/2009	0.5-1 0-0.5	X	X				1	<u> </u>	
C3S-EU1	C3SF-06	C71144 C71145	N N	3/31/2009	0-0.5	X	 ^				1		
C3S-EU1	C3SF-07	C71146	N	3/31/2009	0-0.5	X	Х						
C3S-EU1	C3SF-07	C71147	N	3/31/2009	0.5-1	Χ							
C3S-EU1	C3SF-08	C71148	N	3/31/2009	0-0.5	Х	Х						
C3S-EU1	C3SF-08	C71149	N	3/31/2009	0.5-1	X							
C3S-EU1	C3SF-09 C3SF-09	C71150 C71151	N N	3/31/2009 3/31/2009	0-0.5 0.5-1	X	Х				-		
C3S-EU1	C3SF-10	C71152	N	3/30/2009	0-0.5	X	Х						
C3S-EU1	C3SF-10	C71153	N	3/30/2009	0.5-1	X							
C3S-EU1	C3SF-11	C71154	N	3/31/2009	0-0.5	Χ	Х						
C3S-EU1	C3SF-11	C71155	N	3/31/2009	0.5-1	X							
C3S-EU1	C3SF-12	C71156	N FD	3/31/2009	0-0.5	X	X						
C3S-EU1	C3SF-12 C3SF-12	C71157 C71158	FD N	3/31/2009 3/31/2009	0-0.5 0.5-1	X	Х				-		
C3S-EU1	C3SF-12	C71159	FD	3/31/2009	0.5-1	X							
C3S-EU1	C3SF-13	C71160	N	3/31/2009	0-0.5	Х	Х		Х				
C3S-EU1	C3SF-13	C71161	N	3/31/2009	0.5-1	Χ							
C3S-EU1	C3SF-14	C71162	N	3/30/2009	0-0.5	X	X						
C3S-EU1	C3SF-14 C3SF-15	C71163 C71164	N N	3/30/2009 3/30/2009	0.5-1 0-0.5	X	X				1		
C3S-EU1	C3SF-15	C71165	N	3/30/2009	0.5-1	X	^						
C3S-EU1	C3SF-16	C71166	N	3/30/2009	0-0.5	X	Х						
C3S-EU1	C3SF-16	C71167	N	3/30/2009	0.5-1	Χ							
C3S-EU1	C3SF-17	C71168	N	3/30/2009	0-0.5	Х	Х						
C3S-EU1	C3SF-17 C3SF-18	C71169	N	3/30/2009	0.5-1	X	V						
C3S-EU1	C3SF-18	C71170 C71171	N N	3/30/2009 3/30/2009	0-0.5 0.5-1	X	Х				1		
C3S-EU1	C3SF-18	C71171	N	3/30/2009	0-0.5	X	Х					1	
C3S-EU1	C3SF-19	C71173	N	3/30/2009	0.5-1	X							
C3S-EU2	C3S-14	C71073	N	3/30/2009	0-0.5	X	Х		X	_			
C3S-EU2	C3S-14	C71074	N	3/30/2009	0.5-1	X	X		Х		1		
C3S-EU2	C3S-15 C3S-15	C71076 C71077	N N	3/30/2009 3/30/2009	0-0.5 0.5-1	X	X				-	-	
C3S-EU2	C3S-15	C71077	N N	3/30/2009	0.5-1	X	X				1		
C3S-EU2	C3S-16	C71080	N	3/30/2009	0.5-1	X	X					1	
C3S-EU2	C3S-17	C71082	N	3/30/2009	0-0.5	Х	Х	Х		Х			
C3S-EU2	C3S-17	C71083	N	3/30/2009	0.5-1	X	X						
C3S-EU2	C3S-18	C71085	N N	3/30/2009 3/30/2009	0-0.5 0.5-1	X	X				-		
C3S-EU2	C3S-18 C3S-18	C71086 C71087	N N	3/30/2009	0.5-1 1-2	X	_ ^				1	1	
C3S-EU2	C3S-19	C71088	N	3/30/2009	0-0.5	X	Х	Х		Х			
C3S-EU2	C3S-19	C71089	N	3/30/2009	0.5-1	Х	Х						
C3S-EU2	C3S-20	C71091	N	3/30/2009	0-0.5	Х	Х						
C3S-EU2	C3S-20	C71092	N	3/30/2009	0.5-1	X	X				1		
C3S-EU2	C3S-21	C71094 C71095	N FD	3/30/2009 3/30/2009	0-0.5 0-0.5	X	X				-		
C3S-EU2	C3S-21 C3S-21	C71095	N N	3/30/2009	0-0.5	X	X	X		Х	1	 	
C3S-EU2	C3S-21	C71097	FD	3/30/2009	0.5-1	X	X			^			
C3S-EU2	C3S-22	C71100	N	3/25/2009	0-0.5	X	X				L	<u> </u>	
C3S-EU2	C3S-22	C71101	N	3/25/2009	0.5-1	Χ	Х						
C3S-EU2	C3S-22	C71102	N	3/25/2009	1-2	X	.,				1		
C3S-EU2	C3S-23 C3S-23	C71103 C71104	N N	3/25/2009 3/25/2009	0-0.5 0.5-1	X	X				1	 	
UJO-EUZ	U33-23	G/ 1104	IN	3/23/2009	U.Ə- I	^	_ ^	ı			<u> </u>		

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses				
Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C3S-EU2	C3S-23	C71105	N	3/25/2009	1-2	Χ							
C3S-EU2	C3SX-01	C72743	N	8/2/2011	0-0.5	Χ	Х		Χ				
C3S-EU2	C3SX-01	C72744	N	8/2/2011	0.5-1	X	X	,	X		1		
C3S-EU2	C3SX-01 C3SX-01	C72745 C72745	N FD	8/2/2011 8/2/2011	1-2 1-2	Х	Х	Х	Х	Х	1		
C3S-EU2	C3SX-01	C72746	N N	8/2/2011	2-3	Х							
C3S-EU2	C3SX-02	C72748	N	8/2/2011	0-0.5	X	Х						
C3S-EU2	C3SX-02	C72749	N	8/2/2011	0.5-1	Χ	Х						
C3S-EU2	C3SX-03	C72750	N	8/2/2011	0-0.5	X	X						
C3S-EU2	C3SX-03 C3SX-04	C72751	N N	8/2/2011	0.5-1	X	X						
C3S-EU2	C3SX-04	C72752 C72753	N N	8/2/2011 8/2/2011	0-0.5 0.5-1	X	X						
C3S-EU2	C3SX-04	C72754	N	8/2/2011	1-2	X	X	Х		Х			
C3S-EU2	C3SX-04	C72754	FD	8/2/2011	1-2								
C3S-EU2	C3SX-04	C72755	N	8/2/2011	2-3	Χ							
C3S-EU2	C3SX-04	C72756	N	8/2/2011	3-4	X	V				-		
C3S-EU2	C3SX-05 C3SX-05	C72796 C72797	N N	9/28/2011 9/28/2011	0-0.5 0.5-1	X	X				-		
C3S-EU2	C3SX-06	C72798	N	9/28/2011	0-0.5	X	X						
C3S-EU2	C3SX-06	C72799	N	9/28/2011	0.5-1	Х	Х						
C3S-EU2	C3SX-07	C72800	N	9/29/2011	0-0.5	Χ	Х						
C3S-EU2	C3SX-07	C72801	N	9/29/2011	0.5-1	X	X				1		
C3S-EU2	C3SX-08 C3SX-08	C72802	N N	9/29/2011 9/29/2011	0-0.5 0.5-1	X	X				1	-	
C3S-EU2	C3SX-08	C72803 C72804	N N	9/29/2011	0.5-1	X	X						
C3S-EU2	C3SX-09	C72805	N	9/29/2011	0.5-1	X	X	Х					
C3S-EU2	C3SX-10	C72822	N	11/14/2011	0-0.5	Х	Х		Х				
C3S-EU2	C3SX-10	C72823	N	11/14/2011	0.5-1	Χ	Х		Χ				
C3S-EU2	C3SX-11	C72824	N	11/14/2011	0-0.5	X	X				1		
C3S-EU2	C3SX-11 C3SX-12	C72825 C72826	N N	11/14/2011 11/14/2011	0.5-1 0-0.5	X	X				-		
C3S-EU2	C3SX-12	C72827	N	11/14/2011	0.5-1	X	X						
C3S-EU2	C3SX-13	C72828	N	11/14/2011	0-0.5	X	X	Х		Х			
C3S-EU2	C3SX-13	C72829	N	11/14/2011	0.5-1	Χ	Х						
C4N-EU1	C3N-20	C70971	N	3/26/2009	0-0.5	Х	Х						
C4N-EU1	C3N-20	C70972	N	3/26/2009	0.5-1	X	X	Х		Х	-		
C4N-EU1	C3N-21 C3N-21	C70974 C70975	N N	3/26/2009 3/26/2009	0-0.5 0.5-1	X	X						
C4N-EU1	C3N-21	C70977	N	3/26/2009	0-0.5	X	X						
C4N-EU1	C3N-22	C70978	FD	3/26/2009	0-0.5	Х	Х						
C4N-EU1	C3N-22	C70979	N	3/26/2009	0.5-1	Χ	Х						
C4N-EU1	C3N-22	C70980	FD	3/26/2009	0.5-1	X	X				-		
C4N-EU1	C3N-23 C3N-23	C70983 C70984	N N	3/26/2009 3/26/2009	0-0.5 0.5-1	X	X						
C4N-EU1	C3N-23	C70985	N	3/26/2009	1-2	X	^						
C4N-EU1	C3N-24	C70986	N	3/26/2009	0-0.5	Х	Х	Х		Х			
C4N-EU1	C3N-24	C70987	N	3/26/2009	0.5-1	Χ	Х						
C4N-EU1	C3N-25	C70989	N	3/26/2009	0-0.5	X	X						
C4N-EU1	C3N-25 C3N-25	C70990 C70991	N N	3/26/2009 3/26/2009	0.5-1 1-2	X	Х				-		
C4N-EU1	C3NX-01	C72700	N N	8/3/2011	0-0.5	X	Х				1		
C4N-EU1	C3NX-01	C72701	N	8/3/2011	0.5-1	X	X				1		
C4N-EU1	C3NX-02	C72702	N	8/2/2011	0-0.5	X	Х						
C4N-EU1	C3NX-02	C72703	N	8/2/2011	0.5-1	Χ	Х	Х		Х	1		
C4N-EU1	C3NX-02 C3NX-03	C72703 C72704	FD N	8/2/2011	0.5-1 0-0.5	Х	Х				1	<u> </u>	
C4N-EU1	C3NX-03	C72704 C72705	N N	8/2/2011 8/2/2011	0-0.5	^					1	 	
C4N-EU1	C3NX-03	C72705	FD	8/2/2011	0-0.5	Х	Х				1		
C4N-EU1	C3NX-03	C72706	N	8/2/2011	0.5-1	Х	Х						
C4N-EU1	C3NX-04	C72707	N	8/2/2011	0-0.5	Χ	Х	Х		Х	1		
C4N-EU1	C3NX-04	C72707	FD	8/2/2011	0-0.5						-	1	
C4N-EU1	C3NX-04 C3NX-05	C72708 C72709	N N	8/2/2011 8/2/2011	0.5-1 0-0.5	X	X				+	1	
C4N-EU1	C3NX-05	C72710	N	8/2/2011	0.5-1	X	X				1	1	
C4N-EU1	C3NX-06	C72711	N	8/2/2011	0-0.5	X	Х		Х				
C4N-EU1	C3NX-06	C72712	N	8/2/2011	0.5-1	Х	Х		Χ				
C4N-EU1	C3NX-26	C72788	N	9/28/2011	0-0.5	X	X	Х			<u> </u>		
C4N-EU1	C3NX-26 C3NX-27	C72789 C72790	N N	9/28/2011 9/28/2011	0.5-1 0-0.5	X	X				1	<u> </u>	
C4N-EU1	C3NX-27	C72791	N N	9/28/2011	0-0.5	X	X	X			+	<u> </u>	
C4N-EU1	C3NX-33	C72820	N	11/15/2011	0-0.5	X	X	X		Х	1	1	
C4N-EU1	C3NX-33	C72820	FD	11/15/2011	0-0.5								
C4N-EU1	C3NX-33	C72821	N	11/15/2011	0.5-1	X	X						
C4N-EU1	C4N-01	C71176	N	3/25/2009	0-0.5	X	X				<u> </u>		
C4N-EU1	C4N-01 C4N-01	C71177 C71178	N N	3/25/2009 3/25/2009	0.5-1 1-2	X	X				1	 	
C4N-EU1	C4N-01	C71178	N N	3/25/2009	0-0.5	X	X				+	<u> </u>	
		C71182	N	3/25/2009	0.5-1	X	X	.			+		

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses				
Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C4N-EU1	C4N-02	C71183	N	3/25/2009	1-2	Χ	X						
C4N-EU1	C4N-03	C71186	N	3/25/2009	0-0.5	X	X		X		-		
C4N-EU1	C4N-03 C4N-03	C71187 C71188	N N	3/25/2009 3/25/2009	0.5-1 1-2	X	X	Х	X	Х			
C4N-EU1	C4N-04	C71191	N	3/23/2009	0-0.5	X	X						
C4N-EU1	C4N-04	C71192	N	3/23/2009	0.5-1	X	X						
C4N-EU1	C4N-04	C71193	N	3/23/2009	1-2	Χ	Х						
C4N-EU1	C4N-05	C71196	N	3/23/2009	0-0.5	Х	Х						
C4N-EU1	C4N-05 C4N-05	C71197	N N	3/23/2009 3/23/2009	0.5-1 1-2	X	X						
C4N-EU1	C4N-05	C71198 C71201	N	3/23/2009	0-0.5	X	X				1		
C4N-EU1	C4N-06	C71202	N	3/23/2009	0.5-1	X	X	Х		Х			
C4N-EU1	C4N-06	C71203	N	3/23/2009	1-2	Х	Х	Х		Х			
C4N-EU1	C4N-06	C71204	N	3/23/2009	2-3	Χ							
C4N-EU1	C4N-07	C71206	N	3/23/2009	0-0.5	X	X						
C4N-EU1	C4N-07 C4N-08	C71207 C71209	N N	3/23/2009 3/23/2009	0.5-1 0-0.5	X	X				1		
C4N-EU1	C4N-08	C71210	N	3/23/2009	0.5-1	X	X				1		
C4N-EU1	C4N-09	C71212	N	3/23/2009	0-0.5	X	X						
C4N-EU1	C4N-09	C71213	N	3/23/2009	0.5-1	Χ	Х						
C4N-EU1	C4N-10	C71215	N	3/23/2009	0-0.5	X	X						
C4N-EU1	C4N-10	C71216	N	3/23/2009	0.5-1	X	X				<u> </u>		
C4N-EU1	C4N-11 C4N-11	C71218 C71219	N N	3/23/2009 3/23/2009	0-0.5 0.5-1	X	X				1		
C4N-EU1	C4N-11 C4N-12	C71219 C71221	N N	3/23/2009	0.5-1	X	X	Х		Х	1		
C4N-EU1	C4N-12	C71222	N	3/23/2009	0.5-1	X	X	^			1		
C4N-EU1	C4N-13	C71224	N	3/24/2009	0-0.5	X	X		Х				
C4N-EU1	C4N-13	C71225	N	3/24/2009	0.5-1	Χ	X		Χ				
C4N-EU1	C4N-13	C71226	N	3/24/2009	1-2	X							
C4N-EU1	C4N-14	C71227	N	3/23/2009 3/23/2009	0-0.5	X	X						
C4N-EU1	C4N-14 C4N-15	C71228 C71230	N N	3/23/2009	0.5-1 0-0.5	X	X						
C4N-EU1	C4N-15	C71231	FD	3/23/2009	0-0.5	X	X						
C4N-EU1	C4N-15	C71232	N	3/23/2009	0.5-1	Х	Х						
C4N-EU1	C4N-15	C71233	N	3/23/2009	0.5-1			X		Х			
C4N-EU1	C4N-15	C71233	FD	3/23/2009	0.5-1	X	X						
C4N-EU1	C4N-16	C71236	N	3/23/2009	0-0.5	X	X						
C4N-EU1	C4N-16 C4N-17	C71237 C71239	N N	3/23/2009 3/23/2009	0.5-1 0-0.5	X	X				1		
C4N-EU1	C4N-17	C71240	N	3/23/2009	0.5-1	X	X						
C4N-EU1	C4N-18	C71242	N	3/23/2009	0-0.5	X	X						
C4N-EU1	C4N-18	C71243	N	3/23/2009	0.5-1	Χ	X						
C4N-EU1	C4N-19	C71245	N	3/23/2009	0-0.5	Х	Х						
C4N-EU1	C4N-19 C4N-20	C71246 C71248	N N	3/23/2009 3/23/2009	0.5-1 0-0.5	X	X			Х			
C4N-EU1	C4N-20	C71249	N N	3/23/2009	0.5-1	X	X	Х		^	1		
C4N-EU1	C4NF-01	C71362	N	3/25/2009	0-0.5	X	X						
C4N-EU1	C4NF-01	C71363	N	3/25/2009	0.5-1	Х							
C4N-EU1	C4NF-02	C71364	N	3/23/2009	0-0.5	Χ	X						
C4N-EU1	C4NF-02	C71365	N	3/23/2009	0.5-1	X							
C4N-EU1	C4NF-03	C71366	N N	3/23/2009	0-0.5	X	Х				1		
C4N-EU1	C4NF-03 C4NF-04	C71367 C71368	N N	3/23/2009 3/23/2009	0.5-1 0-0.5	X	X				1		
C4N-EU1	C4NF-04	C71369	FD	3/23/2009	0-0.5	X	X				1		
C4N-EU1	C4NF-04	C71370	N	3/23/2009	0.5-1	Х							
C4N-EU1	C4NF-04	C71371	FD	3/23/2009	0.5-1	X							
C4N-EU1	C4NF-05	C71372	N	3/24/2009	0-0.5	X	Х				1		
C4N-EU1	C4NF-05 C4NF-06	C71373 C71374	N N	3/24/2009	0.5-1 0-0.5	X	Х				1		
C4N-EU1	C4NF-06	C71374	N	3/23/2009	0.5-1	X	^				1	 	
C4N-EU1	C4NF-07	C71376	N	3/24/2009	0-0.5	X	Х				1		
C4N-EU1	C4NF-07	C71377	N	3/24/2009	0.5-1	Χ							
C4N-EU1	C4NF-08	C71378	N	3/23/2009	0-0.5	X	Х		Х				
C4N-EU1	C4NF-08	C71379	N	3/23/2009	0.5-1	X	.,				1		
C4N-EU1	C4NF-09 C4NF-09	C71380 C71381	N N	3/24/2009 3/24/2009	0-0.5 0.5-1	X	Х				+	-	
C4N-EU1	C4NF-10	C71382	N	3/24/2009	0-0.5	X	Х				1	 	
C4N-EU1	C4NF-10	C71383	N	3/24/2009	0.5-1	X					1		
C4N-EU1	C4NF-11	C71384	N	3/23/2009	0-0.5	Х	Х						
C4N-EU1	C4NF-11	C71385	N	3/23/2009	0.5-1	X							
C4N-EU1	C4NF-12	C71386	N N	3/24/2009	0-0.5	X	Х				1		
C4N-EU1	C4NF-12 C4NF-13	C71387 C71388	N N	3/24/2009 3/24/2009	0.5-1 0-0.5	X	Х	X		Х	+		
C4N-EU1	C4NF-13	C71388	N N	3/24/2009	0-0.5	X	 ^	^		^	1		
C4N-EU1	C4NF-14	C71390	N	3/24/2009	0-0.5	X	Х				1		
C4N-EU1	C4NF-14	C71391	N	3/24/2009	0.5-1	X							
C4N-EU1	C4NF-15	C71392	N	3/24/2009	0-0.5	X	Х						
C4N-EU1	C4NF-15	C71393	N	3/24/2009	0.5-1	Х							l

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analusas				
Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C4N-EU1	C4NF-16	C71394	N	3/24/2009	0-0.5	Χ	Х						
C4N-EU1	C4NF-16	C71395	N	3/24/2009	0.5-1	X							
C4N-EU1	C4NF-17 C4NF-17	C71396 C71397	N N	3/24/2009 3/24/2009	0-0.5 0.5-1	X	Х				-		
C4N-EU1	C4NF-24	C71410	N	3/23/2009	0-0.5	X	Х						
C4N-EU1	C4NF-24	C71411	N	3/23/2009	0.5-1	Х							
C4N-EU2	C4N-21	C71251	N	3/23/2009	0-0.5	Χ	X						
C4N-EU2	C4N-21 C4N-22	C71252 C71254	N N	3/23/2009 3/24/2009	0.5-1 0-0.5	X	X				1		
C4N-EU2	C4N-22	C71255	N N	3/24/2009	0.5-1	X	X				1		
C4N-EU2	C4N-23	C71257	N	3/23/2009	0-0.5	X	X		Х				
C4N-EU2	C4N-23	C71258	N	3/23/2009	0.5-1	Χ	Х		X				
C4N-EU2	C4N-23	C71259	N	3/23/2009	1-2 0-0.5	X	Х				-		
C4N-EU2	C4N-24 C4N-24	C71260 C71261	N N	3/24/2009 3/24/2009	0.5-1	X	X						
C4N-EU2	C4N-24	C71262	N	3/24/2009	1-2	X							
C4N-EU2	C4N-25	C71263	N	3/14/2009	0-0.5	Χ	Х						
C4N-EU2	C4N-25	C71264	N	3/14/2009	0.5-1	X	X				1		
C4N-EU2	C4N-26	C71266 C71267	N N	3/14/2009 3/14/2009	0-0.5 0.5-1	X	X				-		
C4N-EU2	C4N-26	C71267	N	3/14/2009	1-2	X						1	
C4N-EU2	C4N-27	C71269	N	3/14/2009	0-0.5	Χ	Х	Х		Х			
C4N-EU2	C4N-27	C71270	N	3/14/2009	0.5-1	X	X			-			
C4N-EU2	C4N-28 C4N-28	C71272 C71273	N N	3/14/2009 3/14/2009	0-0.5 0.5-1	X	X				-	 	
C4N-EU2	C4N-28	C71275	N N	3/14/2009	0.5-1	X	X				1	-	
C4N-EU2	C4N-29	C71276	N	3/14/2009	0.5-1	X	X					<u> </u>	
C4N-EU2	C4N-30	C71278	N	3/13/2009	0-0.5	Χ	X						
C4N-EU2	C4N-30 C4N-31	C71279 C71281	N N	3/13/2009 3/13/2009	0.5-1 0-0.5	X	X	Х		Х			
C4N-EU2	C4N-31	C71281	N N	3/13/2009	0-0.5	X	X	Λ		Α	1		
C4N-EU2	C4N-32	C71284	N	3/13/2009	0-0.5	X	X						
C4N-EU2	C4N-32	C71285	N	3/13/2009	0.5-1	Χ	Х						
C4N-EU2	C4N-33	C71287	N	3/13/2009	0-0.5	X	X	Х	X	Х	-		
C4N-EU2 C4N-EU2	C4N-33 C4N-34	C71288 C71290	N N	3/13/2009 3/13/2009	0.5-1 0-0.5	X	X		X				
C4N-EU2	C4N-34	C71291	N	3/13/2009	0.5-1	X	X						
C4N-EU2	C4N-35	C71293	N	3/13/2009	0-0.5	Χ	Х						
C4N-EU2	C4N-35	C71294	N	3/13/2009	0.5-1	X	X				1		
C4N-EU2	C4N-36 C4N-36	C71296 C71297	N N	3/13/2009 3/13/2009	0-0.5 0.5-1	X	X				-		
C4N-EU2	C4N-37	C71299	N	3/13/2009	0-0.5	X	X				1		
C4N-EU2	C4N-37	C71300	N	3/13/2009	0-0.5			Х		X			
C4N-EU2	C4N-37	C71300	FD	3/13/2009	0-0.5	X	X						
C4N-EU2 C4N-EU2	C4N-37	C71301 C71302	N FD	3/13/2009 3/13/2009	0.5-1 0.5-1	X	X				-		
C4N-EU2	C4N-38	C71305	N N	3/13/2009	0-0.5	X	X				1		
C4N-EU2	C4N-38	C71306	N	3/13/2009	0.5-1	Χ	Х	Х		Х			
C4N-EU2	C4N-39	C71308	N	3/13/2009	0-0.5	X	X						
C4N-EU2	C4N-39 C4N-40	C71309 C71311	N N	3/13/2009 3/13/2009	0.5-1 0-0.5	X	X				1		
C4N-EU2	C4N-40	C71311	N	3/13/2009	0.5-1	X	X						
C4N-EU2	C4N-41	C71314	N	3/13/2009	0-0.5	X	X						
C4N-EU2	C4N-41	C71315	N	3/13/2009	0.5-1	X	X						
C4N-EU2	C4N-42 C4N-42	C71317 C71318	N N	3/9/2009 3/9/2009	0-0.5 0.5-1	X	X				1	 	
C4N-EU2	C4N-42 C4N-43	C71318	N N	3/9/2009	0.5-1	X	X		X		1		
C4N-EU2	C4N-43	C71321	N	3/9/2009	0.5-1	X	X		X		L		
C4N-EU2	C4N-43	C71322	N	3/9/2009	1-2	X							
C4N-EU2	C4N-44	C71323	N N	3/9/2009 3/9/2009	0-0.5	X	X				1		
C4N-EU2	C4N-44 C4NF-18	C71324 C71398	N N	3/9/2009	0.5-1 0-0.5	X	X		X		1	 	
C4N-EU2	C4NF-18	C71399	N	3/15/2009	0.5-1	X			^_				
C4N-EU2	C4NF-19	C71400	N	3/15/2009	0-0.5	Χ	Х						
C4N-EU2	C4NF-19	C71401	N N	3/15/2009	0.5-1	X							
C4N-EU2	C4NF-20 C4NF-20	C71402 C71403	N N	3/15/2009 3/15/2009	0-0.5 0.5-1	X	Х				-	-	
C4N-EU2	C4NF-20	C71404	N	3/15/2009	0-0.5	X	Х				1		
C4N-EU2	C4NF-21	C71405	N	3/15/2009	0.5-1	Х							
C4N-EU2	C4NF-22	C71406	N	3/15/2009	0-0.5	X	Х						
C4N-EU2	C4NF-22 C4NF-23	C71407 C71408	N N	3/15/2009 3/15/2009	0.5-1 0-0.5	X	X				1	1	
C4N-EU2	C4NF-23	C71408	N N	3/15/2009	0-0.5	X					1		
C4N-EU2	C4NF-25	C71412	N	3/14/2009	0-0.5	X	Х						
C4N-EU2	C4NF-25	C71413	N	3/14/2009	0.5-1	Χ							
C4N-EU2	C4NF-26	C71414 C71415	N FD	3/14/2009	0-0.5	X	X						
C4N-EU2	C4NF-26			3/14/2009	0-0.5	X	X				1		

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

1	,			1	1								
_							ı		Analyses		1	1	
Exposure Unit	Location	Sample ID	Sample	Collection Date	Depth Interval (ft)	PCBs	Mercury	PCB	Metals	Dioxins/ Furans	VOCs	SVOCs	Pesticides/ Herbicides
C4N-EU2	C4NF-26	C71417	Type* FD	3/14/2009	0.5-1	Х	Wercury	Congeners	Wetais	ruidiis	VOUS	30005	nerbicides
C4N-EU2	C4NF-27	C71417	N N	3/13/2009	0-0.5	X	Х				1		
C4N-EU2	C4NF-27	C71419	N	3/13/2009	0.5-1	Х							
C4N-EU2	C4NF-28	C71420	N	3/13/2009	0-0.5	Х	X		Х				
C4N-EU2	C4NF-28 C4NF-29	C71421	N	3/13/2009	0.5-1 0-0.5	X	X						
C4N-EU2	C4NF-29 C4NF-29	C71422 C71423	N N	3/13/2009 3/13/2009	0.5-1	X	Χ				1		
C4N-EU2	C4NF-30	C71424	N	3/13/2009	0-0.5	X	Х						
C4N-EU2	C4NF-30	C71425	N	3/13/2009	0.5-1	Х							
C4N-EU2	C4NF-31	C71426	N	3/13/2009	0-0.5	X	Х						
C4N-EU2	C4NF-31 C4NF-32	C71427 C71428	N N	3/13/2009 3/13/2009	0.5-1 0-0.5	X	X						
C4N-EU2	C4NF-32	C71429	N	3/13/2009	0.5-1	X	X						
C4N-EU2	C4NF-33	C71430	N	3/13/2009	0-0.5	X	Х						
C4N-EU2	C4NF-33	C71431	N	3/13/2009	0.5-1	X							
C4N-EU2	C4NX-01 C4NX-01	C72757 C72758	N N	8/3/2011 8/3/2011	0-0.5 0.5-1	X	X				1		
C4N-EU2	C4NX-01	C72759	N	8/3/2011	0.5-1	X	X				1		
C4N-EU2	C4NX-02	C72760	N	8/3/2011	0.5-1	X	X						
C4S-EU1	C3S-24	C71106	N	3/25/2009	0-0.5	Х	X		Х				
C4S-EU1	C3S-24	C71107	N	3/25/2009	0.5-1	X	X		Х				
C4S-EU1	C3S-25 C3S-25	C71109 C71110	N N	3/25/2009 3/25/2009	0-0.5 0.5-1	X	X				-	1	
C4S-EU1	C3S-25	C71110 C71111	N N	3/25/2009	0.5-1 1-2	X	^				 	 	
C4S-EU1	C3S-26	C71111	N	3/25/2009	0-0.5	X	Х	Х		Х	<u> </u>		
C4S-EU1	C3S-26	C71113	N	3/25/2009	0.5-1	Χ	X	X		X			
C4S-EU1	C3S-27	C71115	N	3/25/2009	0-0.5	Х	X						
C4S-EU1	C3S-27	C71116	N	3/25/2009	0.5-1	X	X				<u> </u>		
C4S-EU1	C3S-28 C3S-28	C71118 C71119	N N	3/25/2009 3/25/2009	0-0.5 0.5-1	X	X				1		
C4S-EU1	C3S-28	C71120	N	3/25/2009	1-2	X							
C4S-EU1	C3S-29	C71121	N	3/25/2009	0-0.5	Х	Х						
C4S-EU1	C3S-29	C71122	N	3/25/2009	0.5-1	Χ	Х						
C4S-EU1	C3S-30	C71124	N	3/26/2009	0-0.5	X	X						
C4S-EU1	C3S-30 C3S-30	C71125 C71126	N N	3/26/2009 3/26/2009	0.5-1 1-2	X	X				<u> </u>		
C4S-EU1	C3S-30	C71126	N	3/25/2009	0-0.5	X	X						
C4S-EU1	C3S-31	C71130	N	3/25/2009	0.5-1	X	X						
C4S-EU1	C3S-31	C71131	N	3/25/2009	1-2	Χ	Х						
C4S-EU1	C3SF-20	C71174	N	3/25/2009	0-0.5	X	X						
C4S-EU1	C3SF-20 C3SX-14	C71175 C72830	N N	3/25/2009 11/15/2011	0.5-1 0-0.5	X	Х				<u> </u>		
C4S-EU1	C3SX-14	C72831	N	11/15/2011	0.5-1	X	X				1		
C4S-EU1	C4S-01	C71454	N	3/16/2009	0-0.5	Х	Х						
C4S-EU1	C4S-01	C71455	N	3/16/2009	0.5-1	Χ	X						
C4S-EU1	C4S-01	C71456	N	3/16/2009	1-2	X							
C4S-EU1	C4S-01 C4S-01	C72600 C72601	N N	2/24/2010 2/24/2010	2-3 3-4	X	X		Х		1		
C4S-EU1	C4S-01	C71457	N	3/16/2009	0-0.5	X	X						
C4S-EU1	C4S-02	C71458	N	3/16/2009	0.5-1	Х	Х						
C4S-EU1	C4S-02	C71459	N	3/16/2009	1-2	Х			-				
C4S-EU1	C4S-02	C72602	N	2/24/2010	2-3	X	X				1		
C4S-EU1	C4S-02 C4S-03	C72603 C71460	N N	2/24/2010 3/16/2009	3-4 0-0.5	X	X	Х		Х		1	
C4S-EU1	C4S-03	C71461	N	3/16/2009	0.5-1	X	X				1		
C4S-EU1	C4S-03	C71462	N	3/16/2009	1-2	Х							
C4S-EU1	C4S-03	C72604	N	2/24/2010	2-3	X	X	Х					
C4S-EU1	C4S-03 C4S-03	C72605 C72606	FD N	2/24/2010 2/24/2010	2-3 3-4	X	X				-	<u> </u>	
C4S-EU1	C4S-03	C71463	N N	3/16/2009	0-0.5	X	X		Х		1		
C4S-EU1	C4S-04	C71464	N	3/16/2009	0.5-1	X	X		X				
C4S-EU1	C4S-04	C71465	N	3/16/2009	1-2	Х							
C4S-EU1	C4S-04	C72607	N	2/24/2010	2-3	X	X						
C4S-EU1	C4S-04 C4S-05	C72608 C71466	N N	2/24/2010 3/16/2009	3-4 0-0.5	X	X				-	 	
C4S-EU1	C4S-05	C71466	FD	3/16/2009	0-0.5	X	X				1		
C4S-EU1	C4S-05	C71468	N	3/16/2009	0.5-1	X	X	Х		Х		<u> </u>	
C4S-EU1	C4S-05	C71469	FD	3/16/2009	0.5-1	Х	Х						
C4S-EU1	C4S-05	C71470	N	3/16/2009	1-2	X							
C4S-EU1	C4S-05	C71471	FD	3/16/2009	1-2 2-3	X					-	1	
C4S-EU1	C4S-05 C4S-05	C72609 C72610	N N	2/24/2010 2/24/2010	3-4	X	X					1	
C4S-EU1	C4S-06	C71472	N	3/16/2009	0-0.5	X	X				1		
C4S-EU1	C4S-06	C71473	N	3/16/2009	0.5-1	X	X					<u> </u>	
C4S-EU1	C4S-06	C71474	N	3/16/2009	1-2	X							
C4S-EU1	C4S-06	C72611	N	2/24/2010	2-3	X	X				-	1	
C4S-EU1	C4S-06 C4S-07	C72612 C71475	N N	2/24/2010 3/16/2009	3-4 0-0.5	X	X				1	1	
0-10-L01	0-10-01	0, 1410	14	0/10/2003	0 0.0	^					1		

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses				
Exposure			Sample	Collection	Depth			РСВ	Allalyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C4S-EU1	C4S-07	C71476	N	3/16/2009	0.5-1	Χ	Х						
C4S-EU1	C4S-08	C71478	N	3/16/2009	0-0.5	Х	Х						
C4S-EU1	C4S-08	C71479	N	3/16/2009	0.5-1	X	X	Х		Х			
C4S-EU1	C4S-09 C4S-09	C71481 C71482	N N	3/16/2009 3/16/2009	0-0.5 0.5-1	X	X						
C4S-EU1	C4S-09	C71483	N	3/16/2009	1-2	X	_^						
C4S-EU1	C4S-10	C71484	N	3/16/2009	0-0.5	X	Х						
C4S-EU1	C4S-10	C71485	N	3/16/2009	0.5-1	Χ	X	Х		X			
C4S-EU1	C4S-11	C71487	N	3/16/2009	0-0.5	X	X						
C4S-EU1	C4S-11	C71488	N	3/16/2009	0.5-1	X	X	-					
C4S-EU1	C4S-12 C4S-12	C71490 C71491	N N	3/16/2009 3/16/2009	0-0.5 0.5-1	X	X						
C4S-EU1	C4SF-01	C71637	N	3/16/2009	0-0.5	X	X						
C4S-EU1	C4SF-01	C71638	N	3/16/2009	0.5-1	Χ							
C4S-EU1	C4SF-02	C71639	N	3/16/2009	0-0.5	Χ	Х						
C4S-EU1	C4SF-02	C71640	N	3/16/2009	0.5-1	X					-		
C4S-EU1	C4SF-03 C4SF-03	C71641 C71642	N N	3/16/2009 3/16/2009	0-0.5 0.5-1	X	Х				1		
C4S-EU1	C4SI-03	C72761	N	8/2/2011	0-0.5	X	Х						
C4S-EU1	C4SX-01	C72762	N	8/2/2011	0.5-1	X	X	1					
C4S-EU1	C4SX-02	C72763	N	8/2/2011	0-0.5	Х	Х						
C4S-EU1	C4SX-02	C72764	N	8/2/2011	0.5-1	Х	Х	Х		X			
C4S-EU1	C4SX-02	C72764	FD	8/2/2011	0.5-1		.,				<u> </u>		
C4S-EU1	C4SX-03	C72765 C72766	N N	8/2/2011	0-0.5 0.5-1	X	X				1	-	
C4S-EU1	C4SX-03 C4SX-04	C72766 C72806	N N	8/2/2011 9/29/2011	0.5-1	X	X	 			1		
C4S-EU1	C4SX-04	C72807	N	9/29/2011	0.5-1	X	X						
C4S-EU1	C4SX-05	C72808	N	9/29/2011	0-0.5	Х	Х		Х				
C4S-EU1	C4SX-05	C72809	N	9/29/2011	0.5-1	Χ	X		Χ				
C4S-EU1	C4SX-06	C72810	N	9/29/2011	0-0.5	X	X						
C4S-EU1	C4SX-06 C4S-13	C72811 C71493	N N	9/29/2011 3/16/2009	0.5-1 0-0.5	X	X				1		
C4S-EU2	C4S-13	C71493	N N	3/16/2009	0.5-1	X	X	 			1		
C4S-EU2	C4S-14	C71496	N	3/16/2009	0-0.5	X	X	1	Х				
C4S-EU2	C4S-14	C71497	N	3/16/2009	0.5-1	Χ	Х		Χ				
C4S-EU2	C4S-15	C71499	N	3/16/2009	0-0.5	Χ	Х						
C4S-EU2	C4S-15	C71500	N	3/16/2009	0.5-1	X	X				-		
C4S-EU2	C4S-16 C4S-16	C71502 C71503	N N	3/16/2009 3/16/2009	0-0.5 0.5-1	X	X				1		
C4S-EU2	C4S-10	C71505	N	3/16/2009	0-0.5	X	X						
C4S-EU2	C4S-17	C71506	N	3/16/2009	0.5-1	X	X	†					
C4S-EU2	C4S-18	C71508	N	3/16/2009	0-0.5	Χ	Х						
C4S-EU2	C4S-18	C71509	N	3/16/2009	0.5-1	Χ	Х						
C4S-EU2	C4S-19	C71511	N N	3/16/2009	0-0.5	X	X	V		V			
C4S-EU2	C4S-19 C4S-20	C71512 C71514	N N	3/16/2009 3/16/2009	0.5-1 0-0.5	X	X	Х		Х	1		
C4S-EU2	C4S-20	C71514	N	3/16/2009	0.5-1	X	X						
C4S-EU2	C4S-21	C71517	N	3/16/2009	0-0.5	Х	Х	Х		Х			
C4S-EU2	C4S-21	C71518	N	3/16/2009	0.5-1	Χ	Х						
C4S-EU2	C4S-22	C71520	N	3/26/2009	0-0.5	X	X	Х		Х			
C4S-EU2	C4S-22	C71521	N	3/26/2009	0.5-1	X	X	-					
C4S-EU2	C4S-23 C4S-23	C71523 C71524	N N	3/24/2009 3/24/2009	0-0.5 0.5-1	X	X				1	1	
C4S-EU2	C4S-24	C71524	N	3/24/2009	0-0.5	X	X		Х		†		
C4S-EU2	C4S-24	C71527	N	3/24/2009	0.5-1	Х	Х	Х	X	X			
C4S-EU2	C4S-25	C71529	N	3/24/2009	0-0.5	X	X						
C4S-EU2	C4S-25	C71530	N	3/24/2009	0.5-1	X	X				<u> </u>		
C4S-EU2	C4S-26 C4S-26	C71532 C71533	N N	3/24/2009 3/24/2009	0-0.5 0.5-1	X	X				1		
C4S-EU2	C4S-26 C4S-27	C71535	N	3/25/2009	0.5-1	X	X	Х		Х	1	 	
C4S-EU2	C4S-27	C71536	FD	3/25/2009	0-0.5	X	X	X		X	†		
C4S-EU2	C4S-27	C71537	N	3/25/2009	0.5-1	Χ	Х						
C4S-EU2	C4S-27	C71538	FD	3/25/2009	0.5-1	X	X						
C4S-EU2	C4S-28	C71541	N N	3/25/2009	0-0.5	X	X				1		
C4S-EU2	C4S-28 C4S-29	C71542 C71544	N N	3/25/2009 3/25/2009	0.5-1 0-0.5	X	X				+		
C4S-EU2	C4S-29	C71545	N	3/25/2009	0-0.5	X	X				1	 	
C4S-EU2	C4S-30	C71547	N	3/25/2009	0-0.5	X	X				1		
C4S-EU2	C4S-30	C71548	N	3/25/2009	0.5-1	Χ	Х						
C4S-EU2	C4S-31	C71550	N	3/26/2009	0-0.5	X	X	Х		Х			
C4S-EU2	C4S-31	C71551	N N	3/26/2009	0.5-1	X	X				1		
C4S-EU2	C4S-32 C4S-32	C71553 C71554	N N	3/26/2009 3/26/2009	0-0.5 0.5-1	X	X				+		
C4S-EU2	C4S-32 C4S-33	C71554	N N	3/26/2009	0-0.5	X	X				1		
C4S-EU2	C4S-33	C71557	N	3/26/2009	0.5-1	X	X				1		
C4S-EU2	C4S-33	C71558	N	3/26/2009	1-2	X							
C4S-EU2	C4SF-04	C71643	N	3/16/2009	0-0.5	X	Х						
C4S-EU2	C4SF-04	C71644	N	3/16/2009	0.5-1	Х					1		

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses				
Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/	I		Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C4S-EU2	C4SF-05	C71645	N	3/16/2009	0-0.5	Х	Х						
C4S-EU2	C4SF-05	C71646	N	3/16/2009	0.5-1	Χ							
C4S-EU2	C4SF-06	C71647	N	3/16/2009	0-0.5	X	X		Х				
C4S-EU2	C4SF-06 C4SF-07	C71648 C71649	N N	3/16/2009 3/16/2009	0.5-1 0-0.5	X							-
C4S-EU2	C4SF-07	C71650	N N	3/16/2009	0.5-1	X	Х						
C4S-EU2	C4SF-08	C71651	N	3/16/2009	0-0.5	X	Х						
C4S-EU2	C4SF-08	C71652	N	3/16/2009	0.5-1	Χ							
C4S-EU2	C4SF-09	C71653	N	3/16/2009	0-0.5	Χ	Х						
C4S-EU2	C4SF-09	C71654	N	3/16/2009	0.5-1	X							
C4S-EU2	C4SF-10 C4SF-10	C71655 C71656	N N	3/26/2009 3/26/2009	0-0.5 0.5-1	X	Х						-
C4S-EU2	C4SF-10	C71657	N	3/26/2009	0.5-1	X	Х						
C4S-EU2	C4SF-11	C71658	N	3/26/2009	0.5-1	X							
C4S-EU2	C4SF-12	C71659	N	3/26/2009	0-0.5	Χ	Х						
C4S-EU2	C4SF-12	C71660	N	3/26/2009	0.5-1	Х							
C4S-EU2	C4SF-13	C71661	N	3/25/2009	0-0.5	X	X				1		
C4S-EU2	C4SF-13 C4SF-13	C71662 C71663	FD N	3/25/2009 3/25/2009	0-0.5 0.5-1	X	Х						-
C4S-EU2	C4SF-13	C71664	FD	3/25/2009	0.5-1	X							
C4S-EU2	C4SF-14	C71665	N	3/26/2009	0-0.5	X	Х						
C4S-EU2	C4SF-14	C71666	N	3/26/2009	0.5-1	Χ							
C4S-EU2	C4SF-15	C71667	N	3/26/2009	0-0.5	X	Х		-				
C4S-EU2	C4SF-15	C71668	N N	3/26/2009	0.5-1	X			V		1		
C4S-EU2	C4SF-16 C4SF-16	C71669 C71670	N N	3/24/2009 3/24/2009	0-0.5 0.5-1	X	Х		Х		-		
C4S-EU2	C4SF-16	C71671	N N	3/24/2009	0.5-1	X	Х					 	
C4S-EU2	C4SF-17	C71672	N	3/25/2009	0.5-1	X							
C4S-EU2	C4SF-18	C71673	N	3/24/2009	0-0.5	Χ	Х						
C4S-EU2	C4SF-18	C71674	N	3/24/2009	0.5-1	Χ							
C4S-EU2	C4SF-19	C71675	N	3/24/2009	0-0.5	X	X						<u> </u>
C4S-EU2	C4SF-19 C4SF-20	C71676 C71677	N N	3/24/2009	0.5-1 0-0.5	X	Х						<u> </u>
C4S-EU2	C4SF-20	C71678	N	3/26/2009	0-0.5	X	^						
C4S-EU3	C4S-34	C71559	N	3/11/2009	0-0.5	X	Х		Х				
C4S-EU3	C4S-34	C71560	N	3/11/2009	0.5-1	Χ	Х		Χ				
C4S-EU3	C4S-35	C71562	N	3/11/2009	0-0.5	Χ	Х						
C4S-EU3	C4S-35	C71563	N	3/11/2009	0.5-1	X	X						ļ
C4S-EU3	C4S-36 C4S-36	C71565 C71566	N N	3/11/2009 3/11/2009	0-0.5 0.5-1	X	X				1		
C4S-EU3	C4S-37	C71568	N	3/11/2009	0-0.5	X	X				1		
C4S-EU3	C4S-37	C71569	N	3/11/2009	0.5-1	Х	Х						
C4S-EU3	C4S-38	C71571	N	3/11/2009	0-0.5	Χ	X						
C4S-EU3	C4S-38	C71572	N	3/11/2009	0.5-1	X	X						ļ
C4S-EU3	C4S-39 C4S-39	C71574 C71575	N N	3/11/2009 3/11/2009	0-0.5 0.5-1	X	X				1		
C4S-EU3	C4S-39 C4S-40	C71577	N	3/11/2009	0.5-1	X	X						
C4S-EU3	C4S-40	C71578	N	3/11/2009	0.5-1	X	X						
C4S-EU3	C4S-41	C71580	N	3/11/2009	0-0.5	Χ	Х	Х		Х			
C4S-EU3	C4S-41	C71581	N	3/11/2009	0.5-1	Χ	Х						
C4S-EU3	C4S-42	C71583	N	3/11/2009	0-0.5	X	X						<u> </u>
C4S-EU3	C4S-42 C4S-43	C71584 C71586	N N	3/11/2009 3/11/2009	0.5-1 0-0.5	X	X				-		
C4S-EU3	C4S-43	C71587	N	3/11/2009	0.5-1	X	X					 	
C4S-EU3	C4S-44	C71589	N	3/11/2009	0-0.5	X	X		Х				
C4S-EU3	C4S-44	C71590	N	3/11/2009	0.5-1	Χ	Х		Χ				
C4S-EU3	C4S-45	C71592	N	3/11/2009	0-0.5	X	X						
C4S-EU3	C4S-45 C4S-46	C71593	N N	3/11/2009 3/11/2009	0.5-1 0-0.5	X	X				1	1	
C4S-EU3	C4S-46 C4S-46	C71595 C71596	N N	3/11/2009	0-0.5	X	X					1	
C4S-EU3	C4S-47	C71598	N	3/11/2009	0-0.5	X	X					1	
C4S-EU3	C4S-47	C71599	N	3/11/2009	0.5-1	Χ	Х	Х		Х			
C4S-EU3	C4S-48	C71601	N	3/11/2009	0-0.5	Χ	Х						
C4S-EU3	C4S-48	C71602	N	3/11/2009	0.5-1	X	X				1		<u> </u>
C4S-EU3	C4S-49 C4S-49	C71604 C71605	N N	3/12/2009 3/12/2009	0-0.5 0-0.5	Х	Х	Х		X	-		
C4S-EU3	C4S-49 C4S-49	C71605	FD	3/12/2009	0-0.5	X	Х	^		^		1	
C4S-EU3	C4S-49	C71606	N	3/12/2009	0.5-1	X	X						
C4S-EU3	C4S-49	C71607	FD	3/12/2009	0.5-1	Χ	Х						
C4S-EU3	C4S-49	C71608	N	3/12/2009	1-2	Х							
C4S-EU3	C4S-49	C71609	N	3/12/2009	1-2	X					1		
C4S-EU3	C4S-49 C4S-50	C71609 C71610	FD N	3/12/2009 3/11/2009	1-2 0-0.5	X	X				1	 	
C4S-EU3	C4S-50 C4S-50	C71610 C71611	N N	3/11/2009	0-0.5	X	X					1	
C4S-EU3	C4SF-21	C71679	N	3/11/2009	0-0.5	X	X					1	
C4S-EU3	C4SF-21	C71680	N	3/11/2009	0.5-1	X					L	<u> </u>	
C4S-EU3	C4SF-22	C71681	N	3/11/2009	0-0.5	X	Х						
C4S-EU3	C4SF-22	C71682	N	3/11/2009	0.5-1	Х							

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses				
Exposure			Sample	Collection	Depth			PCB	Allalyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C4S-EU3	C4SF-23	C71683	N	3/11/2009	0-0.5	Χ	Х						
C4S-EU3	C4SF-23	C71684	N	3/11/2009	0.5-1	X	.,			.,			
C4S-EU3	C4SF-24 C4SF-24	C71685 C71686	N N	3/11/2009 3/11/2009	0-0.5 0.5-1	X	Х	Х		Х	-		
C4S-EU3	C4SF-25	C71687	N N	3/11/2009	0-0.5	X	Х				-		
C4S-EU3	C4SF-25	C71688	N	3/11/2009	0.5-1	X							
C4S-EU3	C4SF-26	C71689	N	3/11/2009	0-0.5	Χ	Х		Χ				
C4S-EU3	C4SF-26	C71690	N	3/11/2009	0.5-1	Χ							
C4S-EU3	C4SF-27	C71691	N	3/11/2009	0-0.5	X	Х						
C4S-EU3	C4SF-27 C4SF-28	C71692 C71693	N N	3/11/2009 3/11/2009	0.5-1 0-0.5	X	Х						
C4S-EU3	C4SF-28	C71694	N	3/11/2009	0.5-1	X	^						
C4S-EU3	C4SF-29	C71695	N	3/11/2009	0-0.5	X	Х						
C4S-EU3	C4SF-29	C71696	N	3/11/2009	0.5-1	Χ							
C4S-EU3	C4SF-30	C71697	N	3/11/2009	0-0.5	Χ	Х						
C4S-EU3	C4SF-30	C71698	N	3/11/2009	0.5-1	X							
C5N-EU1	C4N-45 C4N-45	C71326 C71327	N N	3/12/2009 3/12/2009	0-0.5 0.5-1	X	X						
C5N-EU1	C4N-45	C71327	N N	3/12/2009	0.5-1	X	X						
C5N-EU1	C4N-46	C71330	N	3/12/2009	0.5-1	X	X						
C5N-EU1	C4N-47	C71332	N	3/12/2009	0-0.5	X	X	Х		Х	1	1	
C5N-EU1	C4N-47	C71333	N	3/12/2009	0.5-1	Х	Х						
C5N-EU1	C4N-48	C71335	N	3/12/2009	0-0.5	X	X	Х		Х			
C5N-EU1	C4N-48	C71336	N N	3/12/2009	0.5-1	X	Х				1		
C5N-EU1	C4N-48 C4N-49	C71337 C71338	N N	3/12/2009 3/12/2009	1-2 0-0.5	X	Х				1		
C5N-EU1	C4N-49 C4N-49	C71338	N N	3/12/2009	0.5-1	X	X				1	1	
C5N-EU1	C4N-50	C71341	N	3/12/2009	0-0.5	X	X						
C5N-EU1	C4N-50	C71342	N	3/12/2009	0.5-1	Х	Х						
C5N-EU1	C4N-51	C71344	N	3/12/2009	0-0.5	Χ	X						
C5N-EU1	C4N-51	C71345	N	3/12/2009	0.5-1	Х	Х						
C5N-EU1	C4N-52	C71347	N	3/12/2009	0-0.5	X	X						
C5N-EU1	C4N-52 C4NF-34	C71348 C71432	N N	3/12/2009 3/12/2009	0.5-1 0-0.5	X	X	Х		Х			
C5N-EU1	C4NF-34	C71433	N	3/12/2009	0.5-1	X	^	^		^			
C5N-EU1	C4NF-35	C71434	N	3/12/2009	0-0.5	X	Х						
C5N-EU1	C4NF-35	C71435	N	3/12/2009	0.5-1	Х							
C5N-EU1	C4NF-36	C71436	N	3/12/2009	0-0.5	Χ	X						
C5N-EU1	C4NF-36	C71437	N	3/12/2009	0.5-1	X							
C5N-EU1	C4NF-38 C4NF-38	C71440 C71441	N N	3/12/2009	0-0.5 0.5-1	X	Х		Х				
C5N-EU1	C4NF-36	C71350	N	3/12/2009 3/12/2009	0-0.5	X	Х		X				
C5N-EU2	C4N-53	C71351	N	3/12/2009	0-0.5			Х		Х			
C5N-EU2	C4N-53	C71351	FD	3/12/2009	0-0.5	Х	Х		Х				
C5N-EU2	C4N-53	C71352	N	3/12/2009	0.5-1	Χ	X		Χ				
C5N-EU2	C4N-53	C71353	FD	3/12/2009	0.5-1	X	X		Х				
C5N-EU2	C4N-54	C71356	N N	3/12/2009	0-0.5	X	X						
C5N-EU2	C4N-54 C4N-55	C71357 C71359	N N	3/12/2009 3/12/2009	0.5-1 0-0.5	X	X						
C5N-EU2	C4N-55	C71360	N	3/12/2009	0.5-1	X	X						
C5N-EU2	C4NF-37	C71438	N	3/12/2009	0-0.5	X	X						
C5N-EU2	C4NF-37	C71439	N	3/12/2009	0.5-1	Χ							
C5N-EU2	C4NF-39	C71442	N	3/12/2009	0-0.5	Χ	Х						
C5N-EU2	C4NF-39	C71443	N N	3/12/2009	0.5-1	X					1		
C5N-EU2	C4NF-40 C4NF-40	C71444 C71445	N N	3/12/2009 3/12/2009	0-0.5 0.5-1	X	Х				1	-	
C5N-EU2	C4NF-40 C4NF-41	C71445	N N	3/12/2009	0.5-1	X	Х	Х		Х	+	<u> </u>	
C5N-EU2	C4NF-41	C71447	N	3/12/2009	0.5-1	X	<u> </u>	<u> </u>			1	1	
C5N-EU2	C4NF-42	C71448	N	3/12/2009	0-0.5	Х	Х						
C5N-EU2	C4NF-42	C71449	N	3/12/2009	0.5-1	Χ							
C5N-EU2	C4NF-43	C71450	N	3/12/2009	0-0.5	X	Х				1	<u> </u>	
C5N-EU2	C4NF-43 C4NF-44	C71451 C71452	N N	3/12/2009 3/12/2009	0.5-1 0-0.5	X	X				1	 	
C5N-EU2	C4NF-44 C4NF-44	C71452 C71453	N N	3/12/2009	0-0.5	X	_ ^				1	1	
C5N-EU2	C5N-01	C71705	N	3/3/2009	0-0.5	X	Х				1	1	
C5N-EU2	C5N-01	C71706	N	3/3/2009	0.5-1	X	X				1	1	
C5N-EU2	C5N-02	C71708	N	3/3/2009	0-0.5	Х	Х						
C5N-EU2	C5N-02	C71709	FD	3/3/2009	0-0.5	X	X						
C5N-EU2	C5N-02	C71710	N	3/3/2009	0.5-1	X	X				1		
C5N-EU2	C5N-02	C71711 C71714	FD N	3/3/2009	0.5-1	X	X				1	-	
C5N-EU2	C5N-03 C5N-03	C71714 C71715	N N	3/3/2009	0-0.5 0.5-1	X	X		X		+	 	
C5N-EU2	C5N-04	C71717	N	3/3/2009	0-0.5	X	X				1	1	
C5N-EU2	C5N-04	C71718	N	3/3/2009	0.5-1	X	X				1		
C5N-EU2	C5N-05	C71720	N	3/3/2009	0-0.5	Χ	Х						
C5N-EU2	C5N-05	C71721	N	3/3/2009	0.5-1	X	Х						
C5N-EU2	C5N-06	C71723	N N	3/3/2009	0-0.5	X	X				1	<u> </u>	
C5N-EU2	C5N-06	C71724	N	3/3/2009	0.5-1	Х	X						

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

Exposure Control Sample Design				•	Analyses									
Unit	Pesticide		ins/		Analyses	РСВ			Depth	Collection	Sample			Exposure
CSN-EUR CSN-		/OCs S			Metals	1	Mercury	PCBs				Sample ID	Location	-
CSN-ELD CSN-60							Х	Χ	0-0.5	3/3/2009	N	C71726	C5N-07	C5N-EU2
CON-LUC COM-LUC COM-LU														
CONNELLY CONNO CTYTOS N 3-300000 0-0.5 X X X	 	<u></u>												
CSN-LIG CSN-10	 	-+												
CSM-BLIZ CSM-10			-											
CSN-ELIZ CORN-11														
CSN-EUR CSN-												C71736		
CSN-EU2 CSN-EU2 CSN-EU2 CSN-EU3 CSN-				Х		Х								
CSM-EU2 CSM-12 C77724 N 84/2009 0.5-1 X	 	-+		V		V								
CSN-EU2 CSN-13 C77746 N 34/2009 0-0.5 X X X X X X X X X	+ + -	-+		^		^								
CON-FILE CON-14				Х	Х	Х								
CSN-EUZ CSN-14 C77748 N 3952009 O-5 X X X X X X X X X										3/4/2009	N			
CSN-EU2 CSN-15 C71750 N 3952009 O.5 X X X X X X X X X				X		X								
CON-PUZ CON-15 C71751 N 3952009 O-5-1 X X X C CON-PUZ CSN-16 C71753 N 3952009 O-5-1 X X X C CSN-PUZ CS						V								
CSN-EUZ CSN-16 C77753	 			X		X								
CSN-EUZ CSN-16														
CON-EUZ CSSH-17														
CSN-EUZ CSN-18										3/4/2009				
CSN-EUZ CSN-18														
CSN-EUZ CSN-19	+-+	<u> </u>		Х		Х								
CSN-EUZ CSN-19	+	-+					Х							
CSN-EUZ CSN-19 C71763 N 3262009 0.5-1 X X X	+ + -	-+	-				Х							
CSN-EUZ CSN-20														
CSN-EUZ CSN-21 C71768 N 22/4/2009 O-0.5 X X X X X X X X X										2/24/2009				
CSN-EUL														
CSN-EUZ CSN-22 C71771 N 2242009 0-0.5 X X X														
CSN-EUZ CSN-22 C71772 N 22/4/2009 0.5-1 X X X X X X X X X	 		-											
CSN-EU2 CSN-23	 													
CSN-EU2 CSN-24					Х									
CSN-EU2 CSN-26 C71778 N 2242009 0.5-1 X X X X X X X X X							Х		0.5-1	2/24/2009	N	C71775		C5N-EU2
CSN-EU2 CSN-25 C71780 N 22442009 O-0.5 X X X X X X X X X														
CSN-EU2 CSN-25 C71781 FD 224/2009 0-0.5 X X X X X X X X X				.,		,,								
CSN-EUZ CSN-25 C71782 N 2/24/2009 0.5-1 X X X X CSN-EUZ CSN-26 C71786 N 2/24/2009 0.5-1 X X X X X CSN-EUZ CSN-26 C71786 N 2/24/2009 0.5-1 X X X X X X X X X	 			X		X								
CSN-EUZ CSN-25 C71783 FD Z/24/2009 0.5-1 X X X X X X X X X														
CSN-EU2 CSN-26 C71787 N 22/4/2009 0.5-1 X X X X X X X X X		-												
CSN-EU2 CSN-27 C71789 N 224/2009 O-0.5 X X X							Х	Χ	0-0.5	2/24/2009		C71786	C5N-26	
CSN-EU2 CSN-27 C71790 N 22/4/2009 0.5-1 X X X X X X X X X														
CSN-EU2 CSN-28 C71792 N 2/24/2009 0-0.5 X X X X X X X X X		-+												
CSN-EU2 CSN-28 C71793 N 22/4/2009 0.5-1 X X X X CSN-EU2 CSN-29 C71795 N 22/4/2009 0.5-1 X X X X CSN-EU2 CSN-29 C71796 N 22/4/2009 0.5-1 X X X X X CSN-EU2 CSN-30 C71798 N 22/4/2009 0.5-1 X X X X X CSN-EU2 CSN-30 C71798 N 22/4/2009 0.5-1 X X X X CSN-EU2 CSN-31 C71801 N 22/4/2009 0.5-1 X X X X CSN-EU2 CSN-31 C71801 N 22/4/2009 0.5-1 X X X X CSN-EU2 CSN-31 C71802 N 22/4/2009 0.5-1 X X X X CSN-EU2 CSN-31 C71804 N 3/3/2009 0.0-5 X X X X CSN-EU2 CSN-32 C71805 N 3/3/2009 0.0-5 X X X X CSN-EU2 CSN-32 C71805 N 3/3/2009 0.5-1 X X X X X CSN-EU2 CSN-33 C71807 N 3/4/2009 0.5-1 X X X X X CSN-EU2 CSN-33 C71807 N 3/4/2009 0.5-1 X X X X X X CSN-EU2 CSN-33 C71808 N 3/4/2009 0.5-1 X X X X X X CSN-EU2 CSN-34 C71810 N 3/3/2009 0.0-5 X X X X X X CSN-EU2 CSN-34 C71811 N 3/3/2009 0.0-5 X X X X X CSN-EU2 CSN-35 C71813 N 3/3/2009 0.0-5 X X X X CSN-EU2 CSN-35 C71813 N 3/3/2009 0.5-1 X X X X CSN-EU2 CSN-36 C71816 N 3/3/2009 0.5-1 X X X X CSN-EU2 CSN-36 C71816 N 3/3/2009 0.5-1 X X X X CSN-EU2 CSN-36 C71817 N 3/3/2009 0.5-1 X X X X CSN-EU2 CSN-37 C71820 N 3/4/2009 0.5-1 X X X X CSN-EU2 CSN-38 C71822 N 3/4/2009 0.5-1 X X X X CSN-EU2 CSN-38 C71823 N 3/4/2009 0.5-1 X X X X CSN-EU2 CSN-39 C71825 N 3/4/2009 0.5-1 X X X X CSN-EU2 CSN-39 C71825 N 3/4/2009 0.5-1 X X X X CSN-EU2 CSN-39 C71825 N 3/4/2009 0.5-1 X X X X CSN-EU2 CSN-39 C71825 N 3/4/2009 0.5-1 X X X CSN-EU2 CSN-40 C71828 N 3/4/2009 0.5-1 X X X CSN-EU2 CSN-40 C71828 N 3/4/2009 0.5-1 X X	 													
CSN-EUZ CSN-29 C71796 N 2/24/2009 0-0.5 X X X CSN-EUZ CSN-29 C71796 N 2/24/2009 0.5-1 X X CSN-EUZ CSN-30 C71799 N 2/24/2009 0.5-1 X X CSN-EUZ CSN-30 C71799 N 2/24/2009 0.5-1 X X CSN-EUZ CSN-31 C71801 N 2/24/2009 0.5-1 X X CSN-EUZ CSN-31 C71802 N 2/24/2009 0.5-1 X X CSN-EUZ CSN-32 C71804 N 3/3/2009 0.5-1 X X CSN-EUZ CSN-33 C71807 N 3/4/2009 0.5-1 X X CSN-EUZ CSN-33 C71807 N 3/4/2009 0.5-1 X X X CSN-EUZ CSN-33 C71810 N 3/3/2009 0.5-1 X X X <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
CSN-EUZ CSN-30 C71798 N 2/24/2009 0-0.5 X X CSN-EUZ CSN-30 C71799 N 2/24/2009 0.5-1 X X CSN-EUZ CSN-31 C71801 N 2/24/2009 0.5-1 X X CSN-EUZ CSN-31 C71802 N 2/24/2009 0.5-1 X X CSN-EUZ CSN-32 C71804 N 3/3/2009 0-0.5 X X CSN-EUZ CSN-32 C71805 N 3/3/2009 0-0.5 X X CSN-EUZ CSN-33 C71807 N 3/4/2009 0-0.5 X X X CSN-EUZ CSN-33 C71808 N 3/4/2009 0-5.1 X X X CSN-EUZ CSN-34 C71810 N 3/3/2009 0-5.1 X X X CSN-EUZ CSN-34 C71814 N 3/3/2009 0-5.5 X X X							X	Χ			N			
C5N-EU2 C5N-30 C71799 N 2/24/2009 0.5-1 X X X X X X X X X														
CSN-EU2 C5N-31 C71801 N 2/24/2009 0-0.5 X X X C5N-EU2 C5N-31 C71802 N 2/24/2009 0.5-1 X X X C5N-EU2 C5N-32 C71804 N 3/3/2009 0-0.5 X X X C5N-EU2 C5N-32 C71807 N 3/4/2009 0-0.5 X X X C5N-EU2 C5N-33 C71807 N 3/4/2009 0-0.5 X X X X C5N-EU2 C5N-33 C71808 N 3/4/2009 0-5.1 X <														
CSN-EU2 CSN-31 C71802 N 2/24/2009 0.5-1 X X CSN-EU2 C5N-32 C71804 N 3/3/2009 0-0.5 X X CSN-EU2 C5N-32 C71805 N 3/3/2009 0-0.5 X X CSN-EU2 C5N-33 C71807 N 3/4/2009 0-5.5 X X X CSN-EU2 C5N-33 C71808 N 3/4/2009 0-5.1 X X X X CSN-EU2 C5N-34 C71810 N 3/3/2009 0-0.5 X <t< td=""><td>+</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	+		-											
CSN-EU2 C5N-32 C71804 N 3/3/2009 0-0.5 X X CSN-EU2 C5N-32 C71805 N 3/3/2009 0-5.1 X X CSN-EU2 C5N-33 C71807 N 3/4/2009 0-0.5 X X X CSN-EU2 C5N-33 C71808 N 3/4/2009 0-0.5 X X X X CSN-EU2 C5N-34 C71810 N 3/3/2009 0-0.5 X X X X CSN-EU2 C5N-34 C71811 N 3/3/2009 0-0.5 X X X X CSN-EU2 C5N-35 C71813 N 3/3/2009 0-5.1 X X X X CSN-EU2 C5N-36 C71814 N 3/3/2009 0-5.1 X X X X C SN-EU2 C5N-36 C71817 N 3/3/2009 0-5.1 X X X X X	+ + -													
CSN-EU2 C5N-32 C71805 N 3/3/2009 0.5-1 X														
CSN-EU2 CSN-33 C71808 N 3/4/2009 0.5-1 X														
CSN-EU2 C5N-34 C71810 N 3/3/2009 0-0.5 X X X S CSN-EU2 C5N-34 C71811 N 3/3/2009 0.5-1 X X X S CSN-EU2 C5N-35 C71813 N 3/3/2009 0-0.5 X X X X S CSN-EU2 C5N-35 C71814 N 3/3/2009 0-0.5 X	+-+	<u> </u>												
CSN-EU2 C5N-34 C71811 N 3/3/2009 0.5-1 X X X S CSN-EU2 C5N-35 C71813 N 3/3/2009 0-0.5 X X X S CSN-EU2 C5N-35 C71814 N 3/3/2009 0.5-1 X X X X S CSN-EU2 C5N-36 C71816 N 3/3/2009 0.5-1 X X X S CSN-EU2 C5N-36 C71817 N 3/3/2009 0.5-1 X X X S CSN-EU2 C5N-36 C71817 N 3/3/2009 0.5-1 X X X S CSN-EU2 C5N-36 C71819 N 3/3/2009 0.5-1 X X X S CSN-EU2 C5N-37 C71820 N 3/3/2009 0.5-1 X X X S CSN-EU2 C5N-38 C71823 N 3/4/2009 0.5-1 X X X X S S S	+	-+			X									
CSN-EU2 C5N-35 C71813 N 3/3/2009 0-0.5 X	+ + -	-+	-	 										
CSN-EU2 CSN-35 C71814 N 3/3/2009 0.5-1 X X X S CSN-EU2 CSN-36 C71816 N 3/3/2009 0-0.5 X X X S S CSN-EU2 CSN-36 C71817 N 3/3/2009 0-0.5 X X X S CSN-EU2 CSN-37 C71819 N 3/3/2009 0-0.5 X X X S CSN-EU2 CSN-37 C71820 N 3/3/2009 0-0.5 X X X S CSN-EU2 CSN-38 C71822 N 3/4/2009 0-0.5 X X X S CSN-EU2 CSN-38 C71823 N 3/4/2009 0-0.5 X X X S CSN-EU2 CSN-39 C71825 N 3/4/2009 0-0.5 X X X S CSN-EU2 CSN-39 C71826 N 3/4/2009 0.5-1 X X X S CSN-EU2 CSN-40 C7		-												
CSN-EU2 C5N-36 C71817 N 3/3/2009 0.5-1 X							Х	Χ	0.5-1	3/3/2009	N	C71814	C5N-35	C5N-EU2
CSN-EU2 CSN-37 C71819 N 3/3/2009 0-0.5 X X X CSN-EU2 CSN-37 C71820 N 3/3/2009 0.5-1 X X X CSN-EU2 CSN-38 C71822 N 3/4/2009 0-0.5 X X X CSN-EU2 CSN-38 C71823 N 3/4/2009 0-5.1 X X X CSN-EU2 CSN-39 C71825 N 3/4/2009 0-0.5 X X X CSN-EU2 CSN-39 C71826 N 3/4/2009 0-5.1 X X X CSN-EU2 CSN-40 C71828 N 3/4/2009 0-5.5 X X X CSN-EU2 CSN-40 C71828 N 3/4/2009 0-5.1 X X X CSN-EU2 CSN-41 C71831 N 3/4/2009 0-5.5 X X X CSN-EU2 CSN-42 C71834 <	 	<u> </u>												
CSN-EU2 CSN-37 C71820 N 3/3/2009 0.5-1 X X X CSN-EU2 CSN-38 C71822 N 3/4/2009 0-0.5 X X X CSN-EU2 CSN-38 C71823 N 3/4/2009 0-0.5 X X X CSN-EU2 CSN-39 C71825 N 3/4/2009 0-0.5 X X X CSN-EU2 CSN-39 C71826 N 3/4/2009 0-0.5 X X X CSN-EU2 CSN-40 C71828 N 3/4/2009 0-0.5 X X X CSN-EU2 CSN-40 C71829 N 3/4/2009 0.5-1 X X X CSN-EU2 CSN-41 C71831 N 3/4/2009 0.5-5 X X X CSN-EU2 CSN-41 C71834 N 3/4/2009 0.5-1 X X X CSN-EU2 CSN-42 C71834 <	+	-+												
CSN-EU2 CSN-38 C71822 N 3/4/2009 0-0.5 X X X CSN-EU2 CSN-38 C71823 N 3/4/2009 0.5-1 X X X CSN-EU2 CSN-39 C71825 N 3/4/2009 0-0.5 X X X CSN-EU2 CSN-39 C71826 N 3/4/2009 0-0.5 X X X CSN-EU2 CSN-40 C71828 N 3/4/2009 0-0.5 X X X CSN-EU2 CSN-40 C71829 N 3/4/2009 0.5-1 X X X CSN-EU2 CSN-41 C71831 N 3/4/2009 0-0.5 X X X CSN-EU2 C5N-41 C71832 N 3/4/2009 0-5.1 X X X CSN-EU2 C5N-42 C71834 N 3/3/2009 0-5.5 X X X CSN-EU2 C5N-42 C71835 <	+ + -	-+	-	1										
C5N-EU2 C5N-38 C71823 N 3/4/2009 0.5-1 X X X C5N-EU2 C5N-39 C71825 N 3/4/2009 0-0.5 X X X C5N-EU2 C5N-39 C71826 N 3/4/2009 0.5-1 X X X C5N-EU2 C5N-40 C71828 N 3/4/2009 0-0.5 X X X C5N-EU2 C5N-40 C71829 N 3/4/2009 0.5-1 X X X C5N-EU2 C5N-41 C71831 N 3/4/2009 0-0.5 X X X C5N-EU2 C5N-41 C71832 N 3/4/2009 0.5-1 X X X C5N-EU2 C5N-42 C71834 N 3/3/2009 0-0.5 X X X C5N-EU2 C5N-42 C71835 N 3/3/2009 0-5.1 X X X C5N-EU2 C5N-43 C71837 <	 	-+	- 											
C5N-EU2 C5N-39 C71826 N 3/4/2009 0.5-1 X X X C5N-EU2 C5N-40 C71828 N 3/4/2009 0-0.5 X X X C5N-EU2 C5N-40 C71829 N 3/4/2009 0.5-1 X X X C5N-EU2 C5N-41 C71831 N 3/4/2009 0-0.5 X X X C5N-EU2 C5N-41 C71832 N 3/4/2009 0.5-1 X X X C5N-EU2 C5N-42 C71834 N 3/3/2009 0-0.5 X X X C5N-EU2 C5N-42 C71835 N 3/3/2009 0.5-1 X X X C5N-EU2 C5N-43 C71837 N 3/3/2009 0-0.5 X X X										3/4/2009				
CSN-EU2 C5N-40 C71828 N 3/4/2009 0-0.5 X X X CSN-EU2 C5N-40 C71829 N 3/4/2009 0.5-1 X X X CSN-EU2 C5N-41 C71831 N 3/4/2009 0-0.5 X X X CSN-EU2 C5N-41 C71832 N 3/4/2009 0.5-1 X X X C5N-EU2 C5N-42 C71834 N 3/3/2009 0-0.5 X X X C5N-EU2 C5N-42 C71835 N 3/3/2009 0-5.1 X X X C5N-EU2 C5N-43 C71837 N 3/3/2009 0-0.5 X X X														
CSN-EU2 C5N-40 C71829 N 3/4/2009 0.5-1 X X X S CSN-EU2 C5N-41 C71831 N 3/4/2009 0-0.5 X X X S S CSN-EU2 C5N-41 C71832 N 3/4/2009 0.5-1 X X X S <td>+</td> <td>$-\!\!\!\!\!+$</td> <td></td> <td>-</td> <td></td>	+	$-\!\!\!\!\!+$		-										
CSN-EU2 C5N-41 C71831 N 3/4/2009 0-0.5 X X CSN-EU2 C5N-41 C71832 N 3/4/2009 0.5-1 X X CSN-EU2 C5N-42 C71834 N 3/3/2009 0-0.5 X X CSN-EU2 C5N-42 C71835 N 3/3/2009 0.5-1 X X CSN-EU2 C5N-43 C71837 N 3/3/2009 0-0.5 X X X	+ + -	-+												
C5N-EU2 C5N-41 C71832 N 3/4/2009 0.5-1 X X C5N-EU2 C5N-42 C71834 N 3/3/2009 0-0.5 X X C5N-EU2 C5N-42 C71835 N 3/3/2009 0.5-1 X X C5N-EU2 C5N-43 C71837 N 3/3/2009 0-0.5 X X X	+ + -	-+		<u> </u>										
C5N-EU2 C5N-42 C71834 N 3/3/2009 0-0.5 X X C5N-EU2 C5N-42 C71835 N 3/3/2009 0.5-1 X X C5N-EU2 C5N-43 C71837 N 3/3/2009 0-0.5 X X X		-												
C5N-EU2 C5N-43 C71837 N 3/3/2009 0-0.5 X X X X														
051 510 051 40 074000 11 074000 11 074000	+-+	<u> </u>												
C5N-EU2 C5N-43 C71838 N 3/3/2009 0.5-1 X X X X C5N-EU2 C5N-44 C71840 N 3/3/2009 0-0.5 X X	+	-+		 	Х									

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses				
Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/	I		Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C5N-EU2	C5N-44	C71841	N	3/3/2009	0.5-1	Х	Х						
C5N-EU2	C5N-45	C71843	N	3/3/2009	0-0.5	Χ	Х						
C5N-EU2	C5N-45	C71844	N	3/3/2009	0.5-1	X	X				1		
C5N-EU2	C5N-46	C71846 C71847	N N	3/4/2009 3/4/2009	0-0.5 0.5-1	X	X						
C5N-EU2	C5N-46 C5NF-01	C71849	N N	3/3/2009	0.5-1	X	X						
C5N-EU2	C5NF-01	C71850	FD	3/3/2009	0-0.5	X	X						
C5N-EU2	C5NF-01	C71851	N	3/3/2009	0.5-1	Χ							
C5N-EU2	C5NF-01	C71852	FD	3/3/2009	0.5-1	Χ							
C5N-EU2	C5NF-02	C71853	N	3/3/2009	0-0.5	X	Х						
C5N-EU2	C5NF-02 C5NF-03	C71854 C71855	N N	3/3/2009 3/4/2009	0.5-1 0-0.5	X	X						
C5N-EU2	C5NF-03	C71856	N	3/4/2009	0.5-1	X	^						
C5N-EU2	C5NF-04	C71857	N	3/5/2009	0-0.5	X	Х						
C5N-EU2	C5NF-04	C71858	N	3/5/2009	0.5-1	Χ							
C5N-EU2	C5NF-05	C71859	N	2/24/2009	0-0.5	X	Х				ļ		
C5N-EU2	C5NF-05	C71860	N	2/24/2009	0.5-1 0-0.5	X	V						
C5N-EU2	C5NF-06 C5NF-06	C71861 C71862	N N	2/24/2009 2/24/2009	0.5-1	X	Х						
C5N-EU2	C5NF-07	C71863	N	3/5/2009	0-0.5	X	Х		Х				
C5N-EU2	C5NF-07	C71864	N	3/5/2009	0.5-1	X	<u> </u>				L		
C5N-EU2	C5NF-08	C71865	N	3/5/2009	0-0.5	Χ	Х						
C5N-EU2	C5NF-08	C71866	N	3/5/2009	0.5-1	X	ļ						
C5N-EU2	C5NF-09 C5NF-09	C71867	N N	2/24/2009	0-0.5 0.5-1	X	Х				1	-	
C5N-EU2	C5NF-09 C5NF-10	C71868 C71869	N N	2/24/2009 2/24/2009	0.5-1	X	Х				1	 	
C5N-EU2	C5NF-10	C71870	N	2/24/2009	0.5-1	X	^						
C5N-EU2	C5NF-11	C71871	N	3/3/2009	0-0.5	Χ	Х						
C5N-EU2	C5NF-11	C71872	N	3/3/2009	0.5-1	Χ							
C5N-EU2	C5NF-12	C71873	N	3/3/2009	0-0.5	X	Х						
C5N-EU2	C5NF-12 C5NF-13	C71874 C71875	N N	3/3/2009 3/3/2009	0.5-1 0-0.5	X	Х	-			-		
C5N-EU2	C5NF-13	C71876	N	3/3/2009	0.5-1	X	^				1		
C5N-EU2	C5NF-14	C71877	N	3/4/2009	0-0.5	X	Х						
C5N-EU2	C5NF-14	C71878	N	3/4/2009	0.5-1	Х							
C5N-EU2	C5NF-15	C71879	N	3/3/2009	0-0.5	X	Х						
C5N-EU2	C5NF-15	C71880	N	3/3/2009	0.5-1	X							
C5N-EU2	C5NF-16 C5NF-16	C71881 C71882	N N	3/3/2009 3/3/2009	0-0.5 0.5-1	X	Х				-		
C5N-EU2	C5NF-17	C71883	N	3/4/2009	0-0.5	X	Х		Х				
C5N-EU2	C5NF-17	C71884	FD	3/4/2009	0-0.5	Х	Х		Х				
C5N-EU2	C5NF-17	C71885	N	3/4/2009	0.5-1	Χ							
C5N-EU2	C5NF-17	C71886	FD	3/4/2009	0.5-1	X							
C5N-EU2	C5NF-18 C5NF-18	C71887 C71888	N N	3/3/2009 3/3/2009	0-0.5 0.5-1	X	Х						
C5N-EU2	C5NF-19	C71889	N	3/4/2009	0-0.5	X	Х				1		
C5N-EU2	C5NF-19	C71890	N	3/4/2009	0.5-1	X							
C5N-EU2	C5NF-20	C71891	N	3/4/2009	0-0.5	Χ	Х						
C5N-EU2	C5NF-20	C71892	N	3/4/2009	0.5-1	X					ļ		
C5S-EU1	C4S-51 C4S-51	C71613 C71614	N N	3/17/2009 3/17/2009	0-0.5 0.5-1	X	X				1		
C5S-EU1	C4S-51	C71616	N N	3/17/2009	0.5-1	X	X						
C5S-EU1	C4S-52	C71617	N	3/17/2009	0.5-1	X	X					1	
C5S-EU1	C4S-53	C71619	N	3/17/2009	0-0.5	Χ	Х						
C5S-EU1	C4S-53	C71620	N	3/17/2009	0.5-1	X	X						
C5S-EU1	C4S-54	C71622	N N	3/18/2009	0-0.5	X	X		X		-	-	
C5S-EU1	C4S-54 C4S-55	C71623 C71625	N N	3/18/2009 3/18/2009	0.5-1 0-0.5	X	X					1	
C5S-EU1	C4S-55	C71626	N	3/18/2009	0.5-1	X	X				 		
C5S-EU1	C4S-56	C71628	N	3/18/2009	0-0.5	X	Х						
C5S-EU1	C4S-56	C71629	N	3/18/2009	0.5-1	X	X						
C5S-EU1	C4S-57	C71631	N	3/18/2009	0-0.5	X	X				1		
C5S-EU1	C4S-57 C4S-57	C71632 C71633	N N	3/18/2009 3/18/2009	0.5-1 1-2	X	Х				-		
C5S-EU1	C4S-57	C71633	N N	3/18/2009	0-0.5	X	Х					1	
C5S-EU1	C4S-58	C71635	N	3/18/2009	0.5-1	X	X					1	
C5S-EU1	C4SF-31	C71699	N	3/17/2009	0-0.5	Х	Х						
C5S-EU1	C4SF-31	C71700	N	3/17/2009	0.5-1	X							
C5S-EU1	C4SF-32	C71701	N N	3/17/2009	0-0.5	X	Х				-	1	
C5S-EU1	C4SF-32 C4SF-33	C71702 C71703	N N	3/17/2009 3/17/2009	0.5-1 0-0.5	X	X	Х		Х	-		
C5S-EU1	C4SF-33	C71704	N N	3/17/2009	0.5-1	X	^	^		^	 	1	
C5S-EU1	C5S-01	C71893	N	2/24/2009	0-0.5	X	Х	Х		Х			
C5S-EU1	C5S-01	C71894	N	2/24/2009	0.5-1	Х	Х						
C5S-EU1	C5S-02	C71896	N	2/24/2009	0-0.5	Х	Х						
C5S-EU1	C5S-02 C5S-03	C71897 C71899	N N	2/24/2009	0.5-1	X	X				1		
C5S-EU1			ı N	2/24/2009	0-0.5	X	X	1		i	1	1	i

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses				
Exposure			Sample	Collection	Depth			PCB	Allalyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C5S-EU1	C5S-03	C71901	N	2/24/2009	0.5-1	Χ	Х						
C5S-EU1	C5S-03	C71902	FD	2/24/2009	0.5-1	Х	Х						
C5S-EU1	C5S-04	C71905	N	2/24/2009	0-0.5	X	X	Х		Х			
C5S-EU1	C5S-04 C5S-05	C71906 C71908	N N	2/24/2009 2/24/2009	0.5-1 0-0.5	X	X						
C5S-EU1	C5S-05	C71909	N	2/24/2009	0.5-1	X	X						
C5S-EU1	C5S-06	C71911	N	2/23/2009	0-0.5	X	X						
C5S-EU1	C5S-06	C71912	N	2/23/2009	0.5-1	Χ	Х						
C5S-EU1	C5S-07	C71914	N	2/23/2009	0-0.5	X	X		X				
C5S-EU1	C5S-07	C71915	N N	2/23/2009	0.5-1	X	Х		X				
C5S-EU1	C5S-07 C5S-08	C71916 C71917	N N	2/23/2009 2/23/2009	1-2 0-0.5	X	Х						
C5S-EU1	C5S-08	C71918	N	2/23/2009	0.5-1	X	X						
C5S-EU1	C5S-09	C71920	N	2/23/2009	0-0.5	Х	Х	Х		Х			
C5S-EU1	C5S-09	C71921	N	2/23/2009	0.5-1	Χ	Х	X		Х			
C5S-EU1	C5S-10	C71923	N	2/23/2009	0-0.5	X	X						
C5S-EU1	C5S-10 C5S-11	C71924	N	2/23/2009	0.5-1 0-0.5	X	X						
C5S-EU1	C5S-11	C71926 C71927	N N	2/23/2009 2/23/2009	0.5-1	X	X						
C5S-EU1	C5S-12	C71929	N	2/23/2009	0-0.5	X	X						
C5S-EU1	C5S-12	C71930	N	2/23/2009	0.5-1	X	X				L		
C5S-EU1	C5S-13	C71932	N	2/23/2009	0-0.5	Х	Х						
C5S-EU1	C5S-13	C71933	N	2/23/2009	0.5-1	Х	Х				1		
C5S-EU1	C5S-14	C71935	N N	2/23/2009	0-0.5	X	X				1		
C5S-EU1	C5S-14 C5S-15	C71936 C71938	N N	2/23/2009 2/23/2009	0.5-1 0-0.5	X	X	Х		Х	+	1	
C5S-EU1	C5S-15	C71939	N	2/23/2009	0.5-1	X	X	^		^			
C5S-EU1	C5S-16	C71941	N	2/23/2009	0-0.5	X	X						
C5S-EU1	C5S-16	C71942	N	2/23/2009	0.5-1	Χ	Х						
C5S-EU1	C5S-17	C71944	N	2/23/2009	0-0.5	Χ	Х		Χ				
C5S-EU1	C5S-17	C71945	N	2/23/2009	0.5-1	X	X		Х		-		
C5S-EU1	C5S-18 C5S-18	C71947 C71948	N N	2/23/2009 2/23/2009	0-0.5 0.5-1	X	X				1		
C5S-EU1	C5S-18	C71950	N	2/23/2009	0-0.5	X	X						
C5S-EU1	C5S-19	C71951	N	2/23/2009	0.5-1	X	X						
C5S-EU1	C5S-20	C71953	N	2/23/2009	0-0.5	Х	Х						
C5S-EU1	C5S-20	C71954	N	2/23/2009	0.5-1	Χ	Х						
C5S-EU1	C5S-21	C71956	N	3/5/2009	0-0.5	X	X						
C5S-EU1	C5S-21 C5S-22	C71957 C71959	N N	3/5/2009 3/5/2009	0.5-1 0-0.5	X	X				1		
C5S-EU1	C5S-22	C71960	N N	3/5/2009	0.5-1	X	X				1		-
C5S-EU1	C5S-23	C71962	N	3/5/2009	0-0.5	X	X						
C5S-EU1	C5S-23	C71963	N	3/5/2009	0.5-1	Х	Х						
C5S-EU1	C5S-24	C71965	N	3/5/2009	0-0.5	Χ	Х						
C5S-EU1	C5S-24	C71966	N	3/5/2009	0.5-1	X	X				-		
C5S-EU1	C5S-25 C5S-25	C71968 C71969	N FD	3/5/2009 3/5/2009	0-0.5 0-0.5	X	X	Х			1		
C5S-EU1	C5S-25	C71970	N	3/5/2009	0.5-1	X	X	Х					
C5S-EU1	C5S-25	C71971	FD	3/5/2009	0.5-1	X	X						
C5S-EU1	C5S-26	C71974	N	3/5/2009	0-0.5	Χ	Х						
C5S-EU1	C5S-26	C71975	N	3/5/2009	0.5-1	Χ	Х						
C5S-EU1	C5S-27	C71977	N N	2/23/2009	0-0.5	X	X		X		1		
C5S-EU1	C5S-27 C5S-28	C71978 C71980	N N	2/23/2009 3/5/2009	0.5-1 0-0.5	X	X		X		+	1	
C5S-EU1	C5S-28	C71981	N N	3/5/2009	0.5-1	X	X				1	1	
C5S-EU1	C5S-29	C71983	N	3/5/2009	0-0.5	X	X				L		
C5S-EU1	C5S-29	C71984	N	3/5/2009	0.5-1	Χ	Х						
C5S-EU1	C5S-30	C71986	N	3/5/2009	0-0.5	Х	X						
C5S-EU1	C5S-30	C71987	N N	3/5/2009	0.5-1	X	X				1		
C5S-EU1	C5S-31 C5S-31	C71989 C71990	N N	2/21/2009 2/21/2009	0-0.5 0.5-1	X	X				+	-	
C5S-EU1	C5S-31	C71990	N	2/21/2009	0-0.5	X	X	Х		Х	1	1	
C5S-EU1	C5S-32	C71993	N	2/22/2009	0.5-1	X	X				1		
C5S-EU1	C5S-33	C71995	N	2/22/2009	0-0.5	Χ	Х						
C5S-EU1	C5S-33	C71996	N	2/22/2009	0.5-1	X	X						
C5S-EU1	C5S-34	C71998	N	2/22/2009	0-0.5	X	X				1	<u> </u>	
C5S-EU1	C5S-34 C5S-35	C71999 C72001	N N	2/22/2009 2/22/2009	0.5-1 0-0.5	X	X	Х		Х	+	1	
C5S-EU1	C5S-35	C72001	N N	2/22/2009	0.5-1	X	X	^		^	+	<u> </u>	
C5S-EU1	C5S-36	C72004	N	2/22/2009	0-0.5	X	X	Х		Х	1		
C5S-EU1	C5S-36	C72005	N	2/22/2009	0.5-1	Х	Х						
C5S-EU1	C5S-37	C72007	N	2/22/2009	0-0.5	Χ	Х		Χ				
C5S-EU1	C5S-37	C72008	N	2/22/2009	0.5-1	X	X		Х		1		
C5S-EU1	C5S-38	C72010	N N	2/22/2009	0-0.5	X	X				+	 	
C5S-EU1	C5S-38 C5S-39	C72011 C72013	N N	2/22/2009 2/22/2009	0.5-1 0-0.5	X	X				+	1	
C5S-EU1	C5S-39	C72013	N	2/22/2009	0.5-1	X	X				1	1	
C5S-EU1	C5S-40	C72016	N	2/22/2009	0-0.5	X	X				1		

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

				Ī	l I				Analyses				
Exposure			Sample	Collection	Depth			РСВ	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C5S-EU1	C5S-40	C72017	N	2/22/2009	0.5-1	Χ	Х						
C5S-EU1	C5S-41	C72019	N	2/22/2009	0-0.5	Χ	Х						
C5S-EU1	C5S-41	C72020	N	2/22/2009	0.5-1	X	X				1		
C5S-EU1	C5S-42	C72022 C72023	N N	2/22/2009 2/22/2009	0-0.5 0.5-1	X	X						
C5S-EU1	C5S-42 C5S-43	C72025	N N	2/23/2009	0-0.5	X	X						
C5S-EU1	C5S-43	C72026	N	2/23/2009	0.5-1	X	X						
C5S-EU1	C5S-44	C72028	N	2/23/2009	0-0.5	Х	Х						
C5S-EU1	C5S-44	C72029	N	2/23/2009	0.5-1	Χ	Х						
C5S-EU1	C5S-45	C72031	N	2/22/2009	0-0.5	X	X						
C5S-EU1	C5S-45 C5S-46	C72032 C72034	N N	2/22/2009 2/22/2009	0.5-1 0-0.5	X	X	Х		Х			
C5S-EU1	C5S-46	C72035	N	2/22/2009	0.5-1	X	X	^		^			
C5S-EU1	C5S-47	C72037	N	2/22/2009	0-0.5	X	X		Х				
C5S-EU1	C5S-47	C72038	N	2/22/2009	0.5-1	Χ	Х		Χ				
C5S-EU1	C5SF-01	C72040	N	2/24/2009	0-0.5	X	X				ļ		
C5S-EU1	C5SF-01	C72041	FD	2/24/2009	0-0.5	X	Х						
C5S-EU1	C5SF-01 C5SF-01	C72042 C72043	N FD	2/24/2009 2/24/2009	0.5-1 0.5-1	X							
C5S-EU1	C5SF-02	C72044	N	2/24/2009	0-0.5	X	Х						
C5S-EU1	C5SF-02	C72045	N	2/24/2009	0.5-1	X	<u> </u>				L		
C5S-EU1	C5SF-03	C72046	N	2/23/2009	0-0.5	Χ	Х						
C5S-EU1	C5SF-03	C72047	N	2/23/2009	0.5-1	X	ļ						
C5S-EU1	C5SF-04 C5SF-04	C72048 C72049	N N	2/23/2009	0-0.5 0.5-1	X	Х				1	1	
C5S-EU1	C5SF-04 C5SF-05	C72049 C72050	N N	2/23/2009 2/24/2009	0.5-1	X	Х					1	
C5S-EU1	C5SF-05	C72050	N	2/24/2009	0.5-1	X	^						
C5S-EU1	C5SF-06	C72052	N	2/23/2009	0-0.5	Х	Х						
C5S-EU1	C5SF-06	C72053	N	2/23/2009	0.5-1	Χ							
C5S-EU1	C5SF-07	C72054	N	2/24/2009	0-0.5	X	Х						
C5S-EU1	C5SF-07	C72055	N N	2/24/2009	0.5-1 0-0.5	X	Х				1		
C5S-EU1	C5SF-08 C5SF-08	C72056 C72057	N N	2/23/2009 2/23/2009	0.5-1	X	^				1		
C5S-EU1	C5SF-09	C72058	N	2/23/2009	0-0.5	X	Х						
C5S-EU1	C5SF-09	C72059	N	2/23/2009	0.5-1	Х							
C5S-EU1	C5SF-10	C72060	N	2/23/2009	0-0.5	Χ	Х						
C5S-EU1	C5SF-10	C72061	N	2/23/2009	0.5-1	X					1		
C5S-EU1	C5SF-11 C5SF-11	C72062 C72063	N N	2/23/2009 2/23/2009	0-0.5 0.5-1	X	Х				1		
C5S-EU1	C5SF-11	C72064	N N	2/23/2009	0-0.5	X	Х						
C5S-EU1	C5SF-12	C72065	N	2/23/2009	0.5-1	X	,						
C5S-EU1	C5SF-13	C72066	N	2/21/2009	0-0.5	Χ	Х						
C5S-EU1	C5SF-13	C72067	N	2/21/2009	0.5-1	Χ							
C5S-EU1	C5SF-14	C72068	N	2/21/2009	0-0.5	X	Х						
C5S-EU1	C5SF-14 C5SF-15	C72069 C72070	N N	2/21/2009 2/21/2009	0.5-1 0-0.5	X	X				-		
C5S-EU1	C5SF-15	C72071	N	2/21/2009	0.5-1	X	^				1		
C5S-EU1	C5SF-16	C72072	N	2/21/2009	0-0.5	Х	Х						
C5S-EU1	C5SF-16	C72073	N	2/21/2009	0.5-1	Χ							
C5S-EU1	C5SF-17	C72074	N	2/21/2009	0-0.5	X	Х						
C5S-EU1	C5SF-17	C72075	N	2/21/2009	0.5-1	X					1		
C5S-EU1	C5SF-18 C5SF-18	C72076 C72077	N N	2/21/2009 2/21/2009	0-0.5 0.5-1	X	Х				1	1	
C5S-EU1	C5SF-19	C72078	N	2/22/2009	0-0.5	X	Х						
C5S-EU1	C5SF-19	C72079	N	2/22/2009	0.5-1	Χ							
C5S-EU1	C5SF-20	C72080	N	2/22/2009	0-0.5	X	Х		Х				
C5S-EU1	C5SF-20	C72081	N	2/22/2009	0.5-1	X	.,				1		
C6N-EU1	C6N-01 C6N-01	C72082 C72083	N N	3/10/2009 3/10/2009	0-0.5 0.5-1	X	X				1	 	
C6N-EU1	C6N-01	C72085	N	3/10/2009	0-0.5	X	X				 	1	
C6N-EU1	C6N-02	C72086	N	3/10/2009	0.5-1	X	X						
C6N-EU1	C6N-03	C72088	N	3/10/2009	0-0.5	Х	Х						
C6N-EU1	C6N-03	C72089	FD	3/10/2009	0-0.5	X	X						
C6N-EU1	C6N-03	C72090	N ED	3/10/2009	0.5-1	X	X				1		
C6N-EU1	C6N-03 C6N-04	C72091 C72094	FD N	3/10/2009 3/9/2009	0.5-1 0-0.5	X	X				1	1	
C6N-EU1	C6N-04	C72095	N	3/9/2009	0.5-1	X	X					1	
C6N-EU1	C6N-05	C72097	N	3/9/2009	0-0.5	X	X	Х		Х			
C6N-EU1	C6N-05	C72098	N	3/9/2009	0.5-1	Χ	Х	X		X			
C6N-EU1	C6N-06	C72100	N	3/9/2009	0-0.5	X	Х						
C6N-EU1	C6N-06	C72101	N N	3/9/2009	0.5-1	X	X				-	1	
C6N-EU1	C6N-07 C6N-07	C72103 C72104	N N	3/10/2009 3/10/2009	0-0.5 0.5-1	X	X	Х		Х		1	
C6N-EU1	C6N-07	C72104 C72106	N N	3/10/2009	0.5-1	X	X				1		
C6N-EU1	C6N-08	C72107	N	3/10/2009	0.5-1	X	X						
C6N-EU1	C6N-09	C72109	N	3/10/2009	0-0.5	Χ	Х	Х		X			
C6N-EU1	C6N-09	C72110	N	3/10/2009	0.5-1	X	X						
C6N-EU1	C6N-10	C72112	N	3/10/2009	0-0.5	Х	Х		Χ				<u> </u>

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

1			1	<u> </u>					A b				
Exposure			Sample	Collection	Depth			PCB	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C6N-EU1	C6N-10	C72113	N	3/10/2009	0.5-1	Х	Х		Х				
C6N-EU1	C6N-11	C72115	N	3/10/2009	0-0.5	Χ	X						
C6N-EU1	C6N-11	C72116	N	3/10/2009	0.5-1	X	X				-		
C6N-EU1	C6N-12 C6N-12	C72118 C72119	N N	3/10/2009 3/10/2009	0-0.5 0.5-1	X	X						
C6N-EU1	C6N-13	C72121	N	3/10/2009	0-0.5	X	X						
C6N-EU1	C6N-13	C72122	N	3/10/2009	0.5-1	Χ	Х						
C6N-EU1	C6N-14	C72124	N	3/10/2009	0-0.5	X	X	Х		Х			
C6N-EU1	C6N-14 C6N-15	C72125 C72127	N N	3/10/2009 3/10/2009	0.5-1 0-0.5	X	X				-		
C6N-EU1	C6N-15	C72128	N	3/10/2009	0.5-1	X	X				1		
C6N-EU1	C6N-16	C72130	N	3/10/2009	0-0.5	Χ	Х						
C6N-EU1	C6N-16	C72131	N	3/10/2009	0.5-1	X	X						
C6N-EU1	C6N-17 C6N-17	C72133 C72134	N N	3/10/2009 3/10/2009	0-0.5 0.5-1	X	X				-		
C6N-EU1	C6N-17	C72134	N	3/10/2009	0.5-1	X	X						
C6N-EU1	C6N-18	C72137	N	3/10/2009	0.5-1	X	X						
C6N-EU1	C6N-19	C72139	N	3/10/2009	0-0.5	Χ	X	X		Х			
C6N-EU1	C6N-19	C72140	N	3/10/2009	0.5-1	X	Х				1		
C6N-EU1	C6N-19 C6N-20	C72141 C72142	N N	3/10/2009 3/10/2009	1-2 0-0.5	X	Х	Х	X	X	-		
C6N-EU1	C6N-20	C72142	N	3/10/2009	0.5-1	X	X	^	X	^	1		
C6S-EU1	C6S-01	C72145	N	2/21/2009	0-0.5	X	X		·				
C6S-EU1	C6S-01	C72146	N	2/21/2009	0.5-1	X	X						
C6S-EU1	C6S-02	C72148	N	2/21/2009	0-0.5	X	X				-		
C6S-EU1	C6S-02 C6S-02	C72149 C72150	N N	2/21/2009 2/21/2009	0.5-1 1-2	X	Х				1	1	
C6S-EU1	C6S-03	C72151	N	2/21/2009	0-0.5	X	Х						
C6S-EU1	C6S-03	C72152	N	2/21/2009	0.5-1	Χ	X						
C6S-EU1	C6S-04	C72154	N	2/21/2009	0-0.5	X	X	Х		Х			
C6S-EU1	C6S-04	C72155 C72157	N	2/21/2009 2/21/2009	0.5-1 0-0.5	X	X				1		
C6S-EU1	C6S-05 C6S-05	C72157	N FD	2/21/2009	0-0.5	X	X				1		
C6S-EU1	C6S-05	C72159	N	2/21/2009	0.5-1	X	X						
C6S-EU1	C6S-05	C72160	FD	2/21/2009	0.5-1	Х	Х						
C6S-EU1	C6S-06	C72163	N	2/21/2009	0-0.5	X	X						
C6S-EU1	C6S-06	C72164	N N	2/21/2009	0.5-1 0-0.5	X	X	Х		Х	1		
C6S-EU1	C6S-07	C72166 C72167	N N	2/21/2009 2/21/2009	0-0.5	X	X	X		Х			
C6S-EU1	C6S-08	C72169	N	4/2/2009	0-0.5	X	X						
C6S-EU1	C6S-08	C72170	N	4/2/2009	0.5-1	Х	Х						
C6S-EU1	C6S-09	C72172	N	4/2/2009	0-0.5	X	X	Х		Х			
C6S-EU1	C6S-09 C6S-10	C72173 C72175	N N	4/2/2009 4/2/2009	0.5-1 0-0.5	X	X		Х		-		
C6S-EU1	C6S-10	C72176	N	4/2/2009	0.5-1	X	X		X				
C6S-EU1	C6S-11	C72178	N	4/2/2009	0-0.5	Х	Х						
C6S-EU1	C6S-11	C72179	N	4/2/2009	0.5-1	Χ	X						
C6S-EU1	C6S-12	C72181	N	4/2/2009	0-0.5	X	X				1		
C6S-EU1	C6S-12 C6S-13	C72182 C72184	N N	4/2/2009 2/21/2009	0.5-1 0-0.5	X	X						
C6S-EU1	C6S-13	C72185	N	2/21/2009	0.5-1	X	X						
C6S-EU1	C6S-14	C72187	N	2/21/2009	0-0.5	Х	Х						
C6S-EU1	C6S-14	C72188	N	2/21/2009	0.5-1	Х	X						
C6S-EU1	C6S-15	C72190 C72191	N	2/21/2009 2/21/2009	0-0.5	X	X				-	1	
C6S-EU1	C6S-15 C6S-16	C72191 C72193	N N	2/21/2009	0.5-1 0-0.5	X	X				1	 	
C6S-EU1	C6S-16	C72193	N	2/20/2009	0.5-1	X	X				1		
C6S-EU1	C6S-17	C72196	N	2/20/2009	0-0.5	Χ	Х						
C6S-EU1	C6S-17	C72197	N	2/20/2009	0.5-1	X	Х						
C6S-EU1	C6S-18	C72199	N N	2/20/2009 2/20/2009	0-0.5 0.5-1	X	X				-	1	
C6S-EU1	C6S-18 C6S-19	C72200 C72202	N N	2/20/2009	0.5-1	X	X				1	 	
C6S-EU1	C6S-19	C72202	N	2/20/2009	0.5-1	X	X				1		
C6S-EU1	C6S-20	C72205	N	2/12/2009	0-0.5	Х	Х		Χ				
C6S-EU1	C6S-20	C72206	N	2/12/2009	0.5-1	X	X	,	Χ	.,	1		
C6S-EU1	C6S-21	C72208	N N	2/12/2009	0-0.5	X	X	X		X	-	1	
C6S-EU1	C6S-21 C7N-01	C72209 C70500	N N	2/12/2009 6/21/2007	0.5-1 0-0.5	X	^	Х			1	 	
C7N-EU1	C7N-01	C70501	N	6/21/2007	0.5-1	X					1	<u> </u>	
C7N-EU1	C7N-02	C70502	N	6/21/2007	0-0.5	Χ							
C7N-EU1	C7N-02	C72463	N	6/21/2007	0.5-1	X							
C7N-EU1	C7N-03	C70503	N	6/21/2007	0-0.5	X					-	1	
C7N-EU1 C7N-EU1	C7N-03 C7N-03	C70504 C70505	FD N	6/21/2007 6/21/2007	0-0.5 0.5-1	X					-	-	
C7N-EU1	C7N-03	C70505	N	6/21/2007	0.5-1	X					1		
C7N-EU1	C7N-04	C72464	N	6/21/2007	0.5-1	X	<u> </u>						
C7N-EU1	C7N-05	C70507	N	6/19/2007	0-0.5	Χ							
C7N-EU1	C7N-05	C70508	N	6/19/2007	0.5-1	Χ							

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses				
Exposure			Sample	Collection	Depth			РСВ	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C7N-EU1	C7N-06	C70509	N	6/19/2007	0-0.5	Х							
C7N-EU1	C7N-06	C72453	N	6/19/2007	0.5-1	Х							
C7N-EU1	C7N-07	C70510	N	6/19/2007	0-0.5	X					1		
C7N-EU1	C7N-07 C7N-08	C70511 C70512	N N	6/19/2007 6/19/2007	0.5-1 0-0.5	X					1		
C7N-EU1	C7N-08	C72465	N N	6/19/2007	0.5-1	X					1		
C7N-EU1	C7N-09	C70513	N	6/19/2007	0-0.5	X							
C7N-EU1	C7N-09	C70514	N	6/19/2007	0.5-1	Х							
C7N-EU1	C7N-10	C70515	N	6/19/2007	0-0.5	Χ							
C7N-EU1	C7N-10	C72457	N	6/19/2007	0.5-1	X			.,	.,		.,	.,
C7N-EU1	C7N-11 C7N-11	C70516 C70517	N N	6/21/2007 6/21/2007	0-0.5 0.5-1	X	X	X	X	X	X	X	X
C7N-EU1	C7N-11	C70517	N N	6/21/2007	0-0.5	X	^	^		^	_ ^	^	^
C7N-EU1	C7N-12	C72462	N	6/19/2007	0.5-1	X							
C7N-EU1	C7N-13	C70519	N	6/21/2007	0-0.5	Χ							
C7N-EU1	C7N-13	C70520	N	6/21/2007	0.5-1	X							
C7N-EU1	C7N-14	C70521	N	6/19/2007	0-0.5	X							
C7N-EU1	C7N-14 C7N-15	C72466 C70522	N N	6/19/2007 6/19/2007	0.5-1 0-0.5	X					<u> </u>		
C7N-EU1	C7N-15	C70523	N	6/19/2007	0.5-1	X					1		
C7N-EU1	C7N-15	C70739	N	6/19/2007	1-2	X					1		
C7N-EU1	C7N-16	C70524	N	6/19/2007	0-0.5	Х	<u> </u>						
C7N-EU1	C7N-16	C70525	FD	6/19/2007	0-0.5	Χ							
C7N-EU1	C7N-16	C72467	N	6/19/2007	0.5-1	X							
C7N-EU1	C7N-17	C70526	N	6/19/2007	0-0.5	X					1	ļ	
C7N-EU1	C7N-17 C7N-18	C70527 C70528	N N	6/19/2007 6/19/2007	0.5-1 0-0.5	X					 	-	
C7N-EU1	C7N-18	C72468	N	6/19/2007	0.5-1	X							
C7N-EU1	C7N-19	C70529	N	6/19/2007	0-0.5	X							
C7N-EU1	C7N-19	C70530	N	6/19/2007	0.5-1	Χ							
C7N-EU1	C7N-20	C70531	N	6/20/2007	0-0.5	X	Х	Х	Х	X	Х	Х	Х
C7N-EU1	C7N-20	C72470	N	6/20/2007	0.5-1	X					<u> </u>		
C7N-EU1	C7N-21 C7N-21	C70532 C70533	N N	6/19/2007 6/19/2007	0-0.5 0.5-1	X					<u> </u>		
C7N-EU1	C7N-21	C70534	N N	6/19/2007	0.5-1	X					1		
C7N-EU1	C7N-22	C72471	N	6/19/2007	0.5-1	X					1		
C7N-EU1	C7N-23	C70535	N	6/20/2007	0-0.5	Х							
C7N-EU1	C7N-23	C70536	N	6/20/2007	0.5-1	Χ							
C7N-EU1	C7N-24	C70537	N	6/20/2007	0-0.5	X							
C7N-EU1	C7N-24	C72472	N	6/20/2007	0.5-1	X					<u> </u>		
C7N-EU1	C7N-25 C7N-25	C70538 C70539	N N	6/20/2007 6/20/2007	0-0.5 0.5-1	X					1		
C7N-EU1	C7N-25	C70540	N	6/20/2007	0-0.5	X					1		
C7N-EU1	C7N-26	C72439	N	6/20/2007	0.5-1	X							
C7N-EU1	C7N-27	C70541	N	6/20/2007	0-0.5	Х							
C7N-EU1	C7N-27	C70542	N	6/20/2007	0.5-1	Χ							
C7N-EU1	C7N-28	C70543	N	6/20/2007	0-0.5	X							
C7N-EU1	C7N-28 C7N-29	C72473	N	6/20/2007	0.5-1	X							
C7N-EU1	C7N-29 C7N-29	C70544 C70545	N N	6/20/2007 6/20/2007	0-0.5 0.5-1	X							
C7N-EU1	C7N-29	C70546	FD	6/20/2007	0.5-1	X							
C7N-EU1	C7N-30	C70547	N	6/20/2007	0-0.5	X							
C7N-EU1	C7N-30	C72474	N	6/20/2007	0.5-1	Х							
C7N-EU1	C7N-31	C70548	N	6/20/2007	0-0.5	X	X	Х	X	X	Х	X	X
C7N-EU1	C7N-31	C70549	N	6/20/2007	0.5-1	X	Х	Х	Х	Х	Х	Х	Х
C7N-EU1	C7N-32 C7N-32	C70550 C72475	N N	6/20/2007 6/20/2007	0-0.5 0.5-1	X					 	-	
C7N-EU1	C7N-32	C70551	N N	6/20/2007	0.5-1	X	<u> </u>				1	 	
C7N-EU1	C7N-33	C70552	N	6/20/2007	0.5-1	X							
C7N-EU1	C7N-34	C70553	N	6/20/2007	0-0.5	Χ							
C7N-EU1	C7N-34	C72455	N	6/20/2007	0.5-1	X							
C7N-EU1	C7N-35	C70554	N	6/20/2007	0-0.5	X					ļ		
C7N-EU1	C7N-35 C7N-36	C70555 C70556	N N	6/20/2007 6/20/2007	0.5-1 0-0.5	X	1				1	1	<u> </u>
C7N-EU1	C7N-36	C70556 C72421	N N	6/20/2007	0-0.5	X	1					1	
C7N-EU1	C7N-37	C70557	N	6/20/2007	0-0.5	X					1		
C7N-EU1	C7N-37	C70558	N	6/20/2007	0.5-1	Х	<u> </u>						
C7N-EU1	C7N-38	C70559	N	6/20/2007	0-0.5	Χ							
C7N-EU1	C7N-38	C72447	N	6/20/2007	0.5-1	X					1		
C7N-EU1	C7N-39	C70560	N	6/26/2007	0-0.5	X						1	
C7N-EU1	C7N-39	C70561	N N	6/26/2007	0.5-1	X	1				1	1	
C7N-EU1	C7N-39 C7N-40	C70741 C70562	N N	6/26/2007 6/26/2007	1-2 0-0.5	X	Х	Х	Х	X	Х	Х	Х
C7N-EU1	C7N-40	C72476	N N	6/26/2007	0.5-1	X	_ ^	^	^	^	 ^	^	^
C7N-EU1	C7N-41	C70563	N	6/21/2007	0-0.5	X						1	
C7N-EU1	C7N-41	C70564	N	6/21/2007	0.5-1	Χ							
C7N-EU1	C7N-42	C70565	N	6/20/2007	0-0.5	Х							
C7N-EU1	C7N-42	C72477	N	6/20/2007	0.5-1	Х							

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

				l					Analyses				
Exposure			Sample	Collection	Depth			РСВ	Analyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C7N-EU1	C7N-43	C70566	N	6/20/2007	0-0.5	Χ							
C7N-EU1	C7N-43	C70567	FD	6/20/2007	0-0.5	X							
C7N-EU1	C7N-43	C70568	N	6/20/2007	0.5-1	X							
C7N-EU1	C7N-44 C7N-44	C70569 C72446	N N	6/20/2007 6/20/2007	0-0.5 0.5-1	X							
C7N-EU1	C7N-45	C70570	N	6/20/2007	0-0.5	X							
C7N-EU1	C7N-45	C70571	N	6/20/2007	0.5-1	Х							
C7N-EU1	C7N-46	C70572	N	6/20/2007	0-0.5	Χ							
C7N-EU1	C7N-46	C72456	N	6/20/2007	0.5-1	X							
C7N-EU1	C7N-47 C7N-47	C70573 C70574	N N	6/20/2007 6/20/2007	0-0.5 0.5-1	X					1		
C7N-EU1	C7N-47	C70575	N N	6/20/2007	0.5-1	X		t					
C7N-EU1	C7N-48	C72451	N	6/21/2007	0.5-1	X		1					
C7N-EU1	C7N-49	C70576	N	6/21/2007	0-0.5	Х							
C7N-EU1	C7N-49	C70577	N	6/21/2007	0.5-1	Χ							
C7N-EU1	C7N-50	C70578	N	6/21/2007	0-0.5	X							
C7N-EU1	C7N-50 C7N-51	C72461 C70579	N N	6/21/2007 6/21/2007	0.5-1 0-0.5	X	X	Х	X	X	X	Х	Х
C7N-EU1	C7N-51	C70580	N	6/21/2007	0.5-1	X	X	X	X	X	X	X	X
C7N-EU1	C7N-52	C70581	N	6/21/2007	0-0.5	X							
C7N-EU1	C7N-52	C72437	N	6/21/2007	0.5-1	X							
C7N-EU1	C7N-53	C70582	N	6/21/2007	0-0.5	X							
C7N-EU1	C7N-53	C70583	N	6/21/2007	0.5-1	X					1		
C7N-EU1	C7NF-01 C7NF-01	C72211 C72212	N N	2/12/2009	0-0.5 0.5-1	X	Х				-	1	
C7N-EU1	C7NF-01 C7NF-02	C72212	N N	2/12/2009 2/12/2009	0.5-1	X	X	 				1	
C7N-EU1	C7NF-02	C72214	N	2/12/2009	0.5-1	X							
C7N-EU1	C7NF-03	C72215	N	2/12/2009	0-0.5	Χ	Х	Х		Х			
C7N-EU1	C7NF-03	C72216	N	2/12/2009	0.5-1	Χ							
C7N-EU1	C7NF-04	C72217	N	2/12/2009	0-0.5	X	Х						
C7N-EU1	C7NF-04 C7NF-05	C72218 C72219	N N	2/12/2009 2/12/2009	0.5-1 0-0.5	X	X				-		
C7N-EU1	C7NF-05	C72219 C72220	N N	2/12/2009	0-0.5	X	^	1					
C7N-EU1	C7NF-06	C72221	N	2/12/2009	0-0.5	X	Х	†	Х				
C7N-EU1	C7NF-06	C72222	N	2/12/2009	0.5-1	Х							
C7N-EU1	C7NF-07	C72223	N	2/17/2009	0-0.5	Χ	Х						
C7N-EU1	C7NF-07	C72224	N	2/17/2009	0.5-1	X							
C7N-EU1	C7NF-08 C7NF-08	C72225 C72226	N N	2/17/2009 2/17/2009	0-0.5 0.5-1	X	Х	-				ļ	
C7N-EU1	C7NF-08	C72226	N N	2/17/2009	0-0.5	X	Х				-		
C7N-EU1	C7NF-09	C72228	N	2/17/2009	0.5-1	X							
C7N-EU1	C7NF-10	C72229	N	2/17/2009	0-0.5	Х	Х						
C7N-EU1	C7NF-10	C72230	N	2/17/2009	0.5-1	Χ							
C7N-EU1	C7NF-11	C72231	N	2/17/2009	0-0.5	X	Х						
C7N-EU1	C7NF-11 C7NF-12	C72232 C72233	N N	2/17/2009 2/17/2009	0.5-1 0-0.5	X	Х						
C7N-EU1	C7NF-12	C72234	N	2/17/2009	0.5-1	X	^						
C7N-EU1	C7NF-13	C72235	N	2/17/2009	0-0.5	X	Х						
C7N-EU1	C7NF-13	C72236	N	2/17/2009	0.5-1								
C7N-EU1	C7NF-14	C72237	N	2/17/2009	0-0.5	X	Х	Х		Х			
C7N-EU1	C7NF-14	C72238	N N	2/17/2009	0.5-1	X	-				-	1	
C7N-EU1	C7NF-15 C7NF-15	C72239 C72240	N N	2/17/2009 2/17/2009	0-0.5 0.5-1	X	Х				+	-	
C7N-EU1	C7NF-16	C72241	N	2/17/2009	0-0.5	X	Х		Х		1		
C7N-EU1	C7NF-16	C72242	N	2/17/2009	0.5-1	X						<u> </u>	
C7N-EU1	C7NF-17	C72243	N	2/17/2009	0-0.5	Χ	Х	Х		X			
C7N-EU1	C7NF-17	C72244	N	2/17/2009	0.5-1	X					1		
C7N-EU1	C7NF-18 C7NF-18	C72247 C72248	N N	2/11/2009 2/11/2009	0-0.5 0.5-1	X	Х				-	-	
C7N-EU1	C7NF-18 C7NF-19	C72248	N N	2/11/2009	0.5-1	X	Х				+		
C7N-EU1	C7NF-19	C72246	N	2/11/2009	0.5-1	X	<u> </u>				1		
C7N-EU1	C7NF-20	C72249	N	2/11/2009	0-0.5	X	Х	Х		Х			
C7N-EU1	C7NF-20	C72250	FD	2/11/2009	0-0.5	X	Х	Х		Х			
C7N-EU1	C7NF-20	C72251	N	2/11/2009	0.5-1	X	1				1	-	
C7N-EU1 C7S-EU1	C7NF-20 C7S-01	C72252 C70584	FD N	2/11/2009 6/28/2007	0.5-1 0-0.5	X	1				+	-	
C7S-EU1	C7S-01	C70585	N	6/28/2007	0.5-1	X	1				1	 	
C7S-EU1	C7S-02	C70586	N	6/28/2007	0-0.5	X					1	1	
C7S-EU1	C7S-02	C72478	N	6/28/2007	0.5-1	Χ							
C7S-EU1	C7S-03	C70587	N	6/28/2007	0-0.5	X							
C7S-EU1	C7S-03	C70588	FD	6/28/2007	0-0.5	X	-				1	-	
C7S-EU1	C7S-03 C7S-04	C70589 C70590	N N	6/28/2007 6/27/2007	0.5-1 0-0.5	X	1				+	-	
C7S-EU1	C7S-04	C70590 C72479	N N	6/27/2007	0.5-1	X					1	 	
C7S-EU1	C7S-05	C70591	N	6/27/2007	0-0.5	X					1		
C7S-EU1	C7S-05	C70592	N	6/27/2007	0.5-1	Х							
C7S-EU1	C7S-06	C70593	N	6/27/2007	0-0.5	Х							
C7S-EU1	C7S-06	C72480	N	6/27/2007	0.5-1	Х	1						

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses				
Exposure Unit	Location	Sample ID	Sample Type*	Collection Date	Depth Interval (ft)	PCBs	Mercury	PCB Congeners	Metals	Dioxins/ Furans	VOCs	SVOCs	Pesticides/ Herbicides
C7S-EU1	C7S-07	C70594	N	6/27/2007	0-0.5	Х		Ť					
C7S-EU1	C7S-07	C70595	N	6/27/2007	0.5-1	Χ							
C7S-EU1	C7S-08	C70596	N	6/27/2007	0-0.5	X	Х	Х	Х	Х	Х	Х	Х
C7S-EU1	C7S-08 C7S-09	C72436 C70597	N N	6/27/2007 6/27/2007	0.5-1 0-0.5	X		1					
C7S-EU1	C7S-09	C70598	N	6/27/2007	0.5-1	X							
C7S-EU1	C7S-10	C70599	N	6/27/2007	0-0.5	Χ							
C7S-EU1	C7S-10	C72481	N	6/27/2007	0.5-1	Х							
C7S-EU1	C7S-11 C7S-11	C70600 C70601	N N	6/27/2007 6/27/2007	0-0.5 0.5-1	X					-		
C7S-EU1	C7S-11	C70602	N	6/27/2007	0-0.5	X							
C7S-EU1	C7S-12	C72482	N	6/27/2007	0.5-1	Х							
C7S-EU1	C7S-13	C70603	N	6/27/2007	0-0.5	Χ							
C7S-EU1	C7S-13 C7S-14	C70604	N N	6/27/2007 6/27/2007	0.5-1	X		-					
C7S-EU1	C7S-14	C70605 C72422	N N	6/27/2007	0-0.5 0.5-1	X		t					
C7S-EU1	C7S-15	C70606	N	6/27/2007	0-0.5	X		†					
C7S-EU1	C7S-15	C70607	N	6/27/2007	0.5-1	Χ							
C7S-EU1	C7S-16	C70608	N	6/27/2007	0-0.5	X							
C7S-EU1	C7S-16 C7S-16	C70609 C72432	FD N	6/27/2007 6/27/2007	0-0.5 0.5-1	X					1		
C7S-EU1	C7S-10	C70610	N	6/27/2007	0-0.5	X	Х	Х	Х	Х	Х	Х	Х
C7S-EU1	C7S-17	C70611	N	6/27/2007	0.5-1	Χ	X	X	X	X	X	X	X
C7S-EU1	C7S-18	C70612	N	6/27/2007	0-0.5	Х							
C7S-EU1	C7S-18 C7S-19	C72433 C70613	N N	6/27/2007 6/27/2007	0.5-1 0-0.5	X	<u> </u>				1	 	
C7S-EU1	C7S-19	C70614	N N	6/27/2007	0.5-1	X							
C7S-EU1	C7S-20	C70615	N	6/27/2007	0-0.5	X							
C7S-EU1	C7S-20	C72483	N	6/27/2007	0.5-1	Χ							
C7S-EU1	C7S-21	C70616	N	6/27/2007	0-0.5	X					-		
C7S-EU1	C7S-21 C7S-22	C70617 C70618	N N	6/27/2007 6/27/2007	0.5-1 0-0.5	X		1					
C7S-EU1	C7S-22	C72484	N	6/27/2007	0.5-1	X		†					
C7S-EU1	C7S-23	C70619	N	6/26/2007	0-0.5	Χ							
C7S-EU1	C7S-23	C70620	N	6/26/2007	0.5-1	X							
C7S-EU1	C7S-24 C7S-24	C70621 C72485	N N	6/26/2007 6/26/2007	0-0.5 0.5-1	X					-		
C7S-EU1	C7S-25	C70622	N	6/26/2007	0-0.5	X							
C7S-EU1	C7S-25	C70623	N	6/26/2007	0.5-1	Х							
C7S-EU1	C7S-26	C70624	N	6/26/2007	0-0.5	Χ							
C7S-EU1	C7S-26 C7S-27	C72423 C70625	N N	6/26/2007 6/26/2007	0.5-1 0-0.5	X		-					
C7S-EU1	C7S-27	C70625	N N	6/26/2007	0.5-1	X		t					
C7S-EU1	C7S-28	C70627	N	6/26/2007	0-0.5	X	Х	Х	Х	Х	Х	Х	Х
C7S-EU1	C7S-28	C72452	N	6/26/2007	0.5-1	Χ							
C7S-EU1	C7S-29	C70628	N	6/26/2007	0-0.5	X							
C7S-EU1	C7S-29 C7S-29	C70629 C70630	N FD	6/26/2007 6/26/2007	0.5-1 0.5-1	X					-		
C7S-EU1	C7S-30	C70631	N	6/26/2007	0-0.5	X							
C7S-EU1	C7S-30	C72486	N	6/26/2007	0.5-1	Χ							
C7S-EU1	C7S-31	C70632	N	6/26/2007	0-0.5	X							
C7S-EU1	C7S-31 C7S-32	C70633 C70634	N N	6/26/2007 6/26/2007	0.5-1 0-0.5	X	1				1	 	
C7S-EU1	C7S-32	C72487	N N	6/26/2007	0.5-1	X	1				 		
C7S-EU1	C7S-33	C70635	N	6/26/2007	0-0.5	X						<u> </u>	
C7S-EU1	C7S-33	C70636	N	6/26/2007	0.5-1	X							
C7S-EU1	C7S-34	C70637	N	6/26/2007	0-0.5	X	1				-	-	
C7S-EU1	C7S-34 C7S-35	C72444 C70638	N N	6/26/2007 6/27/2007	0.5-1 0-0.5	X					1	1	
C7S-EU1	C7S-35	C70639	N	6/27/2007	0.5-1	X							
C7S-EU1	C7S-36	C70640	N	6/27/2007	0-0.5	Х							
C7S-EU1	C7S-36	C72488	N	6/27/2007	0.5-1	X				.,	.,	.,	.,
C7S-EU1	C7S-37 C7S-37	C70641 C70642	N N	6/27/2007 6/27/2007	0-0.5 0.5-1	X	X	X	X	X	X	X	X
C7S-EU1	C7S-37	C70745	N	6/27/2007	1-2	X	X	_ ^	X	_^		_^	_^
C7S-EU1	C7S-38	C70643	N	6/27/2007	0-0.5	X							
C7S-EU1	C7S-38	C72489	N	6/27/2007	0.5-1	X							
C7S-EU1	C7S-39	C70644	N N	6/28/2007	0-0.5	X	<u> </u>				-		
C7S-EU1	C7S-39 C7S-40	C70645 C70646	N N	6/28/2007 6/27/2007	0.5-1 0-0.5	X	1				1	1	
C7S-EU1	C7S-40	C72491	N	6/27/2007	0.5-1	X					1		
C7S-EU1	C7S-41	C70647	N	6/28/2007	0-0.5	Χ							
C7S-EU1	C7S-41	C70648	N	6/28/2007	0.5-1	X					1	ļ <u> </u>	
C7S-EU1	C7S-42	C70649	N N	6/28/2007	0-0.5	X	1				1	1	
C7S-EU1	C7S-42 C7S-43	C72424 C70650	N N	6/28/2007 6/27/2007	0.5-1 0-0.5	X					1	1	
C7S-EU1	C7S-43	C70651	FD	6/27/2007	0-0.5	X							
C7S-EU1	C7S-43	C70652	N	6/27/2007	0.5-1	X				<u> </u>	L		

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses	<u> </u>			
Exposure Unit	Location	Sample ID	Sample Type*	Collection Date	Depth Interval (ft)	PCBs	Mercury	PCB Congeners	Metals	Dioxins/ Furans	VOCs	SVOCs	Pesticides/ Herbicides
C7S-EU1	C7S-44	C70653	N	6/28/2007	0-0.5	Χ							
C7S-EU1	C7S-44	C72425	N	6/28/2007	0.5-1	X							
C7S-EU1	C7S-45 C7S-45	C70654 C70655	N N	6/27/2007 6/27/2007	0-0.5 0.5-1	X							
C7S-EU1	C7S-46	C70656	N	6/27/2007	0-0.5	X							
C7S-EU1	C7S-46	C72434	N	6/27/2007	0.5-1	Χ							
C7S-EU1	C7S-47	C70657	N	6/27/2007	0-0.5	X							
C7S-EU1	C7S-47 C7S-48	C70658 C70659	N N	6/27/2007 6/28/2007	0.5-1 0-0.5	X	Х	Х	X	Х	Х	Х	Х
C7S-EU1	C7S-48	C72492	N	6/28/2007	0.5-1	X	_^	^	^	^		^	^
C7S-EU1	C7S-49	C70660	N	6/28/2007	0-0.5	Х							
C7S-EU1	C7S-49	C70661	N	6/28/2007	0.5-1	Х							
C7S-EU1	C7S-50 C7S-50	C70662 C72493	N N	6/26/2007 6/26/2007	0-0.5 0.5-1	X					-		
C7S-EU1	C7S-50	C70663	N N	6/26/2007	0-0.5	X							
C7S-EU1	C7S-51	C70664	N	6/26/2007	0.5-1	X							
C7S-EU1	C7S-52	C70665	N	6/26/2007	0-0.5	Χ							
C7S-EU1	C7S-52	C72460	N	6/26/2007	0.5-1	X							
C7S-EU1	C7S-53 C7S-53	C70666 C70667	N N	6/26/2007 6/26/2007	0-0.5 0.5-1	X					-		
C7S-EU1	C7S-54	C70668	N	6/26/2007	0-0.5	X							
C7S-EU1	C7S-54	C72459	N	6/26/2007	0.5-1	Х							
C7S-EU1	C7S-55	C70669	N	6/26/2007	0-0.5	Х							
C7S-EU1	C7S-55 C7S-56	C70670 C70671	N N	6/26/2007 6/28/2007	0.5-1 0-0.5	X							
C7S-EU1	C7S-56	C70672	FD	6/28/2007	0-0.5	X					1		
C7S-EU1	C7S-56	C72440	N	6/28/2007	0.5-1	X							
C7S-EU1	C7S-57	C70673	N	6/28/2007	0-0.5	Χ	Х	X	Χ	Х	Х	Х	X
C7S-EU1	C7S-57	C70674	N N	6/28/2007	0.5-1	X	X	Х	Х	Х	Х	Х	Х
C7S-EU1	C7SF-01 C7SF-01	C72253 C72254	N N	2/12/2009 2/12/2009	0-0.5 0.5-1	X	Х				-	-	
C7S-EU1	C7SF-02	C72255	N	2/12/2009	0-0.5	X	Х						
C7S-EU1	C7SF-02	C72256	N	2/12/2009	0.5-1	Χ							
C7S-EU1	C7SF-03	C72257	N	2/12/2009	0-0.5	X	Х						
C7S-EU1	C7SF-03 C7SF-04	C72258 C72259	N N	2/12/2009 2/12/2009	0.5-1 0-0.5	X	X				-	-	
C7S-EU1	C7SF-04	C72260	N	2/12/2009	0.5-1	X	^						
C7S-EU1	C7SF-05	C72261	N	2/12/2009	0-0.5	Х	Х						
C7S-EU1	C7SF-05	C72262	N	2/12/2009	0.5-1	Х							
C7S-EU1	C7SF-06 C7SF-06	C72263 C72264	N N	4/7/2009 4/7/2009	0-0.5 0.5-1	X	Х				-		
C7S-EU1	C7SF-06	C72265	N N	2/12/2009	0.5-1	X	Х				1		
C7S-EU1	C7SF-07	C72266	N	2/12/2009	0.5-1	X							
C7S-EU1	C7SF-08	C72267	N	4/7/2009	0-0.5	Χ	Х						
C7S-EU1	C7SF-08	C72268	N N	4/7/2009	0.5-1	X					-		
C7S-EU1	C7SF-09 C7SF-09	C72269 C72270	N N	4/7/2009 4/7/2009	0-0.5 0.5-1	X	Х		X		-	-	
C7S-EU1	C7SF-10	C72271	N	4/7/2009	0-0.5	X	Х						
C7S-EU1	C7SF-10	C72272	FD	4/7/2009	0-0.5	Х	Х						
C7S-EU1	C7SF-10	C72273	N	4/7/2009	0.5-1	X							
C7S-EU1	C7SF-10 C7SF-11	C72274 C72275	FD N	4/7/2009 4/7/2009	0.5-1 0-0.5	X	Х						
C7S-EU1	C7SF-11	C72276	N	4/7/2009	0.5-1	X	^				1		
C7S-EU1	C7SF-12	C72277	N	2/12/2009	0-0.5	X	Х			<u> </u>		<u> </u>	
C7S-EU1	C7SF-12	C72278	N	2/12/2009	0.5-1	X			-				
C7S-EU1	C7SF-13	C72279	N N	2/12/2009	0-0.5	X	Х	Х		Х	-	-	
C7S-EU1	C7SF-13 C7SF-14	C72280 C72281	N N	2/12/2009 2/12/2009	0.5-1 0-0.5	X	X			 	1	1	
C7S-EU1	C7SF-14	C72282	N	2/12/2009	0.5-1	X	_^_						
C7S-EU1	C7SF-15	C72283	N	2/12/2009	0-0.5	Χ	Х	Х		Х			
C7S-EU1	C7SF-15	C72284	N	2/12/2009	0.5-1	X						<u> </u>	
C7S-EU1	C7SF-16 C7SF-16	C72285 C72286	N N	2/12/2009 2/12/2009	0-0.5 0.5-1	X	Х			 	1	1	
C7S-EU1	C7SF-16	C72287	N N	2/12/2009	0.5-1	X	Х			†	1	 	
C7S-EU1	C7SF-17	C72288	N	2/12/2009	0.5-1	X							
C7S-EU1	C7SF-18	C72289	N	2/11/2009	0-0.5	X	Х						
C7S-EU1	C7SF-18	C72290	N N	2/11/2009	0.5-1	X					-	1	
C7S-EU1	C7SF-19 C7SF-19	C72291 C72292	N N	2/11/2009 2/11/2009	0-0.5 0.5-1	X	Х		Х		1	 	
C7S-EU1	C7SF-20	C72293	N	2/11/2009	0-0.5	X	Х						
C7S-EU1	C7SF-20	C72294	N	2/11/2009	0.5-1	Х							
C8N-EU1	C8N-01	C70675	N	6/21/2007	0-0.5	X			-				
C8N-EU1	C8N-01	C70676	N N	6/21/2007	0.5-1	X						-	
C8N-EU1	C8N-02 C8N-02	C70677 C72443	N N	6/21/2007 6/21/2007	0-0.5 0.5-1	X				-	-	-	
C8N-EU1	C8N-02	C70678	N N	6/21/2007	0.5-1	X	1				 	 	
C8N-EU1	C8N-03	C70679	N	6/21/2007	0.5-1	X					L		
C8N-EU1	C8N-04	C70680	N	6/25/2007	0-0.5	Χ							

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

Exposure Control Sample Collection Depth Typer Date Interval (R) PCBs Mercury Congeners Metals Furnace VOC. SCIENCE CONSTRUCT CONTROL CONTRO						1				Analyses	•			
United Decision Sample ID Type Date Interval (ft) PCBs Mercuy Congeners Metals Furans VOC. SCIENCE CREATED N. 6050007 0.5-1	posure			Sample	Collection	Depth			РСВ	Analyses				Pesticides/
CRINCHU CORNO		Location	Sample ID	_			PCBs	Mercury		Metals		VOCs	SVOCs	Herbicides
CON-PUT CON-			C72442		6/25/2007		Χ							
COMPACTIC COMPACE COMPACE N SCENOTION D. 1 X X X X X X X X X														
CSM-EUT CSM-06 C7455												-		
CON-PLUT CON-OT CY0868 N 96250007 0-5 X N N CON-OT CY0885 N 96250007 0-5 X N N CON-OT CY0885 N 96250007 0-5 N N CON-OT CY0885 N N				_										
C98-EU1 C98-07 C70988 N 9625007 0.5-1 X								1						
CRINELID CRIN-08 C77441 N 8026007 0.5-1 X														
CSR-EUT CSR-09 C70687 N 0626007 0-9.5 X			C70686											
CSN-EUT CSN-09														
CSN-EUT CSN-09 C70744 N 6080007 1-2 X									-			1		
CSH-EUT CSH-10 C70688														
CSN-EUT CSN-10								1						
CSN-EUT CSN-														
CSN-EUT CSN-11 CSN-12 C70738 N 6/28/2007 1-2 X X X X X X X X X														
C8N-EUT C8N-12 C70692 N														
CSN-EUT CSN-12 C70683 FD 6262007 O-5 X								V	V		V		V	V
CRN-EUT CRN-T2													X	X
CRN-EUI CRN-13								^	^			^		
C8N-EU1 C8N-13														
C8N-EUI C8N-14 C72431 N 6252007 0.5-1 X	N-EU1	C8N-13	C70695	N	6/25/2007	0.5-1	Х							
C8N-EUI C8N-15														
CRN-EUI CRN-16														
CRN-EUL CRN-16								-				1	-	
CSN-EUI CSN-17 C77020 N 623/2007 O.5-1 X												-	1	
CSN-EUL CSN-17								1						
C8N-EU C8N-18 C70702 N 629/2007 1-2 X														
C8N-EUI C8N-18 C70702 N 6/28/2007 0-0.5 X	N-EU1	C8N-17	C70701	N	6/29/2007	0.5-1	Χ							
C8N-EUI C8N-19 C72458 N 622/2007 O.5-1 X X X X X X X X X														
C8N-EU C8N-19														
C8N-EU C8N-19								V	V	V	V	- V	V	V
CBN-EU CBN-19													X	X
C8N-EU1 C8N-20 C70706 N 6/29/2007 O-0.5 X									^			_ ^	_ ^	
C8N-EU1 C8N-C01 C72767 N 8/4/2011 0-0-5 X X														
C8N-EU1 C8NX-01 C72768 N														
C8N-EU1 C8NX-02 C72769 N														
C8N-EU1 C8NX-02 C72770 N												-		
C8N-EU1 C8N-0.3 C72771 N 84/2011 0-0.5 X X X														
C8N-EU1 C8N-03 C72772 N														
CSN-EU1 CSNX-04 C72774 N 84/2011 0.5-1 X X X X X X X X X														
Can-Eut Canx-04 C72775 N 8/4/2011 0.5-1 X X X X X X X X X														
C8N-EU1 C8NX-04 C72775 FD 8/4/2011 0.5-1 X X X X C8S-EU1 C8S-01 C70706 N 6/28/2007 0-0.5 X N 6/28/2007 0-0.5-1 X N C8S-EU1 C8S-02 C70708 N 6/28/2007 0-0.5 X N 6/28/2007 0-0.5 X N 6/28/2007 0-0.5 X N 6/28/2007 0-0.5 X N 0.85-EU1 C8S-02 C72494 N 6/28/2007 0-0.5 X N 0.85-EU1 C8S-03 C70710 N 6/28/2007 0-5.1 X N 0.85-EU1 C8S-03 C70710 N 6/28/2007 0-5.1 X N 0.85-EU1 C8S-04 C70711 N 6/28/2007 0-5.1 X N 0.85-EU1 C8S-05 C70712 N 6/28/2007 0-5.1 X N 0.85-EU1 C8S-05 C70713 N 6/28/2007 0-5.1 X N <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td>Х</td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td></td>							Х	Х		Х				
C8S-EU1 C8S-01 C70706 N 6/28/2007 0-0.5 X C8S-EU1 C8S-01 C70707 N 6/28/2007 0-5.1 X C8S-EU1 C8S-02 C70708 N 6/28/2007 0-5.5 X C8S-EU1 C8S-02 C72494 N 6/28/2007 0-5.5 X C8S-EU1 C8S-03 C70709 N 6/28/2007 0-5.5 X C8S-EU1 C8S-03 C70709 N 6/28/2007 0-5.5 X C8S-EU1 C8S-04 C70711 N 6/28/2007 0-5.5 X C8S-EU1 C8S-04 C70711 N 6/28/2007 0-5.5 X C8S-EU1 C8S-05 C70712 N 6/28/2007 0-5.1 X C8S-EU1 C8S-05 C70713 N 6/28/2007 0-5.1 X C8S-EU1 C8S-06 C70714 FD 6/28/2007 0-5.1 X C8S-EU1 C8S-06							V	V	-	V		1		
C8S-EU1 C8S-01 C70707 N 6/28/2007 0.5-1 X C8S-EU1 C8S-02 C70708 N 6/28/2007 0-0.5 X C8S-EU1 C8S-02 C72494 N 6/28/2007 0-0.5 X C8S-EU1 C8S-03 C70709 N 6/28/2007 0-0.5 X C8S-EU1 C8S-03 C70710 N 6/28/2007 0-5.1 X C8S-EU1 C8S-04 C72495 N 6/28/2007 0-5.1 X C8S-EU1 C8S-04 C72495 N 6/28/2007 0-5.1 X C8S-EU1 C8S-05 C70712 N 6/28/2007 0-5.1 X C8S-EU1 C8S-05 C70713 N 6/28/2007 0-5.1 X C8S-EU1 C8S-06 C70714 FD 6/28/2007 0-5.1 X C8S-EU1 C8S-06 C70715 N 6/28/2007 0-5.1 X C8S-EU1 C8S-07								X		Х		1		
C8S-EU1 C8S-02 C70708 N 6/28/2007 0-0.5 X C8S-EU1 C8S-02 C72494 N 6/28/2007 0.5-1 X C8S-EU1 C8S-03 C70709 N 6/28/2007 0-0.5 X C8S-EU1 C8S-03 C70710 N 6/28/2007 0-0.5 X C8S-EU1 C8S-04 C70711 N 6/28/2007 0-0.5 X C8S-EU1 C8S-04 C70711 N 6/28/2007 0-0.5 X C8S-EU1 C8S-05 C70712 N 6/28/2007 0-0.5 X C8S-EU1 C8S-05 C70713 N 6/28/2007 0-5-1 X C8S-EU1 C8S-05 C70714 FD 6/28/2007 0-5-1 X C8S-EU1 C8S-06 C70714 FD 6/28/2007 0-5-1 X C8S-EU1 C8S-06 C70715 N 6/28/2007 0-5-1 X C8S-EU1 C8S-07												†	1	
C8S-EU1 C8S-02 C72494 N 6/28/2007 0.5-1 X C8S-EU1 C8S-03 C70709 N 6/28/2007 0-0.5 X C8S-EU1 C8S-03 C70710 N 6/28/2007 0-5.1 X C8S-EU1 C8S-04 C70711 N 6/28/2007 0-5.5 X C8S-EU1 C8S-04 C72495 N 6/28/2007 0-5.5 X C8S-EU1 C8S-05 C70712 N 6/28/2007 0-5.5 X C8S-EU1 C8S-05 C70713 N 6/28/2007 0-5.5 X C8S-EU1 C8S-05 C70714 FD 6/28/2007 0-5.1 X C8S-EU1 C8S-06 C70714 FD 6/28/2007 0-5.5 X C8S-EU1 C8S-06 C72450 N 6/28/2007 0-5.5 X C8S-EU1 C8S-07 C70716 N 6/28/2007 0-5.1 X C8S-EU1 C8S-07														
C8S-EU1 C8S-03 C70710 N 6/28/2007 0.5-1 X C8S-EU1 C8S-04 C70711 N 6/28/2007 0.5-1 X C8S-EU1 C8S-04 C72495 N 6/28/2007 0.5-1 X C8S-EU1 C8S-05 C70712 N 6/28/2007 0-0.5 X C8S-EU1 C8S-05 C70713 N 6/28/2007 0.5-1 X C8S-EU1 C8S-05 C70714 FD 6/28/2007 0.5-1 X C8S-EU1 C8S-06 C70714 FD 6/28/2007 0.5-1 X C8S-EU1 C8S-06 C70450 N 6/28/2007 0.5-1 X C8S-EU1 C8S-07 C70716 N 6/28/2007 0.5-1 X C8S-EU1 C8S-07 C70717 N 6/28/2007 0.5-1 X C8S-EU1 C8S-08 C70748 N 6/28/2007 0.5-1 X C8S-EU1 C8S-09	S-EU1	C8S-02					Χ							
C8S-EU1 C8S-04 C70711 N 6/28/2007 0-0.5 X C8S-EU1 C8S-04 C72495 N 6/28/2007 0.5-1 X C8S-EU1 C8S-05 C70712 N 6/28/2007 0-0.5 X C8S-EU1 C8S-05 C70713 N 6/28/2007 0-5-1 X C8S-EU1 C8S-05 C70714 FD 6/28/2007 0.5-1 X C8S-EU1 C8S-06 C70715 N 6/28/2007 0-5-1 X C8S-EU1 C8S-06 C70715 N 6/28/2007 0-5 X C8S-EU1 C8S-06 C72450 N 6/28/2007 0-0.5 X C8S-EU1 C8S-07 C70716 N 6/28/2007 0-0.5 X C8S-EU1 C8S-07 C70717 N 6/28/2007 0-0.5 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09														
C8S-EU1 C8S-04 C72495 N 6/28/2007 0.5-1 X C8S-EU1 C8S-05 C70712 N 6/28/2007 0-0.5 X C8S-EU1 C8S-05 C70713 N 6/28/2007 0.5-1 X C8S-EU1 C8S-05 C70714 FD 6/28/2007 0.5-1 X C8S-EU1 C8S-06 C70715 N 6/28/2007 0-0.5 X C8S-EU1 C8S-06 C72450 N 6/28/2007 0.5-1 X C8S-EU1 C8S-07 C70716 N 6/28/2007 0.5-1 X C8S-EU1 C8S-07 C70717 N 6/28/2007 0.5-1 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0.5-1 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0.5-1 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0.5-1 X C8S-EU1 C8S-09								1				1	-	
C8S-EU1 C8S-05 C70712 N 6/28/2007 0-0.5 X C8S-EU1 C8S-05 C70713 N 6/28/2007 0.5-1 X C8S-EU1 C8S-05 C70714 FD 6/28/2007 0.5-1 X C8S-EU1 C8S-06 C70715 N 6/28/2007 0-0.5 X C8S-EU1 C8S-06 C72450 N 6/28/2007 0-5-1 X C8S-EU1 C8S-07 C70716 N 6/28/2007 0-5-1 X C8S-EU1 C8S-07 C70717 N 6/28/2007 0-5-1 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0-5-1 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0-5-1 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0-5-1 X C8S-EU1 C8S-09 C70719 N 6/28/2007 0-5-1 X C8S-EU1 C8S-09													1	
C8S-EU1 C8S-05 C70713 N 6/28/2007 0.5-1 X C8S-EU1 C8S-05 C70714 FD 6/28/2007 0.5-1 X C8S-EU1 C8S-06 C70715 N 6/28/2007 0-0.5 X C8S-EU1 C8S-06 C72450 N 6/28/2007 0-0.5 X C8S-EU1 C8S-07 C70716 N 6/28/2007 0-0.5 X C8S-EU1 C8S-07 C70717 N 6/28/2007 0-5-1 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0-5-1 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0-5-1 X								1				1	1	
C8S-EU1 C8S-05 C70714 FD 6/28/2007 0.5-1 X C8S-EU1 C8S-06 C70715 N 6/28/2007 0-0.5 X C8S-EU1 C8S-06 C72450 N 6/28/2007 0-0.5 X C8S-EU1 C8S-07 C70716 N 6/28/2007 0-0.5 X C8S-EU1 C8S-07 C70717 N 6/28/2007 0-0.5 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0-0.5 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0-0.5 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70719 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70720 N 6/28/2007 0-0.5 X C8S-EU1 C8S-10 C70721 N 6/28/2007 0-0.5 X C8S-EU1 C8S-11													1	
C8S-EU1 C8S-06 C72450 N 6/28/2007 0.5-1 X C8S-EU1 C8S-07 C70716 N 6/28/2007 0-0.5 X C8S-EU1 C8S-07 C70717 N 6/28/2007 0.5-1 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0.5-1 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0-0.5 X C8S-EU1 C8S-08 C72496 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70719 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70720 N 6/28/2007 0-5.1 X C8S-EU1 C8S-10 C70721 N 6/28/2007 0-5.1 X C8S-EU1 C8S-10 C72449 N 6/28/2007 0-5.1 X C8S-EU1 C8S-11 C70722 N 6/28/2007 0-5.1 X C8S-EU1 C8S-11							Χ							
C8S-EU1 C8S-07 C70716 N 6/28/2007 0-0.5 X C8S-EU1 C8S-07 C70717 N 6/28/2007 0.5-1 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0-0.5 X C8S-EU1 C8S-08 C72496 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70719 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70720 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70721 N 6/28/2007 0-0.5 X C8S-EU1 C8S-10 C70721 N 6/28/2007 0-0.5 X C8S-EU1 C8S-10 C70724 N 6/28/2007 0-0.5 X C8S-EU1 C8S-11 C70723 N 6/28/2007 0-0.5 X C8S-EU1 C8S-12 C70724 N 6/29/2007 0-0.5 X X X X <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>														
C8S-EU1 C8S-07 C70717 N 6/28/2007 0.5-1 X C8S-EU1 C8S-08 C70718 N 6/28/2007 0-0.5 X C8S-EU1 C8S-08 C72496 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70719 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70720 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70721 N 6/28/2007 0-5.1 X C8S-EU1 C8S-10 C70721 N 6/28/2007 0-0.5 X C8S-EU1 C8S-10 C707249 N 6/28/2007 0-0.5 X C8S-EU1 C8S-11 C70722 N 6/28/2007 0-0.5 X C8S-EU1 C8S-11 C70723 N 6/28/2007 0-0.5 X C8S-EU1 C8S-12 C70724 N 6/29/2007 0-0.5 X X X C8S-				_								-		
C8S-EU1 C8S-08 C70718 N 6/28/2007 0-0.5 X C8S-EU1 C8S-08 C72496 N 6/28/2007 0.5-1 X C8S-EU1 C8S-09 C70719 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70720 N 6/28/2007 0-5-1 X C8S-EU1 C8S-10 C70721 N 6/28/2007 0-5-1 X C8S-EU1 C8S-10 C72449 N 6/28/2007 0.5-1 X C8S-EU1 C8S-11 C70722 N 6/28/2007 0-5-5 X C8S-EU1 C8S-11 C70722 N 6/28/2007 0-5-1 X C8S-EU1 C8S-11 C70723 N 6/28/2007 0-5-1 X C8S-EU1 C8S-12 C70724 N 6/29/2007 0-0.5 X X X X X X X X X X X X X X								-				1	-	
C8S-EU1 C8S-08 C72496 N 6/28/2007 0.5-1 X C8S-EU1 C8S-09 C70719 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70720 N 6/28/2007 0.5-1 X C8S-EU1 C8S-10 C70721 N 6/28/2007 0-0.5 X												†	1	
C8S-EU1 C8S-09 C70719 N 6/28/2007 0-0.5 X C8S-EU1 C8S-09 C70720 N 6/28/2007 0.5-1 X C8S-EU1 C8S-10 C70721 N 6/28/2007 0-0.5 X C8S-EU1 C8S-10 C72449 N 6/28/2007 0-5-1 X C8S-EU1 C8S-11 C70722 N 6/28/2007 0-0.5 X C8S-EU1 C8S-11 C70723 N 6/28/2007 0.5-1 X C8S-EU1 C8S-12 C70724 N 6/29/2007 0-0.5 X </td <td></td> <td>1</td> <td>1</td> <td></td>												1	1	
C8S-EU1 C8S-10 C70721 N 6/28/2007 0-0.5 X N 6/28/2007 0-0.5 X N 6/28/2007 0.5-1 X N 6/28/2007 0.5-1 X N 8/28/2007 0.5-1 X N 8/28/2007 0-0.5 X N 8/28/2007 0.5-1 X N 8/28/2007 0.5-1 X N 8/28/2007 0.5-1 X <th< td=""><td>S-EU1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	S-EU1													
C8S-EU1 C8S-10 C72449 N 6/28/2007 0.5-1 X X C8S-EU1 C8S-11 C70722 N 6/28/2007 0-0.5 X X X X C8S-EU1 C8S-11 C70723 N 6/28/2007 0.5-1 X														
C8S-EU1 C8S-11 C70722 N 6/28/2007 0-0.5 X C8S-EU1 C8S-11 C70723 N 6/28/2007 0.5-1 X X C8S-EU1 C8S-12 C70724 N 6/29/2007 0-0.5 X														
C8S-EU1 C8S-E11 C70723 N 6/28/2007 0.5-1 X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>								1				1		
C8S-EU1 C8S-12 C70724 N 6/29/2007 0-0.5 X												 		
C8S-EU1 C8S-12 C72438 N 6/29/2007 0.5-1 X Image: Control of the								X	Х	Х	X	X	Х	X
C8S-EU1 C8S-13 C70725 N 6/29/2007 0-0.5 X C8S-EU1 C8S-EU3 C70726 N 6/29/2007 0.5-1 X									,,			†	<u> </u>	
C8S-E11 C8S-13 C70740 N 6/20/2007 1-2 V														
	S-EU1	C8S-13	C70740	N	6/29/2007	1-2	X	1						
C8S-EU1 C8S-14 C70727 N 6/29/2007 0-0.5 X C8S-EU1 C8S-14 C72454 N 6/29/2007 0.5-1 X									 			1	ļ	

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses	•			
Exposure			Sample	Collection	Depth			РСВ	Allalyses	Dioxins/			Pesticides/
Unit	Location	Sample ID	Type*	Date	Interval (ft)	PCBs	Mercury	Congeners	Metals	Furans	VOCs	SVOCs	Herbicides
C8S-EU1	C8S-15	C70728	N	6/29/2007	0-0.5	Χ							
C8S-EU1	C8S-15	C70729	N	6/29/2007	0.5-1	Х							
C8S-EU1	C8S-16 C8S-16	C70730 C72445	N N	6/29/2007 6/29/2007	0-0.5 0.5-1	X					1		
C8S-EU1	C8S-10	C70731	N	6/29/2007	0-0.5	X							
C8S-EU1	C8S-17	C70732	N	6/29/2007	0.5-1	X							
C8S-EU1	C8S-18	C70733	N	6/28/2007	0-0.5	Χ							
C8S-EU1	C8S-18	C72497	N	6/28/2007	0.5-1	X				.,			
C8S-EU1	C8S-19 C8S-19	C70734 C70735	N N	6/29/2007 6/29/2007	0-0.5 0-0.5	Х	Х	Х	Х	Х	X	X	Х
C8S-EU1	C8S-19	C70735	FD	6/29/2007	0-0.5	Х	Х	Х	Х	Х	X	X	Х
C8S-EU1	C8S-19	C70736	N	6/29/2007	0.5-1	Χ	Х	Х	Χ	Х	Х	Х	Х
C8S-EU1	C8S-20	C70737	N	6/28/2007	0-0.5	X					1		
C8S-EU1 C9N-EU1	C8S-20 C9N-01	C72498 C72295	N N	6/28/2007 2/16/2009	0.5-1 0-0.5	X	X	Х		Х			
C9N-EU1	C9N-01	C72296	N	2/16/2009	0.5-1	X	X	X		X			
C9N-EU1	C9N-02	C72298	N	2/16/2009	0-0.5	Х	Х	Х		Х			
C9N-EU1	C9N-02	C72299	N	2/16/2009	0.5-1	Χ	Х	Х		Х			
C9N-EU1	C9N-03	C72301	N	2/16/2009	0-0.5	X	X				-		
C9N-EU1	C9N-03 C9N-04	C72302 C72304	N N	2/16/2009 2/16/2009	0.5-1 0-0.5	X	X				1	1	
C9N-EU1	C9N-04	C72305	N	2/16/2009	0.5-1	X	X					1	
C9N-EU1	C9N-05	C72307	N	2/16/2009	0-0.5	Χ	Х						
C9N-EU1	C9N-05	C72308	N	2/16/2009	0.5-1	Х	X						
C9N-EU1	C9N-06	C72310	N N	2/10/2009	0-0.5	X	X						
C9N-EU1	C9N-06 C9N-07	C72311 C72313	N N	2/10/2009 2/10/2009	0.5-1 0-0.5	X	X				1	1	
C9N-EU1	C9N-07	C72314	N	2/10/2009	0.5-1	X	X	†					
C9N-EU1	C9N-08	C72316	N	2/10/2009	0-0.5	Х	Х						
C9N-EU1	C9N-08	C72317	N	2/10/2009	0.5-1	Χ	Х						
C9N-EU1	C9N-09	C72319	N	2/10/2009	0-0.5	X	X		X		-		
C9N-EU1	C9N-09 C9N-10	C72320 C72322	N N	2/10/2009 2/10/2009	0.5-1 0-0.5	X	X		Х				
C9N-EU1	C9N-10	C72323	N	2/10/2009	0.5-1	X	X	†					
C9N-EU1	C9N-11	C72325	N	2/10/2009	0-0.5	Х	Х						
C9N-EU1	C9N-11	C72326	N	2/10/2009	0.5-1	Χ	Х						
C9N-EU1	C9N-12	C72328	N	2/10/2009	0-0.5	X	X				-		
C9N-EU1	C9N-12 C9N-13	C72329 C72331	N N	2/10/2009 2/10/2009	0.5-1 0-0.5	X	X						
C9N-EU1	C9N-13	C72332	N	2/10/2009	0.5-1	X	X						
C9N-EU1	C9N-14	C72334	N	2/10/2009	0-0.5	Χ	Х						
C9N-EU1	C9N-14	C72335	N	2/10/2009	0.5-1	X	Х						
C9N-EU1	C9N-15 C9N-15	C72337 C72338	N N	2/10/2009 2/10/2009	0-0.5 0.5-1	X	X				1		
C9N-EU1	C9N-15	C72340	N N	2/10/2009	0.5-1	X	X	1			1		
C9N-EU1	C9N-16	C72341	FD	2/10/2009	0-0.5	X	X	†					
C9N-EU1	C9N-16	C72342	N	2/10/2009	0.5-1	Χ	Х						
C9N-EU1	C9N-16	C72343	FD	2/10/2009	0.5-1	X	Х						
C9N-EU1	C9N-17	C72346	N N	2/9/2009	0-0.5	X	X				1		
C9N-EU1	C9N-17 C9N-18	C72347 C72349	N N	2/9/2009 2/9/2009	0.5-1 0-0.5	X	X	 			1	 	
C9N-EU1	C9N-18	C72350	N	2/9/2009	0.5-1	X	X					1	
C9N-EU1	C9N-19	C72352	N	2/9/2009	0-0.5	Χ	Х	Х	Χ	Х			
C9N-EU1	C9N-19	C72353	N	2/9/2009	0.5-1	X	X	Х	Χ	Х	1		
C9N-EU1	C9N-20 C9N-20	C72355 C72356	N N	2/9/2009 2/9/2009	0-0.5 0.5-1	X	X				1	<u> </u>	
C9N-EU1	C9N-20 C9S-01	C72358	N N	2/17/2009	0.5-1	X	X				1		
C9S-EU1	C9S-01	C72359	N	2/17/2009	0.5-1	X	X						
C9S-EU1	C9S-02	C72361	N	2/17/2009	0-0.5	Χ	Х						
C9S-EU1	C9S-02	C72362	N	2/17/2009	0.5-1	X	X	,,,		.,	-	ļ	
C9S-EU1	C9S-03	C72364 C72365	N N	2/17/2009 2/17/2009	0-0.5 0.5-1	X	X	Х		Х	-	1	
C9S-EU1	C9S-03	C72367	N N	2/17/2009	0.5-1	X	X				1		
C9S-EU1	C9S-04	C72368	N	2/10/2009	0.5-1	X	X						
C9S-EU1	C9S-05	C72370	N	2/10/2009	0-0.5	X	X						
C9S-EU1	C9S-05	C72371	N N	2/10/2009	0.5-1	X	X						
C9S-EU1	C9S-06 C9S-06	C72373 C72374	N N	2/10/2009 2/10/2009	0-0.5 0.5-1	X	X				1	-	
C9S-EU1	C9S-07	C72374	N N	2/10/2009	0-0.5	X	X				1	1	
C9S-EU1	C9S-07	C72377	N	2/10/2009	0.5-1	X	X				L		
C9S-EU1	C9S-08	C72379	N	2/10/2009	0-0.5	Χ	Х						
C9S-EU1	C9S-08	C72380	N	2/10/2009	0.5-1	X	X		.,			<u> </u>	
C9S-EU1	C9S-09	C72382	N N	2/11/2009 2/11/2009	0-0.5 0.5-1	X	X		X		-	1	
C9S-EU1	C9S-09 C9S-10	C72383 C72385	N N	2/11/2009	0.5-1 0-0.5	X	X		٨		1	1	
C9S-EU1	C9S-10	C72386	N	2/10/2009	0.5-1	X	X				1		
C9S-EU1	C9S-11	C72388	N	2/11/2009	0-0.5	Χ	Х						
C9S-EU1	C9S-11	C72389	N	2/11/2009	0.5-1	Х	Х						

^{*}Sample Types: FD = Field duplicate sample. N = Primary sample.

									Analyses	3			
Exposure Unit	Location	Sample ID	Sample Type*	Collection Date	Depth Interval (ft)	PCBs	Mercury	PCB Congeners	Metals	Dioxins/ Furans	VOCs	SVOCs	Pesticides/ Herbicides
C9S-EU1	C9S-12	C72391	N	2/11/2009	0-0.5	Х	Х	X		Х			
C9S-EU1	C9S-12	C72392	N	2/11/2009	0.5-1	Х	X						
C9S-EU1	C9S-13	C72394	N	2/11/2009	0-0.5	Х	Х	X		Х			
C9S-EU1	C9S-13	C72395	N	2/11/2009	0.5-1	Х	X						
C9S-EU1	C9S-14	C72397	N	2/11/2009	0-0.5	Х	Х						
C9S-EU1	C9S-14	C72398	N	2/11/2009	0.5-1	Х	X						
C9S-EU1	C9S-15	C72400	N	2/11/2009	0-0.5	Х	Х						
C9S-EU1	C9S-15	C72401	N	2/11/2009	0.5-1	Х	X						
C9S-EU1	C9S-16	C72403	N	2/11/2009	0-0.5	Х	Х						
C9S-EU1	C9S-16	C72404	N	2/11/2009	0.5-1	Х	X						
C9S-EU1	C9S-17	C72406	N	2/11/2009	0-0.5	Х	X						
C9S-EU1	C9S-17	C72407	N	2/11/2009	0.5-1	Х	X						
C9S-EU1	C9S-18	C72409	N	2/11/2009	0-0.5	Х	X						
C9S-EU1	C9S-18	C72410	FD	2/11/2009	0-0.5	Х	X						
C9S-EU1	C9S-18	C72411	N	2/11/2009	0.5-1	Х	X						
C9S-EU1	C9S-18	C72412	FD	2/11/2009	0.5-1	Х	X						
C9S-EU1	C9S-19	C72415	N	2/11/2009	0-0.5	X	Х		Х				
C9S-EU1	C9S-19	C72416	N	2/11/2009	0.5-1	Х	X		X				
C9S-EU1	C9S-20	C72418	N	2/11/2009	0-0.5	X	Х						
C9S-EU1	C9S-20	C72419	N	2/11/2009	0.5-1	Х	X						

TABLE 3-3 2006 NUMBER OF ALABAMA ANGLERS BY TYPE OF FISH TARGETED* ANNISTON PCB SITE OU-4

Type of Fish Targeted	Number of Anglers (thousands)
Crappie	252
Panfish	115
White Bass, Striped Bass, Striped Bass Hybrids	149
Black Bass	312
Catfish, Bullheads	229
Anything	105
Other freshwater fish	52
Total	567

*Source: DOI/DC, 2006.

Note – Details do not add to total because of multiple responses and non-responses.

TABLE 3-4
SUMMARY OF ANALYTES DETECTED IN FISH TISSUE - GROUP A
ANNISTON PCB SITE
OU-4

32596144 B2#105										
Maintum										
Number Analysis										
All Species	CAS		Minimum	Maximum		of Maximum				
5.966919 Ancton-1742	Number	Analyte	Concentration	Concentration	Units	Concentration	Frequency	Limits	Mean	Deviation
110979991					All Species					•
11006865	53469219	Aroclor-1242	5.00E-02	4.70E-01	mg/kg	C60231	36/84	2.00E-02 - 4.00E-01	1.79E-01	1.04E-01
11900144	11097691	Aroclor-1254	9.30E-02	4.80E+00	mg/kg	C60231	84/84	NA	1.02E+00	7.00E-01
32596144 B2#105					mg/kg					
31500006 B2#110 2.086-02 1.906-02										8.07E-02
57480288 BZ2176										
30055271 B2#153 5.50E-02 3.30E-01 mg/sg C00073 1212 NA 1.78E-01 9.00E-02 3.305004 B2#156 3.30E-03 2.30E-01 mg/sg C00073 912 4.00E-03 8.07E-02 8.77E-03 3.20E-01 7.18E-03 3.20E-03 3.20E-01 7.18E-03 3.20E-03 3.20E-01 7.20E-03 3.20E-03 3.20E										
38380064 BZ#156 3.40E-03 2.20E-02 mg/tg C60414 12172 NA 1.25E-02 7.11E-02 2.50E-01 mg/tg C60073 9172 4.00E-03 8.00T-03 8.07E-02 8.27E-02 2.00E-03 1.00E-02 mg/tg C60058 1.20E-03 8.00T-03 8.07E-03 4.50E-03 1.00E-03 1.00E-02 mg/tg C60058 1.20E-03 NA 1.50E-03 4.50E-03 1.00E-03 1.00E-03 mg/tg C60058 12712 NA 1.50E-04 1.50E-03 1.00E-03 1.00E-03 mg/tg C60058 1.20E-03 NA 1.50E-04 1.40E-03 1.00E-03 1.00E-03 1.00E-03 mg/tg C60058 1.20E-03 NA 1.50E-04 1.40E-03 1.00E-03										
35598133										
2051243 DescaPhinospherii 2.00E-03 1.80E-02 mg/lg C80084 12/12 NA 5.78E-03 4.80E-03 1.80E-02 mg/lg C80084 12/12 NA 5.58E-03 4.80E-03 1.80E-02 mg/lg C80084 1.80E-03 NA 5.58E-03 7.84E-01 7.84E-01 1.80E-03 mg/lg C80084 NA 5.88E-00 7.84E-01 7.84E-0										
1338383										
PCB Doxin-like Congener TEQ										
38522489										
1.23.46.7.8+bCDF										
1,2,3,4,7,8+hCDF										
1.2.36.7.8+h:CDF										
19408743										
49321784 1,23,7.8 PeCDD 1,56E-07 2,01E-07 mg/kg C60229 31/2 1,07E-07 1,99E-07 1,46E-07 3,18E-08 1,23,7.8 PeCDF 2,15E-06 mg/kg C60073 17/12 1,99E-07 6,99E-07 1,46E-07 1,46E-07 57117314 2,3.4.7.8 PeCDF 7,32E-07 3,99E-06 mg/kg C60073 17/12 2,13E-07 8,19E-07 1,46E-06 1,07E-06 1,07E-06 1,07E-07 1,27E-07 1,27										
57117314										
3268878										
3901020										
Care										
TAMAGRICAN TAM										
TA440417										
T440439										
TAMANT T		·								
T439921										
7439965 Manganese					- 0					
T439976										
T440622 Vanadium		•								
Bass S3469219										
Aroclor-1242	7440022	vanadum	1.30L-02	3.10L-02		000070	3/12	3.002-02 - 0.002-02	3.04L-02	1.42L-02
11097691	F0400040	A == = 10.40	4.405.04	4.705.04		000004	47/00	2.005.02 4.005.04	4.045.04	4.045.04
11096825										
11100144										
32598144 BZ#105 1.40E-02 5.00E-02 mg/kg C60229 5/5 NA 3.18E-02 1.31E-02 31508006 BZ#118 4.00E-02 1.40E-01 mg/kg C60229 5/5 NA 9.04E-02 3.63E-02 35065271 BZ#153 9.00E-02 2.80E-01 mg/kg C60229 5/5 NA 2.00E-01 7.28E-02 32598133 BZ#77 7.50E-02 1.70E-01 mg/kg C60229 5/5 NA 1.45E-02 4.97E-03 32598133 BZ#77 7.50E-02 1.70E-01 mg/kg C60058 4/5 8.00E-03 8.00E-03 1.11E-01 6.82E-02 2.051243 Decachlorobiphenyl 3.80E-03 1.00E-02 mg/kg C60058 5/5 NA 6.00E-03 2.39E-03 Total Homolog PCB 1.10E+00 2.60E+00 mg/kg C60058 5/5 NA 2.02E+00 6.26E-01 336363 Total PCBs 2.23E-01 9.47E+00 mg/kg C60058 5/5 NA 2.21E+00 6.26E-01 35822469 1.2,3,4,6,7,8+HpCDD 2.74E-07 2.74E-07 mg/kg C60220 1/5 2.34E-07 3.31E-07 2.95E-07 4.04E-08 6.75E-08 1.2,3,4,6,7,8-HpCDF 2.09E-07 2.09E-07 mg/kg C60058 2/5 1.25E-07 3.47E-07 3.65E-08 57117449 1.2,3,6,7,8-HxCDF 1.30E-07 1.54E-07 mg/kg C60058 2/5 1.25E-07 2.02E-07 1.65E-07 6.59E-08 1.9408743 1.2,3,7,8,9+kCDD 2.61E-07 2.61E-07 mg/kg C60020 1/5 1.08E-07 2.02E-07 1.65E-07 6.59E-08 1.00E-07 1.65E-07 1.65E-07 1.65E-07 6.59E-08 1.00E-07 1.65E-07 1.65E-07 1.65E-07 1.65E-07 1.65E-07 1.65E-07 1.65E-07 1.65E-07 6.59E-08 1.2,3,7,8,9+kCDD 2.61E-07 2.61E-07 mg/kg C60020 1/5 1.08E-07 2.02E-07 1.65E-07 6.59E-08 1.2,3,7,8,9+kCDD 2.61E-07 2.61E-07 mg/kg C60020 1/5 1.08E-07 2.02E-07 1.65E-07 6.59E-08 1.2,3,7,8,9+kCDD 2.61E-07 2.61E-07 mg/kg C60020 1/5 1.08E-07 2.02E-07 1.65E-07 6.59E-08 1.2,3,7,8,9+kCDD 2.61E-07 2.61E-07 mg/kg C60020 1/5 1.08E-07 2.02E-07 1.65E-07 6.59E-08 1.2,3,7,8,9+kCDD 2.61E-07 2.61E-07 mg/kg C60020 1/5 1.08E-07 2.02E-07 1.65E-07 6.59E-08 1.2,3,7,8,9+kCDD 2.61E-07 2.61E-07 mg/kg C60020 1/5 1.08E-07 2.02E-07 1.65E-07										
31508006 BZ#118 4.00E-02 1.40E-01 mg/kg C60229 5/5 NA 9.04E-02 3.63E-02 35065271 BZ#153 9.00E-02 2.80E-01 mg/kg C60229 5/5 NA 2.00E-01 7.28E-02 38380084 BZ#156 6.50E-03 1.90E-02 mg/kg C60229 5/5 NA 1.45E-02 4.97E-03 3.2598133 BZ#77 7.50E-02 1.70E-01 mg/kg C60058 4/5 8.00E-03 8.00E-03 1.11E-01 6.82E-02 2.051243 Decachlorobiphenyl 3.80E-03 1.00E-02 mg/kg C60058 4/5 8.00E-03 8.00E-03 1.11E-01 6.82E-02 2.051243 Decachlorobiphenyl 3.80E-03 1.00E-02 mg/kg C60058 5/5 NA 6.00E-03 2.39E-03 1.36363 Total PCBs 2.23E-01 9.47E+00 mg/kg C60058 5/5 NA 2.02E+00 6.26E-01 3.36363 Total PCBs 2.23E-01 9.47E+00 mg/kg C60058 5/5 NA 2.21E+00 1.73E+00 3.5822469 1.2,3,4,6,7,8-HpCDD 2.74E-07 2.74E-07 mg/kg C60220 1/5 2.34E-07 3.31E-07 2.95E-07 4.04E-08 6.7662394 1.2,3,4,6,7,8-HpCDF 2.09E-07 2.09E-07 mg/kg C60220 1/5 1.15E-07 3.07E-07 3.05E-08 7.0648269 1.2,3,4,7,8-HxCDF 1.09E-07 1.56E-07 mg/kg C60058 2/5 1.20E-07 2.02E-07 1.87E-07 7.11E-08 1.9408743 1.2,3,7,8,9-HxCDD 2.61E-07 2.61E-07 mg/kg C60220 1/5 1.08E-07 2.02E-07 1.63E-07 6.59E-08 1.09408743 1.2,3,7,8,9-HxCDD 2.61E-07 2.61E-07 mg/kg C60220 1/5 1.08E-07 2.02E-07 1.63E-07 6.59E-08 1.09408743 1.2,3,7,8,9-HxCDD 2.61E-07 2.61E-07 mg/kg C60220 1/5 1.08E-07 2.02E-07 1.63E-07 6.59E-08 1.00E-07 1.00E-										
35065271 BZ#153 9.00E-02 2.80E-01 mg/kg C60229 5/5 NA 2.00E-01 7.28E-02										
38380084 BZ#156 6.50E-03 1.90E-02 mg/kg C60229 5/5 NA 1.45E-02 4.97E-03 32598133 BZ#77 7.50E-02 1.70E-01 mg/kg C60058 4/5 8.00E-03 - 8.00E-03 1.11E-01 6.82E-02 2051243 Decachlorobiphenyl 3.80E-03 1.00E-02 mg/kg C60058 5/5 NA 6.00E-03 2.39E-03 Total Homolog PCB 1.10E+00 2.60E+00 mg/kg C60058, C60229 5/5 NA 2.02E+00 6.26E-01 1336363 Total PCBs 2.23E-01 9.47E+00 mg/kg C600231 28/28 NA 2.21E+00 1.73E+00 PCB Dioxin-like Congener TEQ 7.55E-06 2.18E-05 mg/kg C60058 5/5 NA 1.57E-05 6.72E-06 35822469 1,2,3,4,6,7,8-HpCDD 2.74E-07 2.74E-07 mg/kg C60020 1/5 2.34E-07 - 3.31E-07 2.95E-07 4.04E-08 67562394 1,2,3,4,7,8-HxCDF 2.09E-0					- 0					
32598133 BZ#77 7.50E-02 1.70E-01 mg/kg C60058 4/5 8.00E-03 - 8.00E-03 1.11E-01 6.82E-02 2051243 Decachlorobiphenyl 3.80E-03 1.00E-02 mg/kg C60058 5/5 NA 6.00E-03 2.39E-03 Total Homolog PCB 1.10E+00 2.60E+00 mg/kg C60058, C60229 5/5 NA 2.02E+00 6.26E-01 1336363 Total PCBs 2.23E-01 9.47E+00 mg/kg C60231 28/28 NA 2.21E+00 1.73E+00 PCB Dioxin-like Congener TEQ 7.55E-06 2.18E-05 mg/kg C60058 5/5 NA 1.57E-05 6.72E-06 35822469 1,2,3,4,6,7,8-HpCDD 2.74E-07 2.74E-07 mg/kg C60220 1/5 2.34E-07 - 3.31E-07 2.95E-07 4.04E-08 67562394 1,2,3,4,6,7,8-HpCDF 2.09E-07 2.09E-07 mg/kg C60220 1/5 1.15E-07 1.98E-07 1.75E-07 3.65E-08 75117449 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
2.051243 Decachlorobiphenyl 3.80E-03 1.00E-02 mg/kg C60058 5/5 NA 6.00E-03 2.39E-03										
Total Homolog PCB 1.10E+00 2.60E+00 mg/kg C60058, C60229 5/5 NA 2.02E+00 6.26E-01 1336363 Total PCBs 2.23E-01 9.47E+00 mg/kg C60231 28/28 NA 2.21E+00 1.73E+00 1										
1336363 Total PCBs 2.23E-01 9.47E+00 mg/kg C60231 28/28 NA 2.21E+00 1.73E+00 PCB Dioxin-like Congener TEQ 7.55E-06 2.18E-05 mg/kg C60058 5/5 NA 1.57E-05 6.72E-06 35822469 1,2,3,4,6,7,8-HpCDD 2.74E-07 2.74E-07 mg/kg C60220 1/5 2.34E-07 - 3.31E-07 2.95E-07 4.04E-08 67562394 1,2,3,4,6,7,8-HpCDF 2.09E-07 2.09E-07 mg/kg C60220 1/5 1.15E-07 - 1.98E-07 1.75E-07 3.65E-08 70648269 1,2,3,4,7,8-HxCDF 1.09E-07 1.54E-07 mg/kg C60058 2/5 1.20E-07 3.47E-07 2.01E-07 9.81E-08 57117449 1,2,3,6,7,8-HxCDF 1.30E-07 1.54E-07 mg/kg C60058 2/5 1.25E-07 - 2.82E-07 1.87E-07 7.11E-08 19408743 1,2,3,7,8,9-HxCDD 2.61E-07 2.61E-07 mg/kg C60220 1/5 1.08E-07 - 2.02E-07 1.63E-07										
PCB Dioxin-like Congener TEQ 7.55E-06 2.18E-05 mg/kg C60058 5/5 NA 1.57E-05 6.72E-06 35822469 1,2,3,4,6,7,8-HpCDD 2.74E-07 2.74E-07 mg/kg C60220 1/5 2.34E-07 - 3.31E-07 2.95E-07 4.04E-08 67562394 1,2,3,4,6,7,8-HpCDF 2.09E-07 2.09E-07 mg/kg C60220 1/5 1.15E-07 - 1.98E-07 1.75E-07 3.65E-08 1,2,3,4,6,7,8-HxCDF 1.09E-07 1.09E-07 mg/kg C60058 2/5 1.20E-07 - 3.47E-07 2.01E-07 9.81E-08 57117449 1,2,3,6,7,8-HxCDF 1.30E-07 1.54E-07 mg/kg C60058 2/5 1.25E-07 - 2.82E-07 1.87E-07 7.1E-08 19408743 1,2,3,7,8,9-HxCDD 2.61E-07 2.61E-07 mg/kg C60220 1/5 1.08E-07 - 2.02E-07 1.63E-07 6.59E-08		· ·								
35822469 1,2,3,4,6,7,8-HpCDD 2.74E-07 2.74E-07 mg/kg C60220 1/5 2.34E-07 - 3.31E-07 2.95E-07 4.04E-08 67562394 1,2,3,4,6,7,8-HpCDF 2.09E-07 2.09E-07 mg/kg C60220 1/5 1.15E-07 - 1.98E-07 1.75E-07 3.65E-08 70648269 1,2,3,4,7,8-HxCDF 1.09E-07 1.86E-07 mg/kg C60058 2/5 1.20E-07 - 3.47E-07 2.01E-07 9.81E-08 57117449 1,2,3,6,78-HxCDF 1.30E-07 1.54E-07 mg/kg C60058 2/5 1.25E-07 - 2.82E-07 1.87E-07 7.11E-08 19408743 1,2,3,7,8,9-HxCDD 2.61E-07 2.61E-07 mg/kg C60220 1/5 1.08E-07 - 2.02E-07 1.63E-07 6.59E-08					- 0					
67562394 1,2,3,4,6,7,8-HpCDF 2.09E-07 2.09E-07 mg/kg C60220 1/5 1.15E-07 - 1.98E-07 1.75E-07 3.65E-08 70648269 1,2,3,4,7,8-HxCDF 1.09E-07 1.86E-07 mg/kg C60058 2/5 1.20E-07 - 3.47E-07 2.01E-07 9.81E-08 57117449 1,2,3,6,7,8-HxCDF 1.30E-07 1.54E-07 mg/kg C60058 2/5 1.25E-07 - 2.82E-07 1.87E-07 7.11E-08 19408743 1,2,3,7,8,9-HxCDD 2.61E-07 2.61E-07 mg/kg C60220 1/5 1.08E-07 - 2.02E-07 1.63E-07 6.59E-08		Ü								
70648269 1,2,3,4,7,8-HxCDF 1.09E-07 1.86E-07 mg/kg C60058 2/5 1.20E-07 - 3.47E-07 2.01E-07 9.81E-08 57117449 1,2,3,6,7,8-HxCDF 1.30E-07 1.54E-07 mg/kg C60058 2/5 1.25E-07 - 2.82E-07 1.87E-07 7.11E-08 19408743 1,2,3,7,8,9-HxCDD 2.61E-07 2.61E-07 mg/kg C60220 1/5 1.08E-07 - 2.02E-07 1.63E-07 6.59E-08										
57117449 1,2,3,6,7,8-HxCDF 1.30E-07 1.54E-07 mg/kg C60058 2/5 1.25E-07 - 2.82E-07 1.87E-07 7.11E-08 19408743 1,2,3,7,8,9-HxCDD 2.61E-07 2.61E-07 mg/kg C60220 1/5 1.08E-07 - 2.02E-07 1.63E-07 6.59E-08										
19408743 1,2,3,7,8,9-HxCDD 2.61E-07 2.61E-07 mg/kg C60220 1/5 1.08E-07 - 2.02E-07 1.63E-07 6.59E-08										7.11E-08
	40321764	1,2,3,7,8-PeCDD			mg/kg				1.51E-07	4.48E-08

TABLE 3-4
SUMMARY OF ANALYTES DETECTED IN FISH TISSUE - GROUP A
ANNISTON PCB SITE
OU-4

· · · · · · · · · · · · · · · · · · ·		1		ı				1	_
CAS Number	Analyte	Minimum Concentration	Maximum Concentration	Units	Location of Maximum Concentration	Detection Frequency ^a	Detection Limits ^b	Arithmetic Mean ^c	Standard Deviation ^c
57117416	1,2,3,7,8-PeCDF	6.28E-07	1.37E-06	mg/kg	C60229	3/5	5.12E-07 - 6.08E-07	7.55E-07	3.48E-07
57117314	2,3,4,7,8-PeCDF	1.09E-06	2.61E-06	mg/kg	C60229	4/5	8.19E-07 - 8.19E-07	1.39E-06	7.03E-07
51207319	2,3,7,8-TCDF	1.00E-05	3.69E-05	mg/kg	C60229	5/5	NA	2.45E-05	1.09E-05
3268879	Octa CDD	1.18E-06	5.22E-06	mg/kg	C60058	3/5	6.34E-07 - 1.26E-06	1.92E-06	1.87E-06
39001020	Octa CDF	2.86E-07	3.61E-07	mg/kg	C60229	3/5	2.27E-07 - 3.60E-07	3.04E-07	5.68E-08
	2,3,7,8-TCDD TEQ	1.59E-06	4.84E-06	mg/kg	C60229	5/5	NA	3.13E-06	1.27E-06
7440382	Arsenic	1.40E-01	1.90E-01	mg/kg	C60058	3/5	5.50E-02 - 1.10E-01	1.33E-01	5.31E-02
7440417	Beryllium	9.60E-03	9.60E-03	mg/kg	C60051	1/5	9.30E-03 - 1.20E-02	1.03E-02	1.16E-03
7440439	Cadmium	9.30E-03	9.30E-03	mg/kg	C60051	1/5	2.50E-03 - 7.80E-03	5.66E-03	3.00E-03
7440473	Chromium	1.10E-01	1.30E-01	mg/kg	C60229	2/5	1.80E-01 - 2.00E-01	1.62E-01	3.96E-02
7439965	Manganese	6.30E-02	8.50E-02	mg/kg	C60058	3/5	7.70E-02 - 9.50E-02	7.80E-02	1.25E-02
7439976	Mercury	2.00E-01	8.70E-01	mg/kg	C60233	28/28	NA	4.16E-01	1.91E-01
7440622	Vanadium	1.90E-02	2.90E-02	mg/kg	C60058	3/5	3.60E-02 - 4.20E-02	2.96E-02	9.56E-03
			•	Catfish					
53469219	Aroclor-1242	1.00E-01	2.30E-01	mg/kg	C60235	5/28	4.00E-02 - 4.00E-01	1.72E-01	8.56E-02
11097691	Aroclor-1254	1.20E-01	2.60E+00	mg/kg	C60243	28/28	NA	1.14E+00	6.03E-01
11096825	Aroclor-1260	2.90E-01	3.20E+00	mg/kg	C60243	28/28	NA NA	1.27E+00	8.62E-01
32598144	BZ#105	1.00E-02	3.30E-02	mg/kg	C60414	2/2	NA NA	2.15E-02	1.63E-02
31508006	BZ#118	2.80E-02	1.10E-01	mg/kg	C60414	2/2	NA NA	6.90E-02	5.80E-02
57465288	BZ#126	1.90E-02	1.90E-02	mg/kg	C60414	1/2	2.40E-03 - 2.40E-03	1.07E-02	1.17E-02
35065271	BZ#153	5.50E-02	3.20E-01	mg/kg	C60414	2/2	NA	1.88E-01	1.87E-01
38380084	BZ#156	3.40E-03	2.30E-02	mg/kg	C60414	2/2	NA NA	1.32E-02	1.39E-02
32598133	BZ#77	1.30E-02	1.30E-02	mg/kg	C60234	1/2	8.00E-03 - 8.00E-03	1.05E-02	3.54E-03
2051243	Decachlorobiphenyl	2.20E-03	1.80E-02	mg/kg	C60414	2/2	NA	1.01E-02	1.12E-02
	Total Homolog PCB	4.80E-01	2.10E+00	mg/kg	C60414	2/2	NA NA	1.29E+00	1.15E+00
1336363	Total PCBs	4.20E-01	5.80E+00	mg/kg	C60243	28/28	NA NA	2.44E+00	1.40E+00
	PCB Dioxin-like Congener TEQ	2.43E-04	1.91E-03	mg/kg	C60414	2/2	NA NA	1.07E-03	1.18E-03
35822469	1,2,3,4,6,7,8-HpCDD	2.24E-07	2.88E-07	mg/kg	C60234	2/2	NA NA	2.56E-07	4.53E-08
67562394	1,2,3,4,6,7,8-HpCDF	1.39E-07	1.39E-07	mg/kg	C60414	1/2	2.64E-07 - 2.64E-07	2.02E-07	8.84E-08
40321764	1,2,3,7,8-PeCDD	1.56E-07	1.69E-07	mg/kg	C60234	2/2	NA NA	1.63E-07	9.19E-09
57117314	2,3,4,7,8-PeCDF	1.63E-06	1.96E-06	mg/kg	C60414	2/2	NA NA	1.80E-06	2.33E-07
51207319	2,3,7,8-TCDF	7.32E-07	1.62E-06	mg/kg	C60234	2/2	NA NA	1.18E-06	6.28E-07
	2,3,7,8-TCDD TEQ	8.87E-07	9.34E-07	mg/kg	C60234	2/2	NA NA	9.10E-07	3.33E-08
7440473	Chromium	1.20E-01	1.90E-01	mg/kg	C60414	2/2	NA NA	1.55E-01	4.95E-02
7439965	Manganese	1.50E-01	2.70E-01	mg/kg	C60414	2/2	NA NA	2.10E-01	8.49E-02
7439976	Mercury	3.10E-02	4.30E-01	mg/kg	C60244	28/28	NA	1.56E-01	9.44E-02
		******		Panfish					
53469219	Aroclor-1242	5.00E-02	4.60E-01	mg/kg	C60258	14/28	2.00E-02 - 2.00E-01	1.72E-01	1.23E-01
11097691	Aroclor-1242 Aroclor-1254	1.20E-01	4.60E-01 2.20E+00	mg/kg	C60258	28/28	2.00E-02 - 2.00E-01 NA	8.48E-01	5.62E-01
11096825	Aroclor-1260	1.50E-01	1.90E+00	mg/kg	C60257	28/28	NA NA	7.13E-01	4.44E-01
32598144	BZ#105	1.50E-01 1.00E-02	1.90E+00 5.30E-02	mg/kg	C60257	28/28 5/5	NA NA	7.13E-01 2.34E-02	1.75E-02
32598144	BZ#105 BZ#118	2.90E-02	1.50E-01	mg/kg	C60073	5/5	NA NA	6.92E-02	4.85E-02
35065271	BZ#118 BZ#153	2.90E-02 5.90E-02	3.20E-01	mg/kg	C60073	5/5	NA NA	1.52E-01	4.85E-02 1.04E-01
38380084	BZ#156	3.80E-03	2.20E-02	mg/kg	C60073	5/5	NA NA	1.01E-02	7.34E-03
32598133	BZ#130	1.80E-02	2.50E-02	mg/kg	C60073	4/5	4.00E-03 - 4.00E-03	7.88E-02	1.03E-01
2051243	Decachlorobiphenyl	2.00E-03	7.00E-03	mg/kg	C60073	5/5	4.00E-03 - 4.00E-03 NA	3.76E-03	2.05E-03
2051243	Total Homolog PCB	6.60E-01	2.40E+00	mg/kg	C60073	5/5	NA NA	1.26E+00	6.90E-01
1336363	Total PCBs	2.70E-01	4.40E+00	mg/kg	C60257	28/28	NA NA	1.69E+00	1.10E+00
1330303	PCB Dioxin-like Congener TEQ	1.96E-06	3.18E-05	mg/kg	C600237	5/5	NA NA	1.10E-05	1.23E-05
35822469	1,2,3,4,6,7,8-HpCDD	1.19E-06	2.40E-06	mg/kg	C60073	2/5	1.51E-07 - 6.31E-07	9.51E-07	8.97E-07
67562394	1,2,3,4,6,7,8-HpCDF	1.89E-07	5.29E-07	-	C60073	3/5	1.36E-07 - 0.31E-07	9.51E-07 2.72E-07	1.52E-07
70648269	1,2,3,4,0,7,0-прСDF 1,2,3,4,7,8-HxCDF	1.35E-07	3.35E-07	mg/kg mg/kg	C60073	2/5	1.26E-07 - 1.83E-07	1.82E-07	8.87E-08
57117449	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HxCDF	2.40E-07	3.35E-07 2.40E-07		C60073	1/5	1.24E-07 - 1.83E-07	1.82E-07 1.65E-07	5.08E-08
57117449	1,2,3,6,7,8-HXCDF 1,2,3,7,8-PeCDF	2.40E-07 2.13E-07	2.40E-07 2.15E-06	mg/kg	C60073	4/5	1.24E-07 - 1.96E-07 1.69E-07 - 1.69E-07	7.47E-07	8.48E-07
				mg/kg					1
57117314	2,3,4,7,8-PeCDF	4.19E-07	3.99E-06	mg/kg	C60073	4/5	2.13E-07 - 2.13E-07	1.40E-06	1.60E-06

TABLE 3-4 SUMMARY OF ANALYTES DETECTED IN FISH TISSUE - GROUP A ANNISTON PCB SITE OU-4

CAS Number	Analyte	Minimum Concentration	Maximum Concentration	Units	Location of Maximum Concentration	Detection Frequency ^a	Detection Limits ^b	Arithmetic Mean ^c	Standard Deviation ^c
51207319	2,3,7,8-TCDF	1.98E-06	9.61E-05	mg/kg	C60073	5/5	NA	2.90E-05	4.13E-05
3268879	Octa CDD	1.63E-06	1.56E-05	mg/kg	C60073	4/5	5.46E-07 - 5.46E-07	5.52E-06	6.06E-06
39001020	Octa CDF	5.96E-07	1.93E-06	mg/kg	C60073	3/5	2.10E-07 - 2.68E-07	7.80E-07	6.99E-07
	2,3,7,8-TCDD TEQ	5.11E-07	1.11E-05	mg/kg	C60073	5/5	NA	3.55E-06	4.64E-06
7440382	Arsenic	6.50E-02	3.80E-01	mg/kg	C60250	5/5	NA	1.47E-01	1.31E-01
7440417	Beryllium	9.00E-03	9.00E-03	mg/kg	C60068	1/5	9.30E-03 - 1.30E-02	1.02E-02	1.60E-03
7440473	Chromium	1.20E-01	1.90E-01	mg/kg	C60072	3/5	1.60E-01 - 1.90E-01	1.68E-01	2.95E-02
7439921	Lead	9.00E-03	2.30E-02	mg/kg	C60072	3/5	9.20E-03 - 9.20E-03	1.35E-02	6.32E-03
7439965	Manganese	2.10E-01	7.50E-01	mg/kg	C60068	5/5	NA	4.80E-01	2.49E-01
7439976	Mercury	5.30E-02	7.00E-01	mg/kg	C60253	28/28	NA	2.70E-01	1.78E-01
7440622	Vanadium	2.70E-02	3.10E-02	mg/kg	C60070	2/5	4.20E-02 - 5.40E-02	4.08E-02	1.17E-02

^aNumber of sampling locations at which analyte was detected compared with total number of sampling locations; duplicates at a location were averaged and considered one sample.

mg/kg = Milligrams per kilogram.

NA = Not applicable.

^bBased on nondetected samples.

^cNondetects were included at the full detection limit.

TABLE 3-5
SUMMARY OF ANALYTES DETECTED IN FISH TISSUE - GROUP B
ANNISTON PCB SITE
OU-4

					Location		.		
CAS		Minimum	Maximum	11.24.	of Maximum	Detection Frequency ^a	Detection Limits ^b	Arithmetic Mean ^c	Standard Deviation ^c
Number	Analyte	Concentration	Concentration	Units	Concentration	Frequency	Lillits	Weari	Deviation
53469219	Aroclor-1242	2.40E-02	2.70E-01	II Species	C60183	32/84	2.00E-02 - 6.00E-01	1.80E-01	1.09E-01
11097691	Aroclor-1242 Aroclor-1254	2.40E-02 8.60E-02	6.10E+00	mg/kg	C60183	78/84	2.00E-02 - 6.00E-01 2.00E-01 - 4.00E-01	1.80E-01 1.12E+00	1.09E-01 1.06E+00
11097691	Aroclor-1254 Aroclor-1260	1.10E-01	5.70E+00	mg/kg	C60185	84/84	2.00E-01 - 4.00E-01 NA	1.12E+00 1.35E+00	1.06E+00 1.19E+00
32598144	BZ#105	1.00E-02	7.00E-02	mg/kg mg/kg	C60183	4/4	NA NA	2.98E-02	2.83E-02
31508006	BZ#103	3.00E-02	1.90E-01	mg/kg	C60183	4/4	NA NA	8.40E-02	7.45E-02
35065271	BZ#116 BZ#153	6.40E-02	4.00E-01	mg/kg	C60183	4/4	NA NA	1.83E-01	1.53E-02
38380084	BZ#133	4.20E-03	3.00E-02	mg/kg	C60183	4/4	NA NA	1.30E-02	1.18E-02
32598133	BZ#77	3.60E-02	5.10E-02	mg/kg	C60366	2/4	4.00E-03 - 1.60E-02	2.68E-02	2.09E-02
2051243	Decachlorobiphenyl	1.30E-03	1.10E-02	mg/kg	C60183	4/4	NA	5.18E-03	4.15E-03
	Total Homolog PCB	6.40E-01	3.90E+00	mg/kg	C60183	4/4	NA NA	1.65E+00	1.55E+00
1336363	Total PCBs	2.36E-01	1.18E+01	mg/kg	C60185	84/84	NA NA	2.51E+00	2.08E+00
	PCB Dioxin-like Congener TEQ	4.09E-06	3.25E-04	mg/kg	C60388	4/4	NA NA	8.68E-05	1.59E-04
35822469	1,2,3,4,6,7,8-HpCDD	2.27E-07	2.27E-07	mg/kg	C60388	1/4	1.57E-07 - 3.76E-07	2.45E-07	9.27E-08
67562394	1,2,3,4,6,7,8-HpCDF	1.82E-07	1.82E-07	mg/kg	C60388	1/4	1.48E-07 - 1.89E-07	1.72E-07	1.81E-08
55673897	1,2,3,4,7,8,9-HpCDF	1.56E-07	1.80E-07	mg/kg	C60388	2/4	1.15E-07 - 1.89E-07	1.60E-07	3.31E-08
70648269	1,2,3,4,7,8-HxCDF	1.20E-07	1.86E-07	mg/kg	C60183	2/4	1.60E-07 - 1.68E-07	1.59E-07	2.79E-08
57117449	1,2,3,6,7,8-HxCDF	1.03E-07	1.03E-07	mg/kg	C60162	1/4	1.76E-07 - 2.34E-07	1.79E-07	5.57E-08
19408743	1,2,3,7,8,9-HxCDD	2.08E-07	2.08E-07	mg/kg	C60366	1/4	1.07E-07 - 1.28E-07	1.40E-07	4.61E-08
57117416	1,2,3,7,8-PeCDF	4.58E-07	8.07E-07	mg/kg	C60183	2/4	2.90E-07 - 3.12E-07	4.67E-07	2.39E-07
57117314	2,3,4,7,8-PeCDF	9.09E-07	1.78E-06	mg/kg	C60183	2/4	5.56E-07 - 1.16E-06	1.10E-06	5.16E-07
51207319	2,3,7,8-TCDF	2.92E-06	1.64E-05	mg/kg	C60183	4/4	NA	8.98E-06	5.84E-06
3268879	Octa CDD	3.91E-06	3.91E-06	mg/kg	C60162	1/4	4.60E-07 - 7.33E-07	1.43E-06	1.65E-06
39001020	Octa CDF	5.35E-07	5.35E-07	mg/kg	C60162	1/4	2.03E-07 - 3.81E-07	3.33E-07	1.58E-07
	2,3,7,8-TCDD TEQ	8.69E-07	2.43E-06	mg/kg	C60183	4/4	NA	1.44E-06	7.10E-07
7440382	Arsenic	1.80E-02	6.90E-02	mg/kg	C60366	3/4	3.10E-02 - 3.10E-02	3.48E-02	2.35E-02
7440473	Chromium	1.30E-01	2.20E-01	mg/kg	C60366	4/4	NA	1.73E-01	3.77E-02
7439921	Lead	6.10E-02	6.10E-02	mg/kg	C60366	1/4	9.30E-03 - 1.10E-02	2.28E-02	2.55E-02
7439965	Manganese	1.80E-01	1.80E-01	mg/kg	C60183	1/4	9.90E-02 - 1.90E-01	1.52E-01	4.16E-02
7439976	Mercury	1.10E-01	1.30E+00	mg/kg	C60371	84/84	NA	4.26E-01	2.78E-01
				Bass					
53469219	Aroclor-1242	6.10E-02	2.70E-01	mg/kg	C60183	10/27	6.00E-02 - 6.00E-01	1.97E-01	1.19E-01
11097691	Aroclor-1254	1.50E-01	6.10E+00	mg/kg	C60185	27/27	NA	1.42E+00	1.14E+00
11096825	Aroclor-1260	1.10E-01	5.70E+00	mg/kg	C60185	27/27	NA	1.45E+00	1.07E+00
32598144	BZ#105	1.00E-02	7.00E-02	mg/kg	C60183	2/2	NA	4.00E-02	4.24E-02
31508006	BZ#118	3.00E-02	1.90E-01	mg/kg	C60183	2/2	NA	1.10E-01	1.13E-01
35065271	BZ#153	6.40E-02	4.00E-01	mg/kg	C60183	2/2	NA	2.32E-01	2.38E-01
38380084	BZ#156	4.20E-03	3.00E-02	mg/kg	C60183	2/2	NA	1.71E-02	1.82E-02
32598133	BZ#77	5.10E-02	5.10E-02	mg/kg	C60366	1/2	1.60E-02 - 1.60E-02	3.35E-02	2.47E-02
2051243	Decachlorobiphenyl	1.30E-03	1.10E-02	mg/kg	C60183	2/2	NA	6.15E-03	6.86E-03
	Total Homolog PCB	6.40E-01	3.90E+00	mg/kg	C60058, C60229	2/2	NA	2.27E+00	2.31E+00
1336363	Total PCBs	3.29E-01	1.18E+01	mg/kg	C60185	27/27	NA	2.94E+00	2.19E+00
	PCB Dioxin-like Congener TEQ	6.62E-06	1.13E-05	mg/kg	C60183	2/2	NA	8.94E-06	3.28E-06
55673897	1,2,3,4,7,8,9-HpCDF	1.56E-07	1.56E-07	mg/kg	C60183	1/2	1.89E-07 - 1.89E-07	1.73E-07	2.33E-08
70648269	1,2,3,4,7,8-HxCDF	1.86E-07	1.86E-07	mg/kg	C60183	1/2	1.68E-07 - 1.68E-07	1.77E-07	1.27E-08
19408743	1,2,3,7,8,9-HxCDD	2.08E-07	2.08E-07	mg/kg	C60366	1/2	1.17E-07 - 1.17E-07	1.63E-07	6.43E-08
57117416	1,2,3,7,8-PeCDF	8.07E-07	8.07E-07	mg/kg	C60183	1/2	2.90E-07 - 2.90E-07	5.49E-07	3.66E-07
57117314	2,3,4,7,8-PeCDF	1.78E-06	1.78E-06	mg/kg	C60183	1/2	5.56E-07 - 5.56E-07	1.17E-06	8.65E-07
51207319	2,3,7,8-TCDF	6.10E-06	1.64E-05	mg/kg	C60183	2/2	NA NA	1.13E-05	7.28E-06
7440292	2,3,7,8-TCDD TEQ	9.84E-07	2.43E-06	mg/kg	C60183	2/2	NA 3.10E.03	1.71E-06	1.02E-06
7440382	Arsenic	6.90E-02	6.90E-02	mg/kg	C60366	1/2	3.10E-02 - 3.10E-02	5.00E-02	2.69E-02
7440473 7439921	Chromium Lead	1.30E-01 6.10E-02	2.20E-01	mg/kg	C60366	2/2	NA 1.10E-02 - 1.10E-02	1.75E-01	6.36E-02
		6.10⊢-02	6.10E-02	mg/kg	C60366	1/2	1.10E-02 - 1.10E-02	3.60E-02	3.54E-02
7439921	Manganese	1.80E-01	1.80E-01	mg/kg	C60183	1/2	1.40E-01 - 1.40E-01	1.60E-01	2.83E-02

TABLE 3-5 SUMMARY OF ANALYTES DETECTED IN FISH TISSUE - GROUP B ANNISTON PCB SITE OU-4

<u> </u>			ı	ı					
CAS Number	Analyte	Minimum Concentration	Maximum Concentration	Units	Location of Maximum Concentration	Detection Frequency ^a	Detection Limits ^b	Arithmetic Mean ^c	Standard Deviation ^c
				Catfish					
53469219	Aroclor-1242	1.30E-01	1.30E-01	mg/kg	C60377	1/28	2.00E-02 - 4.00E-01	2.06E-01	1.25E-01
11097691	Aroclor-1254	8.60E-02	5.50E+00	mg/kg	C60384	22/28	2.00E-01 - 4.00E-01	1.18E+00	1.33E+00
11096825	Aroclor-1260	1.50E-01	5.60E+00	mg/kg	C60376	28/28	NA	1.97E+00	1.47E+00
32598144	BZ#105	1.00E-02	1.00E-02	mg/kg	C60388	1/1	NA	1.00E-02	
31508006	BZ#118	3.40E-02	3.40E-02	mg/kg	C60388	1/1	NA	3.40E-02	
35065271	BZ#153	8.70E-02	8.70E-02	mg/kg	C60388	1/1	NA	8.70E-02	
38380084	BZ#156	5.70E-03	5.70E-03	mg/kg	C60388	1/1	NA	5.70E-03	
32598133	BZ#77	3.60E-02	3.60E-02	mg/kg	C60388	1/1	NA	3.60E-02	
2051243	Decachlorobiphenyl	4.80E-03	4.80E-03	mg/kg	C60388	1/1	NA	4.80E-03	
	Total Homolog PCB	6.40E-01	6.40E-01	mg/kg	C60388	1/1	NA	6.40E-01	
1336363	Total PCBs	2.36E-01	1.08E+01	mg/kg	C60384	28/28	NA	3.09E+00	2.52E+00
	PCB Dioxin-like Congener TEQ	3.25E-04	3.25E-04	mg/kg	C60388	1/1	NA	3.25E-04	
35822469	1,2,3,4,6,7,8-HpCDD	2.27E-07	2.27E-07	mg/kg	C60388	1/1	NA	2.27E-07	
67562394	1,2,3,4,6,7,8-HpCDF	1.82E-07	1.82E-07	mg/kg	C60388	1/1	NA	1.82E-07	
55673897	1,2,3,4,7,8,9-HpCDF	1.80E-07	1.80E-07	mg/kg	C60388	1/1	NA	1.80E-07	
51207319	2,3,7,8-TCDF	2.92E-06	2.92E-06	mg/kg	C60388	1/1	NA	2.92E-06	
	2,3,7,8-TCDD TEQ	8.69E-07	8.69E-07	mg/kg	C60388	1/1	NA	8.69E-07	
7440382	Arsenic	1.80E-02	1.80E-02	mg/kg	C60388	1/1	NA	1.80E-02	
7440473	Chromium	1.80E-01	1.80E-01	mg/kg	C60388	1/1	NA	1.80E-01	
7439976	Mercury	1.10E-01	1.30E+00	mg/kg	C60384	28/28	NA	3.62E-01	2.44E-01
				Panfish					
53469219	Aroclor-1242	2.40E-02	2.50E-01	mg/kg	C60163	21/29	6.00E-02 - 2.00E-01	1.39E-01	6.61E-02
11097691	Aroclor-1254	1.00E-01	2.30E+00	mg/kg	C60163	29/29	NA	7.82E-01	4.76E-01
11096825	Aroclor-1260	1.20E-01	1.80E+00	mg/kg	C60163	29/29	NA	6.57E-01	3.69E-01
32598144	BZ#105	2.90E-02	2.90E-02	mg/kg	C60162	1/1	NA	2.90E-02	
31508006	BZ#118	8.20E-02	8.20E-02	mg/kg	C60162	1/1	NA	8.20E-02	
35065271	BZ#153	1.80E-01	1.80E-01	mg/kg	C60162	1/1	NA	1.80E-01	
38380084	BZ#156	1.20E-02	1.20E-02	mg/kg	C60162	1/1	NA	1.20E-02	
2051243	Decachlorobiphenyl	3.60E-03	3.60E-03	mg/kg	C60162	1/1	NA	3.60E-03	
	Total Homolog PCB	1.40E+00	1.40E+00	mg/kg	C60162	1/1	NA	1.40E+00	
1336363	Total PCBs	2.44E-01	4.35E+00	mg/kg	C60163	29/29	NA	1.55E+00	8.95E-01
	PCB Dioxin-like Congener TEQ	4.09E-06	4.09E-06	mg/kg	C60162	1/1	NA	4.09E-06	
70648269	1,2,3,4,7,8-HxCDF	1.20E-07	1.20E-07	mg/kg	C60162	1/1	NA	1.20E-07	
57117449	1,2,3,6,7,8-HxCDF	1.03E-07	1.03E-07	mg/kg	C60162	1/1	NA	1.03E-07	
57117416	1,2,3,7,8-PeCDF	4.58E-07	4.58E-07	mg/kg	C60162	1/1	NA	4.58E-07	
57117314	2,3,4,7,8-PeCDF	9.09E-07	9.09E-07	mg/kg	C60162	1/1	NA	9.09E-07	
51207319	2,3,7,8-TCDF	1.05E-05	1.05E-05	mg/kg	C60162	1/1	NA	1.05E-05	
3268879	Octa CDD	3.91E-06	3.91E-06	mg/kg	C60162	1/1	NA	3.91E-06	
39001020	Octa CDF	5.35E-07	5.35E-07	mg/kg	C60162	1/1	NA	5.35E-07	
	2,3,7,8-TCDD TEQ	1.49E-06	1.49E-06	mg/kg	C60162	1/1	NA	1.49E-06	
7440382	Arsenic	2.10E-02	2.10E-02	mg/kg	C60162	1/1	NA	2.10E-02	
7440473	Chromium	1.60E-01	1.60E-01	mg/kg	C60162	1/1	NA	1.60E-01	
7439976	Mercury	1.10E-01	5.10E-01	mg/kg	C60166	29/29	NA	2.49E-01	1.02E-01

^aNumber of sampling locations at which analyte was detected compared with total number of sampling locations; duplicates at a location were averaged and considered one sample.

^bBased on nondetected samples.

^cNondetects were included at the full detection limit.

mg/kg = Milligrams per kilogram. NA = Not applicable.

TABLE 3-6
SUMMARY OF ANALYTES DETECTED IN FISH TISSUE - GROUP C
ANNISTON PCB SITE
OU-4

CAS Number	Analyte	Minimum Concentration	Maximum Concentration	Units	Location of Maximum Concentration	Detection Frequency ^a	Detection Limits ^b	Arithmetic Mean ^c	Standard Deviation ^c
				All Species					
53469219	Aroclor-1242	6.10E-02	2.80E+00	mg/kg	C60286	118/193	4.00E-02 - 2.00E+00	4.06E-01	3.23E-01
12672296	Aroclor-1248	ND	ND	ND	-	ND	4.00E-02 - 2.00E+00	2.67E-01	1.87E-01
11097691	Aroclor-1254	1.90E-01	1.20E+01	mg/kg	C60389	187/193	4.00E-02 - 1.00E+00	2.02E+00	1.51E+00
11096825	Aroclor-1260	1.20E-01	2.20E+01	mg/kg	C60389	193/193	NA	2.05E+00	2.00E+00
37324235	Aroclor-1262	ND	ND	ND	-	ND	4.00E-02 - 2.00E+00	2.67E-01	1.87E-01
11100144	Aroclor-1268	ND	ND	ND	-	ND	4.00E-02 - 2.00E+00	2.67E-01	1.87E-01
32598144	BZ#105	6.90E-03	8.60E-02	mg/kg	C60145	20/20	NA	3.77E-02	1.92E-02
74472370	BZ#114	ND	ND	ND	-	ND	3.20E-03 - 1.60E-02	8.96E-03	3.92E-03
31508006	BZ#118	2.30E-02	2.20E-01	mg/kg	C60145	20/20	NA	1.08E-01	5.15E-02
65510443	BZ#123	ND	ND	ND	-	ND	3.20E-03 - 1.60E-02	8.96E-03	3.92E-03
57465288	BZ#126	ND	ND	ND	-	ND	3.20E-03 - 1.60E-02	8.96E-03	3.92E-03
35065271	BZ#153	6.40E-02	4.40E-01	mg/kg	C60145	20/20	NA	2.35E-01	1.12E-01
38380084	BZ#156	4.50E-03	3.40E-02	mg/kg	C60122	19/20	8.00E-03 - 8.00E-03	1.76E-02	8.63E-03
69782907	BZ#157	ND	ND	ND	-	ND	3.20E-03 - 1.60E-02	8.96E-03	3.92E-03
52663726	BZ#167	1.70E-02	1.70E-02	mg/kg	C60097	1/20	6.40E-03 - 3.20E-02	1.80E-02	7.84E-03
32774166	BZ#169	ND	ND	ND	-	ND	3.20E-03 - 1.60E-02	8.96E-03	3.92E-03
39635319	BZ#189	ND	ND	ND	-	ND	3.20E-03 - 1.60E-02	8.96E-03	3.92E-03
32598133	BZ#77	3.80E-02	1.50E-01	mg/kg	C60313	3/20	3.20E-03 - 1.60E-02	2.02E-02	3.27E-02
70362504	BZ#81	ND	ND	ND	-	ND	6.40E-03 - 3.20E-02	1.79E-02	7.85E-03
2051243	Decachlorobiphenyl	3.00E-03	1.80E-02	mg/kg	C60346	20/20	NA	7.04E-03	3.58E-03
25512429	Total Dichlorobiphenyl	7.10E-03	6.70E-02	mg/kg	C60145	19/20	5.00E-03 - 5.00E-03	1.86E-02	1.37E-02
28655712	Total Heptachlorobiphenyl	9.80E-02	6.80E-01	mg/kg	C60145	20/20	NA	3.73E-01	1.85E-01
26601649	Total Hexachlorobiphenyl	2.10E-01	1.40E+00	mg/kg	C60145	20/20	NA	6.45E-01	3.17E-01
27323188	Total Monochlorobiphenyl	1.00E-03	1.90E-02	mg/kg	C60145	19/20	2.00E-03 - 2.00E-03	4.12E-03	4.28E-03
53742077	Total Nonachlorobiphenyl	1.00E-02	8.40E-02	mg/kg	C60346	20/20	NA	3.24E-02	1.74E-02
31472830	Total Octachlorobiphenyl	3.40E-02	2.90E-01	mg/kg	C60346	20/20	NA	1.23E-01	6.66E-02
25429292	Total Pentachlorobiphenyl	9.40E-02	9.60E-01	mg/kg	C60145	20/20	NA NA	4.20E-01	2.21E-01
26914330	Total Tetrachlorobiphenyl	5.60E-02	6.50E-01	mg/kg	C60145	20/20	NA NA	2.88E-01	1.59E-01
25323686	Total Trichlorobiphenyl Total Homolog PCB	3.40E-02 7.00E-01	2.90E-01 4.20E+00	mg/kg	C60298 C60145	20/20 20/20	NA NA	1.21E-01 2.03E+00	6.80E-02 9.29E-01
	Total PCBs			mg/kg		193/193	NA NA		
1336363	Dioxin/furan and PCB Dioxin-like Congener TEQ	2.30E-01 2.42E-06	3.40E+01 1.61E-03	mg/kg	C60389 C60145	193/193	NA NA	4.35E+00 2.60E-04	3.45E+00 5.38E-04
	PCB Dioxin-like Congener TEQ	1.96E-06	1.61E-03	mg/kg	C60145	20/20	NA NA	2.47E-04	5.38E-04 5.26E-04
35822469	1,2,3,4,6,7,8-HpCDD	1.96E-06 1.93E-07	4.09E-06	mg/kg mg/kg	C60145 C60122	5/19	1.32E-07 - 7.40E-07	5.44E-07	5.26E-04 8.77E-07
67562394	1,2,3,4,6,7,8-HpCDF	1.51E-07	9.42E-07	mg/kg	C60122	5/19	9.85E-08 - 1.95E-07	1.97E-07	1.88E-07
55673897	1,2,3,4,7,8,9-HpCDF	1.95E-07	2.71E-07	mg/kg	C60122	2/19	9.35E-08 - 2.11E-07	1.55E-07	4.37E-08
39227286	1,2,3,4,7,8-HxCDD	1.22E-07	2.09E-07	mg/kg	C60196	2/19	1.00E-07 - 2.13E-07	1.45E-07	3.35E-08
70648269	1,2,3,4,7,8-HxCDF	1.45E-07	3.21E-07	mg/kg	C60145	5/19	1.10E-07 - 3.65E-07	1.87E-07	7.15E-08
57653857	1,2,3,6,7,8-HxCDD	2.07E-07	4.08E-07	mg/kg	C60145	4/19	8.54E-08 - 2.31E-07	1.86E-07	7.02E-08
57117449	1,2,3,6,7,8-HxCDF	1.30E-07	2.00E-07	mg/kg	C60145	4/19	1.15E-07 - 2.94E-07	1.76E-07	4.78E-08
19408743	1,2,3,7,8,9-HxCDD	1.77E-07	2.29E-07	mg/kg	C60196	2/19	1.05E-07 - 2.33E-07	1.65E-07	4.26E-08
72918219	1,2,3,7,8,9-HxCDF	ND	ND	ND	-	ND ND	8.31E-08 - 2.50E-07	1.51E-07	4.65E-08
40321764	1,2,3,7,8-PeCDD	2.36E-07	4.97E-07	mg/kg	C60145	4/19	1.00E-07 - 2.05E-07	2.04E-07	1.01E-07
57117416	1,2,3,7,8-PeCDF	2.18E-07	7.65E-07	mg/kg	C60094	5/19	1.05E-07 - 6.26E-07	2.91E-07	1.82E-07
60851345	2,3,4,6,7,8-HxCDF	1.39E-07	1.54E-07	mg/kg	C60145	2/19	8.94E-08 - 2.15E-07	1.52E-07	3.83E-08
57117314	2,3,4,7,8-PeCDF	2.84E-07	2.22E-06	mg/kg	C60145	9/19	1.66E-07 - 8.61E-07	6.96E-07	5.35E-07
1746016	2,3,7,8-TCDD	ND	ND	ND	-	ND	9.47E-08 - 3.35E-07	1.60E-07	5.58E-08
51207319	2,3,7,8-TCDF	3.29E-07	3.05E-06	mg/kg	C60283	15/19	7.31E-07 - 4.75E-06	1.71E-06	1.27E-06
3268879	Octa CDD	1.48E-06	1.14E-04	mg/kg	C60122	10/19	3.80E-07 - 1.84E-06	7.61E-06	2.58E-05
39001020	Octa CDF	2.31E-07	3.72E-06	mg/kg	C60122	3/19	2.02E-07 - 6.33E-07	4.98E-07	7.95E-07
37871004	Total Hepta CDD	1.93E-07	8.30E-06	mg/kg	C60122	6/19	1.32E-07 - 7.66E-07	8.15E-07	1.83E-06
38998753	Total Hepta CDF	2.89E-07	3.37E-06	mg/kg	C60122	5/19	1.05E-07 - 2.03E-07	3.83E-07	7.40E-07
34465468	Total Hexa CDD	2.07E-07	7.07E-07	mg/kg	C60145	4/19	1.18E-07 - 6.69E-07	2.27E-07	1.67E-07
55684941	Total Hexa CDF	3.07E-07	7.30E-07	mg/kg	C60122	5/19	1.13E-07 - 8.19E-07	3.35E-07	2.34E-07
36088229	Total Penta CDD	3.64E-07	4.97E-07	mg/kg	C60145	3/19	1.00E-07 - 2.36E-07	2.04E-07	1.01E-07

TABLE 3-6
SUMMARY OF ANALYTES DETECTED IN FISH TISSUE - GROUP C
ANNISTON PCB SITE
OU-4

CAS Number	Analyte	Minimum Concentration	Maximum Concentration	Units	Location of Maximum Concentration	Detection Frequency ^a	Detection Limits ^b	Arithmetic Mean ^c	Standard Deviation ^c
30402154	Total Penta CDF	6.89E-07	2.34E-06	mg/kg	C60145	9/19	1.70E-07 - 1.49E-06	1.07E-06	6.40E-07
419003575	Total Tetra CDD	ND	ND	ND	-	ND	9.47E-08 - 3.35E-07	1.60E-07	5.58E-08
55722275	Total Tetra CDF	2.41E-07	4.78E-06	mg/kg	C60298	16/19	1.03E-06 - 5.41E-06	2.15E-06	1.68E-06
	2,3,7,8-TCDD TEQ	2.98E-07	1.37E-06	mg/kg	C60145	19/19	NA	6.83E-07	2.59E-07
7440382	Arsenic	1.70E-02	2.40E-01	mg/kg	C60283	11/20	1.70E-02 - 1.40E-01	4.48E-02	5.33E-02
7440393	Barium	1.60E-01	1.70E-01	mg/kg	C60145	2/20	1.50E-01 - 1.00E+00	3.07E-01	2.13E-01
7440417	Beryllium	ND	ND	ND	-	ND	1.00E-02 - 1.70E-02	1.24E-02	1.73E-03
7440439	Cadmium	ND	ND	ND	-	ND	2.70E-03 - 1.30E-02	5.90E-03	3.14E-03
7440473	Chromium	1.30E-01	2.50E-01	mg/kg	C60313	20/20	NA	1.73E-01	2.97E-02
7440484	Cobalt	ND	ND	ND	-	ND 0/00	3.40E-02 - 1.10E-01 9.40E-03 - 1.20E-02	5.40E-02	1.86E-02
7439921	Lead	1.10E-02	3.20E-02	mg/kg	C60313	6/20	3.40E 00 1.20E 02	1.36E-02	6.23E-03
7439965	Manganese	1.60E-01 2.60E-02	1.90E+00 1.90E+00	mg/kg	C60313 C60096	14/20 192/194	8.90E-02 - 2.80E-01 7.10E-02 - 7.30E-02	3.61E-01	4.18E-01 2.95E-01
7439976 7440020	Mercury Nickel	2.60E-02 ND	1.90E+00 ND	mg/kg ND	-	192/194 ND	7.10E-02 - 7.30E-02 5.30E-02 - 6.80E-02	3.91E-01 6.17E-02	4.56E-03
7440020	Vanadium	ND ND	ND ND	ND ND	-	ND ND	3.80E-02 - 6.80E-02 3.80E-02 - 1.60E-01	6.17E-02 5.49E-02	4.56E-03 2.64E-02
7440622	%Lipids Determination	2.00E-01	3.40E+00	ND %	C60135	192/193	1.00E-01 - 1.00E-01	7.31E-01	5.89E-01
	Solids, Percent	1.27E+01	2.41E+01	%	C60109	192/193	NA	2.00E+01	1.66E+00
	Collado, i Cidoria		22.01	Bass	000100	102/102		2.002.01	1.002.00
12674112	Aroclor-1016	ND	ND	ND	-	ND	1.00E-01 - 6.00E-01	2.78E-01	1.24E-01
11104282	Aroclor-1016 Aroclor-1221	ND ND	ND ND	ND ND		ND ND	1.00E-01 - 6.00E-01	2.78E-01	1.24E-01
11141165	Aroclor-1232	ND ND	ND ND	ND ND	-	ND ND	1.00E-01 - 6.00E-01	2.78E-01	1.24E-01
53469219	Aroclor-1232 Aroclor-1242	2.10E-01	2.80E+00	mg/kg	C60286	54/67	2.00E-01 - 6.00E-01	5.01E-01	3.79E-01
12672296	Aroclor-1242 Aroclor-1248	ND	ND	ND	-	ND	1.00E-01 - 6.00E-01	2.78E-01	1.24E-01
11097691	Aroclor-1254	6.30E-01	6.70E+00	mg/kg	C60100	67/67	NA	2.19E+00	1.23E+00
11096825	Aroclor-1260	6.60E-01	8.20E+00	mg/kg	C60100	67/67	NA NA	2.11E+00	1.16E+00
37324235	Aroclor-1262	ND	ND	ND	-	ND	1.00E-01 - 6.00E-01	2.78E-01	1.24E-01
11100144	Aroclor-1268	ND	ND	ND	-	ND	1.00E-01 - 6.00E-01	2.78E-01	1.24E-01
32598144	BZ#105	2.80E-02	6.10E-02	mg/kg	C60122	6/6	NA	4.68E-02	1.17E-02
74472370	BZ#114	ND	ND	ND	-	ND	8.00E-03 - 1.60E-02	9.33E-03	3.27E-03
31508006	BZ#118	8.20E-02	1.70E-01	mg/kg	C60122	6/6	NA	1.39E-01	3.30E-02
65510443	BZ#123	ND	ND	ND	-	ND	8.00E-03 - 1.60E-02	9.33E-03	3.27E-03
57465288	BZ#126	ND	ND	ND	-	ND	8.00E-03 - 1.60E-02	9.33E-03	3.27E-03
35065271	BZ#153	1.80E-01	4.00E-01	mg/kg	C60097	6/6	NA	3.18E-01	8.11E-02
38380084	BZ#156	1.40E-02	3.40E-02	mg/kg	C60122	6/6	NA	2.60E-02	6.69E-03
69782907	BZ#157	ND	ND	ND	-	ND	8.00E-03 - 1.60E-02	9.33E-03	3.27E-03
52663726	BZ#167	1.70E-02	1.70E-02	mg/kg	C60097	1/6	1.60E-02 - 3.20E-02	1.88E-02	6.46E-03
32774166	BZ#169	ND	ND	ND	-	ND	8.00E-03 - 1.60E-02	9.33E-03	3.27E-03
39635319	BZ#189	ND	ND	ND	-	ND	8.00E-03 - 1.60E-02	9.33E-03	3.27E-03
32598133	BZ#77	ND	ND	ND	-	ND	8.00E-03 - 1.60E-02	9.33E-03	3.27E-03
70362504	BZ#81	ND	ND	ND		ND 0/0	1.60E-02 - 3.20E-02	1.87E-02	6.53E-03
2051243	Decachlorobiphenyl	3.60E-03	1.10E-02	mg/kg	C60298	6/6	NA NA	7.03E-03	2.36E-03
25512429 28655712	Total Dichlorobiphenyl Total Heptachlorobiphenyl	1.00E-02 2.50E-01	3.10E-02 6.10E-01	mg/kg	C60298 C60122	6/6 6/6	NA NA	1.87E-02 4.88E-01	7.69E-03 1.31E-01
28655712 26601649	Total Hexachlorobiphenyl	4.00E-01	9.80E-01	mg/kg mg/kg	C60122 C60298	6/6	NA NA	4.88E-01 8.15E-01	1.31E-01 2.15E-01
27323188	Total Monochlorobiphenyl	1.70E-03	5.00E-03	mg/kg	C60298	6/6	NA NA	3.10E-03	1.29E-03
53742077	Total Nonachlorobiphenyl	1.80E-02	4.70E-02	mg/kg	C60298	6/6	NA NA	3.67E-02	1.02E-02
31472830	Total Notachlorobiphenyl	7.80E-02	2.00E-01	mg/kg	C60122	6/6	NA NA	1.60E-01	4.41E-02
25429292	Total Pentachlorobiphenyl	2.60E-01	6.10E-01	mg/kg	C60298	6/6	NA NA	4.88E-01	1.19E-01
26914330	Total Tetrachlorobiphenyl	2.10E-01	5.20E-01	mg/kg	C60298	6/6	NA NA	3.38E-01	1.13E-01
25323686	Total Trichlorobiphenyl	4.90E-02	2.90E-01	mg/kg	C60298	6/6	NA NA	1.65E-01	8.02E-02
	Total Homolog PCB	1.40E+00	3.30E+00	mg/kg	C60058, C60229	6/6	NA NA	2.53E+00	6.19E-01
1336363	Total PCBs	1.63E+00	1.49E+01	mg/kg	C60100	67/67	NA NA	4.75E+00	2.54E+00
	Dioxin/furan and PCB Dioxin-like Congener TEQ	6.07E-06	1.13E-05	mg/kg	C60122	6/6	NA NA	8.61E-06	1.76E-06
	PCB Dioxin-like Congener TEQ	5.00E-06	1.05E-05	mg/kg	C60122	6/6	NA NA	7.84E-06	1.85E-06
35822469	1,2,3,4,6,7,8-HpCDD	4.09E-06	4.09E-06	mg/kg	C60122	1/6	1.69E-07 - 4.70E-07	9.38E-07	1.55E-06
67562394	1,2,3,4,6,7,8-HpCDF	9.42E-07	9.42E-07	mg/kg	C60122	1/6	1.08E-07 - 1.29E-07	2.55E-07	3.37E-07

TABLE 3-6 SUMMARY OF ANALYTES DETECTED IN FISH TISSUE - GROUP C ANNISTON PCB SITE OU-4

CAS Number	Analyte	Minimum Concentration	Maximum Concentration	Units	Location of Maximum Concentration	Detection Frequency ^a	Detection Limits ^b	Arithmetic Mean ^c	Standard Deviation ^c
55673897	1,2,3,4,7,8,9-HpCDF	ND	ND	ND	-	ND	1.23E-07 - 1.44E-07	1.31E-07	9.74E-09
39227286	1,2,3,4,7,8-HxCDD	ND	ND	ND	-	ND	1.12E-07 - 1.72E-07	1.30E-07	2.25E-08
70648269	1,2,3,4,7,8-HxCDF	2.41E-07	2.41E-07	mg/kg	C60094	1/6	1.10E-07 - 1.32E-07	1.41E-07	4.99E-08
57653857	1,2,3,6,7,8-HxCDD	2.52E-07	2.52E-07	mg/kg	C60122	1/6	1.21E-07 - 1.78E-07	1.57E-07	5.12E-08
57117449	1,2,3,6,7,8-HxCDF	1.79E-07	1.79E-07	mg/kg	C60094	1/6	1.15E-07 - 1.64E-07	1.42E-07	2.49E-08
19408743	1,2,3,7,8,9-HxCDD	ND	ND	ND	-	ND	1.17E-07 - 2.10E-07	1.49E-07	4.01E-08
72918219	1,2,3,7,8,9-HxCDF	ND	ND	ND	-	ND	1.14E-07 - 1.38E-07	1.24E-07	1.10E-08
40321764	1,2,3,7,8-PeCDD	ND	ND	ND	-	ND	1.12E-07 - 1.81E-07	1.40E-07	2.85E-08
57117416	1,2,3,7,8-PeCDF	2.18E-07	7.65E-07	mg/kg	C60094	5/6	2.77E-07 - 2.77E-07	3.89E-07	2.13E-07
60851345 57117314	2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF	1.39E-07 6.23E-07	1.39E-07 1.22E-06	mg/kg	C60094 C60094	1/6 5/6	1.14E-07 - 1.37E-07 4.92E-07 - 4.92E-07	1.27E-07 7.71E-07	1.17E-08 2.50E-07
1746016	2,3,4,7,8-PECDF 2,3,7,8-TCDD	6.23E-07 ND	1.22E-06 ND	mg/kg ND	C60094	5/6 ND	1.18E-07 - 1.67E-07	1.32E-07	1.83E-08
51207319	2,3,7,8-TCDD 2,3,7,8-TCDF	1.72E-06	2.90E-06	mg/kg	C60298	4/6	3.35E-06 - 4.75E-06	2.95E-06	1.83E-08 1.04E-06
3268879	Octa CDD	1.72E-06 1.48E-06	1.14E-04	mg/kg	C60296 C60122	5/6	1.12E-06 - 1.12E-06	2.95E-06 2.05E-05	4.58E-05
39001020	Octa CDF	3.72E-06	3.72E-06	mg/kg	C60122	1/6	2.02E-07 - 3.60E-07	8.41E-07	1.41E-06
37871004	Total Hepta CDD	8.30E-06	8.30E-06	mg/kg	C60122	1/6	1.69E-07 - 6.71E-07	1.68E-06	3.25E-06
38998753	Total Hepta CDF	3.37E-06	3.37E-06	mg/kg	C60122	1/6	1.15E-07 - 1.46E-07	6.67E-07	1.32E-06
34465468	Total Hexa CDD	2.52E-07	2.52E-07	mg/kg	C60122	1/6	1.18E-07 - 1.83E-07	1.56E-07	5.30E-08
55684941	Total Hexa CDF	5.60E-07	7.30E-07	mg/kg	C60122	2/6	1.13E-07 - 1.64E-07	3.04E-07	2.71E-07
36088229	Total Penta CDD	ND	ND	ND	-	ND ND	1.12E-07 - 1.81E-07	1.40E-07	2.85E-08
30402154	Total Penta CDF	1.20E-06	1.98E-06	mg/kg	C60094	5/6	1.15E-06 - 1.15E-06	1.43E-06	3.05E-07
419003575	Total Tetra CDD	ND	ND	ND	-	ND	1.18E-07 - 1.67E-07	1.32E-07	1.83E-08
55722275	Total Tetra CDF	1.72E-06	4.78E-06	mg/kg	C60298	4/6	4.09E-06 - 5.41E-06	3.63E-06	1.38E-06
	2,3,7,8-TCDD TEQ	6.41E-07	1.07E-06	mg/kg	C60094	6/6	NA	7.69E-07	1.55E-07
7440382	Arsenic	2.00E-02	3.10E-02	mg/kg	C60124	6/6	NA	2.55E-02	3.99E-03
7440393	Barium	ND	ND	ND	-	ND	1.50E-01 - 5.30E-01	2.28E-01	1.48E-01
7440417	Beryllium	ND	ND	ND	-	ND	1.00E-02 - 1.70E-02	1.27E-02	2.34E-03
7440439	Cadmium	ND	ND	ND	-	ND	2.70E-03 - 6.80E-03	3.72E-03	1.53E-03
7440473	Chromium	1.70E-01	2.10E-01	mg/kg	C60298	6/6	NA	1.85E-01	1.52E-02
7440484	Cobalt	ND	ND	ND	-	ND	4.50E-02 - 8.70E-02	5.77E-02	1.48E-02
7439921	Lead	2.10E-02	2.60E-02	mg/kg	C60298	2/6	9.70E-03 - 1.10E-02	1.50E-02	6.83E-03
7439965	Manganese	ND	ND	ND	-	ND	8.90E-02 - 2.80E-01	1.37E-01	7.22E-02
7439976	Mercury	9.00E-02	1.90E+00	mg/kg	C60096	67/67	NA	6.38E-01	3.34E-01
7440020	Nickel	ND	ND	ND	-	ND	5.50E-02 - 6.70E-02	6.30E-02	4.29E-03
7440622	Vanadium	ND	ND	ND		ND	4.00E-02 - 7.40E-02	5.48E-02	1.13E-02
	%Lipids Determination	2.00E-01	1.70E+00	%	C60094	66/67	1.00E-01 - 1.00E-01	5.24E-01	3.13E-01
	Solids, Percent	1.87E+01	2.32E+01	%	C60286	67/67	NA	2.08E+01	9.62E-01
				Catfish					
12674112	Aroclor-1016	ND	ND	ND	-	ND	4.00E-02 - 2.00E+00	3.39E-01	2.81E-01
11104282	Aroclor-1221	ND	ND	ND	-	ND	4.00E-02 - 2.00E+00	3.39E-01	2.81E-01
11141165	Aroclor-1232	ND	ND	ND		ND	4.00E-02 - 2.00E+00	3.39E-01	2.81E-01
53469219	Aroclor-1242	6.10E-02	1.80E+00	mg/kg	C60109	20/56	4.00E-02 - 2.00E+00	4.23E-01	3.65E-01
12672296	Aroclor-1248	ND 0.505.04	ND 4 205 : 04	ND	-	ND 50/50	4.00E-02 - 2.00E+00	3.39E-01	2.81E-01
11097691	Aroclor-1254	2.50E-01	1.20E+01	mg/kg	C60389	50/56	4.00E-02 - 1.00E+00	2.49E+00	2.05E+00
11096825 37324235	Aroclor-1260 Aroclor-1262	2.30E-01 ND	2.20E+01 ND	mg/kg ND	C60389	56/56 ND	NA 4.00E-02 - 2.00E+00	2.97E+00 3.39E-01	3.09E+00 2.81E-01
37324235 11100144	Aroclor-1262 Aroclor-1268	ND ND	ND ND	ND ND	-	ND ND	4.00E-02 - 2.00E+00 4.00E-02 - 2.00E+00	3.39E-01 3.39E-01	2.81E-01 2.81E-01
32598144	Arocior-1268 BZ#105	2.40E-02	8.60E-02	mg/kg	- C60145	ND 4/4	4.00E-02 - 2.00E+00 NA	5.05E-02	2.81E-01 2.71E-02
74472370	BZ#105	2.40E-02 ND	0.60E-02 ND	ND		ND	8.00E-03 - 1.60E-02	1.20E-02	4.62E-03
31508006	BZ#114 BZ#118	8.10E-02	2.20E-01	mg/kg	C60145	ND 4/4	NA NA	1.20E-02 1.39E-01	4.62E-03 6.40E-02
65510443	BZ#110	0.10E-02 ND	2.20E-01 ND	ND	-	ND	8.00E-03 - 1.60E-02	1.20E-02	4.62E-03
57465288	BZ#123	ND ND	ND ND	ND	-	ND ND	8.00E-03 - 1.60E-02	1.20E-02 1.20E-02	4.62E-03
35065271	BZ#120	1.80E-01	4.40E-01	mg/kg	C60145	4/4	NA	3.08E-01	1.07E-01
38380084	BZ#156	1.20E-02	2.60E-02	mg/kg	C60145	4/4	NA NA	2.03E-02	6.24E-03
69782907	BZ#150	ND	ND	ND	-	ND	8.00E-03 - 1.60E-02	1.20E-02	4.62E-03
52663726	BZ#167	ND	ND	ND		ND ND	1.60E-02 - 3.20E-02	2.40E-02	9.24E-03

TABLE 3-6
SUMMARY OF ANALYTES DETECTED IN FISH TISSUE - GROUP C
ANNISTON PCB SITE
OU-4

CAS Number	Analyte	Minimum Concentration	Maximum Concentration	Units	Location of Maximum Concentration	Detection Frequency ^a	Detection Limits ^b	Arithmetic Mean ^c	Standard Deviation ^c
32774166	BZ#169	ND	ND	ND	-	ND	8.00E-03 - 1.60E-02	1.20E-02	4.62E-03
39635319	BZ#189	ND	ND	ND	-	ND	8.00E-03 - 1.60E-02	1.20E-02	4.62E-03
32598133	BZ#77	ND	ND	ND	-	ND	8.00E-03 - 1.60E-02	1.20E-02	4.62E-03
70362504	BZ#81	ND	ND	ND	-	ND	1.60E-02 - 3.20E-02	2.40E-02	9.24E-03
2051243	Decachlorobiphenyl	3.10E-03	1.80E-02	mg/kg	C60346	4/4	NA	9.10E-03	6.49E-03
25512429	Total Dichlorobiphenyl	2.10E-02	6.70E-02	mg/kg	C60145	4/4	NA	3.70E-02	2.05E-02
28655712	Total Heptachlorobiphenyl	2.10E-01	6.80E-01	mg/kg	C60145	4/4	NA	5.00E-01	2.23E-01
26601649	Total Hexachlorobiphenyl	4.30E-01	1.40E+00	mg/kg	C60145	4/4	NA	8.68E-01	4.06E-01
27323188	Total Monochlorobiphenyl	4.90E-03	1.90E-02	mg/kg	C60145	4/4	NA	1.09E-02	5.89E-03
53742077	Total Nonachlorobiphenyl	1.50E-02	8.40E-02	mg/kg	C60346	4/4	NA	4.43E-02	2.97E-02
31472830	Total Octachlorobiphenyl	6.00E-02	2.90E-01	mg/kg	C60346	4/4	NA	1.70E-01	9.83E-02
25429292	Total Pentachlorobiphenyl	2.00E-01	9.60E-01	mg/kg	C60145	4/4	NA	5.50E-01	3.42E-01
26914330	Total Tetrachlorobiphenyl	8.30E-02	6.50E-01	mg/kg	C60145	4/4	NA	3.43E-01	2.42E-01
25323686	Total Trichlorobiphenyl	5.70E-02	1.70E-01	mg/kg	C60145	4/4	NA	9.65E-02	5.09E-02
	Total Homolog PCB	1.40E+00	4.20E+00	mg/kg	C60145	4/4	NA	2.63E+00	1.18E+00
1336363	Total PCBs	2.30E-01	3.40E+01	mg/kg	C60389	56/56	NA	5.61E+00	4.97E+00
	Dioxin/furan and PCB Dioxin-like Congener TEQ	8.06E-04	1.61E-03	mg/kg	C60145	4/4	NA	1.21E-03	4.63E-04
	PCB Dioxin-like Congener TEQ	8.05E-04	1.61E-03	mg/kg	C60145	4/4	NA	1.21E-03	4.63E-04
35822469	1,2,3,4,6,7,8-HpCDD	ND	ND	ND	-	ND	1.59E-07 - 6.68E-07	4.57E-07	2.37E-07
67562394	1,2,3,4,6,7,8-HpCDF	1.51E-07	1.51E-07	mg/kg	C60145	1/4	9.85E-08 - 1.42E-07	1.24E-07	2.65E-08
55673897	1,2,3,4,7,8,9-HpCDF	ND	ND	ND	-	ND	1.12E-07 - 1.53E-07	1.26E-07	1.84E-08
39227286	1,2,3,4,7,8-HxCDD	1.22E-07	1.22E-07	mg/kg	C60145	1/4	1.00E-07 - 1.53E-07	1.20E-07	2.37E-08
70648269	1,2,3,4,7,8-HxCDF	1.78E-07	3.21E-07	mg/kg	C60145	3/4	1.22E-07 - 1.22E-07	2.06E-07	8.38E-08
57653857	1,2,3,6,7,8-HxCDD	2.07E-07	4.08E-07	mg/kg	C60145	3/4	1.59E-07 - 1.59E-07	2.56E-07	1.08E-07
57117449	1,2,3,6,7,8-HxCDF	1.30E-07	2.00E-07	mg/kg	C60145	3/4	1.31E-07 - 1.31E-07	1.55E-07	3.29E-08
19408743	1,2,3,7,8,9-HxCDD	1.77E-07	1.77E-07	mg/kg	C60145	1/4	1.05E-07 - 1.67E-07	1.40E-07	3.73E-08
72918219	1,2,3,7,8,9-HxCDF	ND	ND	ND	-	ND	1.05E-07 - 1.23E-07	1.14E-07	8.41E-09
40321764	1,2,3,7,8-PeCDD	3.64E-07	4.97E-07	mg/kg	C60145	3/4	1.81E-07 - 1.81E-07	3.53E-07	1.30E-07
57117416	1,2,3,7,8-PeCDF	ND	ND	ND	-	ND	1.05E-07 - 2.03E-07	1.33E-07	4.70E-08
60851345	2,3,4,6,7,8-HxCDF	1.54E-07	1.54E-07	mg/kg	C60145	1/4	1.04E-07 - 1.57E-07	1.31E-07	2.84E-08
57117314	2,3,4,7,8-PeCDF	1.32E-06	2.22E-06	mg/kg	C60145	3/4	3.60E-07 - 3.60E-07	1.35E-06	7.65E-07
1746016	2,3,7,8-TCDD	ND	ND	ND	-	ND	1.06E-07 - 1.75E-07	1.29E-07	3.13E-08
51207319	2,3,7,8-TCDF	3.29E-07	5.48E-07	mg/kg	C60145	4/4	NA	4.32E-07	1.05E-07
3268879	Octa CDD	1.75E-06	2.69E-06	mg/kg	C60145	3/4	5.09E-07 - 5.09E-07	1.89E-06	1.02E-06
39001020	Octa CDF	2.31E-07	2.31E-07	mg/kg	C60145	1/4	2.18E-07 - 3.05E-07	2.47E-07	3.94E-08
37871004	Total Hepta CDD	9.45E-07	9.45E-07	mg/kg	C60145	1/4	1.59E-07 - 6.25E-07	5.68E-07	3.23E-07
38998753	Total Hepta CDF	2.89E-07	2.89E-07	mg/kg	C60145	1/4	1.05E-07 - 1.47E-07	1.63E-07	8.60E-08
34465468	Total Hexa CDD	2.07E-07	7.07E-07	mg/kg	C60145	3/4	1.63E-07 - 1.63E-07	3.32E-07	2.53E-07
55684941	Total Hexa CDF	3.07E-07	6.75E-07	mg/kg	C60145	3/4	1.57E-07 - 1.57E-07	3.75E-07	2.18E-07
36088229	Total Penta CDD	3.64E-07	4.97E-07	mg/kg	C60145	3/4	1.81E-07 - 1.81E-07 3.60E-07 - 3.60E-07	3.53E-07	1.30E-07
30402154	Total Penta CDF Total Tetra CDD	1.32E-06 ND	2.34E-06 ND	mg/kg ND	C60145	3/4 ND	3.60E-07 - 3.60E-07 1.06E-07 - 1.75E-07	1.45E-06 1.29E-07	8.38E-07
419003575					-				3.13E-08
55722275	Total Tetra CDF	3.29E-07	8.85E-07	mg/kg	C60346	4/4 4/4	NA NA	6.05E-07	3.01E-07
7440202	2,3,7,8-TCDD TEQ	4.32E-07	1.37E-06	mg/kg	C60145			9.09E-07	3.82E-07
7440382 7440393	Arsenic Barium	1.70E-02 1.60E-01	1.70E-02 1.70E-01	mg/kg	C60142 C60145	1/4 2/4	1.70E-02 - 2.00E-02 1.50E-01 - 1.00E+00	1.80E-02 3.70E-01	1.41E-03 4.20E-01
7440393		1.60E-01 ND	1.70E-01 ND	mg/kg		ND		3.70E-01 1.25E-02	
7440417	Beryllium Cadmium	ND ND	ND ND	ND ND	-	ND ND	1.10E-02 - 1.50E-02 2.80E-03 - 5.60E-03	1.25E-02 3.73E-03	1.91E-03 1.27E-03
7440439	Cadmium					ND 4/4		3.73E-03 1.78E-01	1.27E-03 1.71E-02
7440473	Coromium	1.60E-01 ND	2.00E-01	mg/kg	C60346	4/4 ND	NA 4.60E-02 - 8.40E-02	1.78E-01 5.83E-02	1.71E-02 1.76E-02
7440484		1.10E-02	ND	ND mg/kg	- C60346	1/4	9.80E-03 - 1.20E-02		
7439921 7439965	Lead	1.10E-02 1.60E-01	1.10E-02 2.50E-01	mg/kg	C60346 C60346	1/4 4/4	9.80E-03 - 1.20E-02 NA	1.07E-02 1.88E-01	1.01E-03 4.27E-02
	Manganese			mg/kg					
7439976 7440020	Mercury Nickel	4.70E-02 ND	8.90E-01 ND	mg/kg ND	C60219	55/57 ND		2.89E-01	1.93E-01
1440020	NICKEI				-			6.05E-02	5.20E-03
7440622	Vanadium	ND	ND	ND	-	ND	4.80E-02 - 6.40E-02	5.28E-02	7.54E-03

TABLE 3-6 SUMMARY OF ANALYTES DETECTED IN FISH TISSUE - GROUP C ANNISTON PCB SITE OU-4

					Location				
CAS Number	Analyte	Minimum Concentration	Maximum Concentration	Units	of Maximum Concentration	Detection Frequency ^a	Detection Limits ^b	Arithmetic Mean ^c	Standard Deviation ^c
	Solids. Percent	1.27E+01	2.41E+01	%	C60109	56/56	NA	1.87E+01	2.04E+00
	Collect, Forcont	1.2.2.01	2.112.01	Panfish	000100	30,00		1.072.01	2.012100
12674112	Aroclor-1016	ND	ND	ND	_	ND	4.00E-02 - 6.00E-01	1.98E-01	1.02E-01
11104282	Aroclor-1221	ND	ND	ND	-	ND	4.00E-02 - 6.00E-01	1.98E-01	1.02E-01
11141165	Aroclor-1232	ND	ND	ND	-	ND ND	4.00E-02 - 6.00E-01	1.98E-01	1.02E-01
53469219	Aroclor-1242	1.20E-01	7.70E-01	mg/kg	C60279	44/70	6.00E-02 - 6.00E-01	3.00E-01	1.59E-01
12672296	Aroclor-1248	ND	ND	ND	-	ND	4.00E-02 - 6.00E-01	1.98E-01	1.02E-01
11097691	Aroclor-1254	1.90E-01	5.90E+00	mg/kg	C60265	70/70	NA	1.49E+00	1.03E+00
11096825	Aroclor-1260	1.20E-01	5.40E+00	mg/kg	C60280	70/70	NA	1.24E+00	9.59E-01
37324235	Aroclor-1262	ND	ND	ND	-	ND	4.00E-02 - 6.00E-01	1.98E-01	1.02E-01
11100144	Aroclor-1268	ND	ND	ND	-	ND	4.00E-02 - 6.00E-01	1.98E-01	1.02E-01
32598144	BZ#105	6.90E-03	5.50E-02	mg/kg	C60269	10/10	NA	2.72E-02	1.44E-02
74472370	BZ#114	ND	ND	ND	-	ND	3.20E-03 - 1.60E-02	7.52E-03	3.60E-03
31508006	BZ#118	2.30E-02	1.40E-01	mg/kg	C60269	10/10	NA	7.64E-02	3.81E-02
65510443	BZ#123	ND	ND	ND	-	ND	3.20E-03 - 1.60E-02	7.52E-03	3.60E-03
57465288	BZ#126	ND	ND	ND	-	ND	3.20E-03 - 1.60E-02	7.52E-03	3.60E-03
35065271	BZ#153	6.40E-02	2.70E-01	mg/kg	C60118	10/10	NA	1.55E-01	7.22E-02
38380084	BZ#156	4.50E-03	1.90E-02	mg/kg	C60118	9/10	8.00E-03 - 8.00E-03	1.16E-02	5.33E-03
69782907	BZ#157	ND	ND	ND	-	ND	3.20E-03 - 1.60E-02	7.52E-03	3.60E-03
52663726	BZ#167	ND	ND	ND	-	ND	6.40E-03 - 3.20E-02	1.50E-02	7.20E-03
32774166	BZ#169	ND ND	ND	ND	-	ND	3.20E-03 - 1.60E-02 3.20E-03 - 1.60E-02	7.52E-03	3.60E-03
39635319	BZ#189 BZ#77	3.80E-02	ND 1.50E-01	ND mg/kg	- C60313	ND 3/10	0.202 00 1.002 02	7.52E-03 2.99E-02	3.60E-03 4.51E-02
32598133 70362504	BZ#77 BZ#81	3.80E-02 ND	1.50E-01 ND	ND	-	3/10 ND	3.20E-03 - 1.60E-02 6.40E-03 - 3.20E-02		
2051243	Decachlorobiphenyl	3.00E-03	1.10E-02	mg/kg	C60186	10/10	NA	1.50E-02 6.22E-03	7.20E-03 2.70E-03
25512429	Total Dichlorobiphenyl	7.10E-03	1.60E-02	mg/kg	C60269	9/10	5.00E-03 - 5.00E-03	1.13E-02	3.58E-03
28655712	Total Heptachlorobiphenyl	9.80E-02	4.80E-01	mg/kg	C60269	10/10	NA	2.53E-01	1.20E-01
26601649	Total Hexachlorobiphenyl	2.10E-01	9.30E-01	mg/kg	C60269	10/10	NA NA	4.54E-01	2.24E-01
27323188	Total Monochlorobiphenyl	1.00E-03	3.20E-03	mg/kg	C60118	9/10	2.00E-03 - 2.00E-03	2.03E-03	6.60E-04
53742077	Total Nonachlorobiphenyl	1.00E-02	4.70E-02	mg/kg	C60087	10/10	NA	2.50E-02	1.22E-02
31472830	Total Octachlorobiphenyl	3.40E-02	1.40E-01	mg/kg	C60087	10/10	NA	8.24E-02	3.66E-02
25429292	Total Pentachlorobiphenyl	9.40E-02	7.40E-01	mg/kg	C60269	10/10	NA	3.27E-01	1.90E-01
26914330	Total Tetrachlorobiphenyl	5.60E-02	5.50E-01	mg/kg	C60269	10/10	NA	2.37E-01	1.44E-01
25323686	Total Trichlorobiphenyl	3.40E-02	2.20E-01	mg/kg	C60283	10/10	NA	1.05E-01	5.92E-02
	Total Homolog PCB	7.00E-01	3.00E+00	mg/kg	C60269	10/10	NA	1.49E+00	7.03E-01
1336363	Total PCBs	4.30E-01	1.04E+01	mg/kg	C60280	70/70	NA	2.94E+00	1.96E+00
	Dioxin/furan and PCB Dioxin-like Congener TEQ	2.42E-06	8.71E-06	mg/kg	C60269	9/9	NA	5.64E-06	1.91E-06
	PCB Dioxin-like Congener TEQ	1.96E-06	1.84E-05	mg/kg	C60313	10/10	NA	6.45E-06	4.55E-06
35822469	1,2,3,4,6,7,8-HpCDD	1.93E-07	3.13E-07	mg/kg	C60269	4/9	1.32E-07 - 7.40E-07	3.21E-07	1.88E-07
67562394	1,2,3,4,6,7,8-HpCDF	2.17E-07	2.78E-07	mg/kg	C60196	3/9	1.09E-07 - 1.95E-07	1.91E-07	5.39E-08
55673897	1,2,3,4,7,8,9-HpCDF	1.95E-07	2.71E-07	mg/kg	C60196	2/9	9.35E-08 - 2.11E-07	1.84E-07	4.83E-08
39227286	1,2,3,4,7,8-HxCDD	2.09E-07	2.09E-07	mg/kg	C60196	1/9	1.18E-07 - 2.13E-07	1.66E-07	3.20E-08
70648269	1,2,3,4,7,8-HxCDF	1.45E-07	1.45E-07	mg/kg	C60186	1/9	1.55E-07 - 3.65E-07	2.09E-07	7.06E-08
57653857	1,2,3,6,7,8-HxCDD	ND	ND	ND	-	ND	8.54E-08 - 2.31E-07	1.74E-07	4.27E-08
57117449	1,2,3,6,7,8-HxCDF	ND	ND	ND	-	ND	1.47E-07 - 2.94E-07	2.07E-07	4.67E-08
19408743	1,2,3,7,8,9-HxCDD	2.29E-07	2.29E-07	mg/kg	C60196	1/9	1.24E-07 - 2.33E-07	1.88E-07	3.83E-08
72918219	1,2,3,7,8,9-HxCDF	ND	ND	ND	-	ND	8.31E-08 - 2.50E-07	1.85E-07	4.69E-08
40321764	1,2,3,7,8-PeCDD	2.36E-07	2.36E-07	mg/kg	C60196	1/9	1.00E-07 - 2.05E-07	1.80E-07	3.78E-08
57117416	1,2,3,7,8-PeCDF	ND ND	ND ND	ND ND	-	ND ND	1.63E-07 - 6.26E-07	2.97E-07	1.59E-07
60851345	2,3,4,6,7,8-HxCDF						8.94E-08 - 2.15E-07	1.78E-07	3.84E-08
57117314	2,3,4,7,8-PeCDF	2.84E-07 ND	2.84E-07	mg/kg	C60118	1/9 ND	1.66E-07 - 8.61E-07 9.47E-08 - 3.35E-07	3.56E-07	1.99E-07
1746016 51207319	2,3,7,8-TCDD 2,3,7,8-TCDF	6.53E-07	ND 3.05E-06	ND ma/ka	- C60283	7/9	9.47E-08 - 3.35E-07 7.31E-07 - 1.03E-06	1.92E-07 1.46E-06	6.49E-08 9.59E-07
3268879	2,3,7,8-TCDF Octa CDD	6.53E-07 2.02E-06	3.05E-06 6.46E-06	mg/kg	C60283 C60087	2/9	7.31E-07 - 1.03E-06 3.80E-07 - 1.84E-06	1.46E-06 1.53E-06	9.59E-07 1.94E-06
3200019		7.96E-07	7.96E-07	mg/kg mg/kg	C60087	1/9	2.13E-07 - 1.84E-06	3.80E-07	1.94E-06 2.02E-07
39001020	Octa CDF								

TABLE 3-6 SUMMARY OF ANALYTES DETECTED IN FISH TISSUE - GROUP C ANNISTON PCB SITE OU-4

CAS Number	Analyte	Minimum Concentration	Maximum Concentration	Units	Location of Maximum Concentration	Detection Frequency ^a	Detection Limits ^b	Arithmetic Mean ^c	Standard Deviation ^c
38998753	Total Hepta CDF	4.12E-07	6.62E-07	mg/kg	C60087	3/9	1.09E-07 - 2.03E-07	2.91E-07	1.99E-07
34465468	Total Hexa CDD	ND	ND	ND	-	ND	1.24E-07 - 6.69E-07	2.29E-07	1.68E-07
55684941	Total Hexa CDF	ND	ND	ND	-	ND	1.60E-07 - 8.19E-07	3.38E-07	2.40E-07
36088229	Total Penta CDD	ND	ND	ND	-	ND	1.00E-07 - 2.36E-07	1.80E-07	3.78E-08
30402154	Total Penta CDF	6.89E-07	6.89E-07	mg/kg	C60118	1/9	1.70E-07 - 1.49E-06	6.64E-07	4.96E-07
419003575	Total Tetra CDD	ND	ND	ND	-	ND	9.47E-08 - 3.35E-07	1.92E-07	6.49E-08
55722275	Total Tetra CDF	2.41E-07	4.48E-06	mg/kg	C60283	8/9	1.03E-06 - 1.03E-06	1.86E-06	1.47E-06
	2,3,7,8-TCDD TEQ	2.98E-07	7.17E-07	mg/kg	C60196	9/9	NA	5.26E-07	1.50E-07
7440382	Arsenic	3.10E-02	2.40E-01	mg/kg	C60283	4/10	2.40E-02 - 1.40E-01	6.70E-02	6.98E-02
7440393	Barium	ND	ND	ND	-	ND	1.80E-01 - 6.60E-01	3.28E-01	1.36E-01
7440417	Beryllium	ND	ND	ND	-	ND	1.00E-02 - 1.50E-02	1.21E-02	1.37E-03
7440439	Cadmium	ND	ND	ND	-	ND	3.10E-03 - 1.30E-02	8.08E-03	2.91E-03
7440473	Chromium	1.30E-01	2.50E-01	mg/kg	C60313	10/10	NA	1.63E-01	3.77E-02
7440484	Cobalt	ND	ND	ND	-	ND	3.40E-02 - 1.10E-01	5.01E-02	2.16E-02
7439921	Lead	1.10E-02	3.20E-02	mg/kg	C60313	3/10	9.40E-03 - 1.20E-02	1.40E-02	7.10E-03
7439965	Manganese	1.80E-01	1.90E+00	mg/kg	C60313	10/10	NA	5.64E-01	5.23E-01
7439976	Mercury	2.60E-02	5.30E-01	mg/kg	C60282	70/70	NA	2.38E-01	1.21E-01
7440020	Nickel	ND	ND	ND	-	ND	5.30E-02 - 6.80E-02	6.13E-02	4.76E-03
7440622	Vanadium	ND	ND	ND	-	ND	3.80E-02 - 1.60E-01	5.57E-02	3.71E-02
	%Lipids Determination	2.00E-01	1.20E+00	%	C60188	70/70	NA	5.73E-01	2.48E-01
	Solids, Percent	1.71E+01	2.34E+01	%	C60283	69/69	NA	2.02E+01	1.16E+00

^aNumber of sampling locations at which analyte was detected compared with total number of sampling locations; duplicates at a location were averaged and considered one sample.

mg/kg = Milligrams per kilogram. NA = Not applicable.

^bBased on nondetected samples.

^cNondetects were included at the full detection limit.

TABLE 3-7
SUMMARY OF ANALYTES DETECTED IN FISH AND COMPARISON TO FISH RSLS
ANNISTON PCB SITE
OU-4

	Frequency	Range of	Location of	Average	Screening	
	of	Detected Concentrations	Maximum Detected	Concentration	Toxicity	COPC
Analyte	Detection	(mg/kg)	Concentration	(mg/kg)	Value ^a	Flag
Aroclors		(33)		(3,3)		9
Aroclors Aroclor-1242	186 / 361	2.40E-02 - 2.80E+00	HHFL-07	3.01E-01	Evaluated	as tPCBs
Aroclor-1254	349 / 361	8.60E-02 - 1.20E+01	HHFL-05	1.58E+00	Evaluated	
Aroclor-1260	361 / 361	1.10E-01 - 2.20E+01	HHFL-05	1.64E+00	Evaluated	
Aroclor-1268	1 / 361	1.20E-01 - 1.20E-01	HHFL-01	2.15E-01	Evaluated	
Total PCBs (sum of Aroclors)	361 / 361	2.23E-01 - 3.40E+01	HHFL-05	3.40E+00	1.60E-03 C	Yes
PCB Dioxin-like Congeners			= **			
PCB-77	14 / 36	1.30E-02 - 2.50E-01	HHFL-01	4.11E-02	Evaluated a	s PCB TEO
PCB-105	36 / 36	6.90E-03 - 8.60E-02	HHFL-08	3.31E-02	Evaluated a	
PCB-118	36 / 36	2.30E-02 - 2.20E-01	HHFL-08	9.51E-02	Evaluated a	
PCB-126	1 / 36	1.90E-02 - 1.90E-02	HHFL-01	8.13E-03	Evaluated a	
PCB-153	36 / 36	5.50E-02 - 4.40E-01	HHFL-08	2.10E-01	Evaluated a	
PCB-156	35 / 36	3.40E-03 - 3.40E-02	HHFL-08	1.54E-02	Evaluated a	
PCB-167	1 / 36	1.70E-02 - 1.70E-02	HHFL-06	1.57E-02	Evaluated a	
PCB Dioxin-like Congener TEQ	36 / 36	1.96E-06 - 1.91E-03	HHFL-01	2.10E-04	2.40E-08 C	Yes
Dioxin/Furan Congeners	00 7 00	1.002 00 1.012 00	11111201	2.102 04	2.402 00 0	100
1,2,3,7,8-PeCDD	7 / 35	1.56E-07 - 4.97E-07	HHFL-08	1.75E-07	Evaluated as 2,3	7 8-TCDD TEO
1.2.3.7.8.9-HxCDD	4 / 35	1.77E-07 - 2.61E-07	HHFL-02	1.60E-07	Evaluated as 2,3	
1,2,3,4,7,8-HxCDD	2 / 35	1.22E-07 - 2.09E-07	HHFL-05	1.37E-07	Evaluated as 2,3	, ,
1,2,3,6,7,8-HxCDD	4 / 35	2.07E-07 - 4.08E-07	HHFL-08	1.69E-07	Evaluated as 2,3	
1.2.3.4.6.7.8-HpCDD	11 / 35	1.93E-07 - 4.09E-06	HHFL-08	5.16E-07	Evaluated as 2,3	
Octa CDD	18 / 35	1.18E-06 - 1.14E-04	HHFL-08	5.42E-06	Evaluated as 2,3	
2,3,7,8-TCDF	31 / 35	3.29E-07 - 9.61E-05	HHFL-01	9.66E-06	Evaluated as 2,3	
2.3.4.7.8-PeCDF	21 / 35	2.84E-07 - 3.99E-06	HHFL-01	1.00E-06	Evaluated as 2,3	
1.2.3.7.8-PeCDF	14 / 35	2.13E-07 - 2.15E-06	HHFL-01	4.40E-07	Evaluated as 2,3	
1,2,3,6,7,8-HxCDF	8 / 35	1.03E-07 - 2.40E-07	HHFL-01	1.75E-07	Evaluated as 2,3	
1,2,3,4,7,8-HxCDF	11 / 35	1.09E-07 - 3.35E-07	HHFL-01	1.83E-07	Evaluated as 2,3	
2,3,4,6,7,8-HxCDF	2 / 35	1.39E-07 - 1.54E-07	HHFL-08	1.43E-07	Evaluated as 2,3	
1,2,3,4,6,7,8-HpCDF	11 / 35	1.39E-07 - 9.42E-07	HHFL-08	2.02E-07	Evaluated as 2,3	, ,
1,2,3,4,7,8,9-HpCDF	4 / 35	1.56E-07 - 2.71E-07	HHFL-05	1.55E-07	Evaluated as 2,3	, ,
Octa CDF	10 / 35	2.31E-07 - 3.72E-06	HHFL-08	4.82E-07	Evaluated as 2,3	
2,3,7,8-TCDD TEQ	35 / 35	2.98E-07 - 1.11E-05	HHFL-01	1.54E-06	2.40E-08 C	Yes
Inorganics	1		<u> </u>			
Arsenic	22 / 36	1.70E-02 - 3.80E-01	HHFL-02	6.86E-02	2.10E-03 C	No
Barium	2 / 36	1.60E-01 - 1.70E-01	HHFL-08	2.85E-01	2.70E+01 NC	No
Beryllium	2 / 36	9.00E-03 - 9.60E-03	HHFL-01	1.20E-02	2.70E-01 NC	No
Cadmium	1 / 36	9.30E-03 - 9.30E-03	HHFL-01	5.61E-03	1.40E-01 NC	No
Chromium	31 / 36	1.10E-01 - 2.50E-01	HHFL-09	1.69E-01	6.30E-03 C	No
Lead	10 / 36	9.00E-03 - 6.10E-02	HHFL-03	1.39E-02	1.10E-02 C	No
Manganese	25 / 36	6.30E-02 - 1.90E+00	HHFL-09	3.06E-01	1.90E+01 NC	No
Mercury	360 / 362	2.60E-02 - 1.90E+00	HHFL-06	3.74E-01	1.40E-02 NC	Yes
Vanadium	5 / 36	1.90E-02 - 3.10E-02	HHFL-01	4.97E-02	6.80E-01 NC	No

^a Fish RSLs (May, 2012).

C = cancer based, target risk equals 1E-06.

NC = noncancer based, hazard index equals 0.1.

Chromium assumed to be in the hexavalent form.

Methyl mercury RSL used for mercury.

TABLE 3-8
SUMMARY OF ANALYTES DETECTED IN FLOODPLAIN SOIL (0 TO 1 FT BGS) AND COMPARISON TO RESIDENTIAL SOIL RSLS
ANNISTON PCB SITE
OU-4

				Location of		Average	Screening	
	Minimum	Maximum		Maximum Detected	Detection	Concentration	Toxicity	COPC
Contaminant	Concentration	Concentration	Units	Concentration	Frequency	(mg/kg)	Value ⁴	Flag
Aroclors								
Aroclor-1242	4.70E-02	1.10E+01	mg/kg	C3S-02	111/1601	2.25E-01	Evaluated	
Aroclor-1248	2.60E-01	1.50E+00	mg/kg	C3NX-27, C3SX-05	5/1601	1.93E-01	Evaluated	
Aroclor-1254 Aroclor-1260	3.70E-02 3.60E-02	1.20E+02 8.10E+01	mg/kg	C3S-04 C3S-02	647/1601 852/1601	1.49E+00 1.26E+00	Evaluated Evaluated	
Aroclor-1268	3.70E-02	4.70E+00	mg/kg mg/kg	C3N-05	407/1601	2.26E-01	Evaluated	
Total PCBs (sum of Aroclors)	3.60E-02	2.28E+02	mg/kg	NHA-5	931/1696	3.51E+00	1.10E-01 NC	Yes
PCB Dioxin-like Congeners	0.00L 0Z	2.202102	mg/kg	1417/10	301/1000	0.012100	1.102 01 140	100
PCB-77	1.90E-03	3.20E-01	mg/kg	C8N-12	11/137	1.22E-02	Evaluated as	PCR TEO
PCB-105	2.10E-03	1.40E-01	mg/kg	C3NF-07	127/137	4.24E-02	Evaluated as	
PCB-114	8.90E-03	8.90E-03	mg/kg	C4S-41	1/137	6.44E-03	Evaluated as	
PCB-118	1.90E-03	2.80E-01	mg/kg	C3NF-07	131/137	8.05E-02	Evaluated as	PCB TEQ
PCB-123	4.10E-03	2.30E-02	mg/kg	C8N-12	2/137	6.52E-03	Evaluated as	PCB TEQ
PCB-126	2.00E-03	4.40E-02	mg/kg	C7S-37	17/137	7.51E-03	Evaluated as	PCB TEQ
PCB-153	3.20E-03	4.40E-01	mg/kg	C9N-01	132/137	1.36E-01	Evaluated as	
PCB-156	1.60E-03	4.80E-02	mg/kg	C3NF-07	121/137	1.50E-02	Evaluated as	
PCB-157	1.80E-03	1.70E-02	mg/kg	C3NF-07	35/137	6.62E-03	Evaluated as	
PCB-167	2.70E-03	1.50E-02	mg/kg	C4S-31	20/137	1.16E-02	Evaluated as	
PCB-189	1.50E-03	1.50E-03	mg/kg	C9N-01	1/137	5.94E-03	Evaluated as	
PCB Dioxin-like Congener TEQ	1.41E-04	4.42E-03	mg/kg	C7S-37	132/137	7.58E-04	4.50E-06 C	Yes
Dioxin/Furan Congeners	1 045 07	7 505 07		CON1 40	10/404	E 055 07	Fueluet - 1 2 2	7.0 TODO TEO
2,3,7,8-TCDD 1,2,3,7,8-PeCDD	1.21E-07 1.70E-07	7.50E-07 1.56E-06	mg/kg mg/kg	C8N-12 C4SF-33	12/131 35/131	5.05E-07 6.58E-07	Evaluated as 2,3 Evaluated as 2,3	
			0 0					,
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	1.90E-07 1.95E-07	3.19E-06 1.76E-05	mg/kg mg/kg	C6N-14 C4NF-41	99/131 110/131	1.12E-06 3.01E-06	Evaluated as 2,3 Evaluated as 2,3	
1,2,3,7,8,9-HxCDD	3.16E-07	8.40E-06	mg/kg	C4N-06	106/131	2.93E-06	Evaluated as 2,3	,
1,2,3,4,6,7,8-HpCDD	1.18E-05	4.25E-04	mg/kg	C4NF-41	131/131	8.59E-05	Evaluated as 2,3	
Octa CDD	4.41E-04	9.38E-03	mg/kg	C3NX-11	131/131	2.46E-03	Evaluated as 2,3	
2,3,7,8-TCDF	7.70E-07	7.86E-04	mg/kg	C8N-12	120/131	6.16E-05	Evaluated as 2,3	
1,2,3,7,8-PeCDF	4.00E-07	1.21E-03	mg/kg	C8N-19	78/131	4.55E-05	Evaluated as 2,3	7,8-TCDD TEQ
2,3,4,7,8-PeCDF	4.70E-07	7.37E-05	mg/kg	C5S-15	118/131	1.12E-05	Evaluated as 2,3	7,8-TCDD TEQ
1,2,3,4,7,8-HxCDF	5.90E-07	1.83E-04	mg/kg	C5N-12	122/131	2.51E-05	Evaluated as 2,3	7,8-TCDD TEQ
1,2,3,6,7,8-HxCDF	1.10E-06	3.76E-04	mg/kg	C8N-12	119/131	4.07E-05	Evaluated as 2,3	
1,2,3,7,8,9-HxCDF	2.20E-07	4.73E-06	mg/kg	C2S-18	41/131	1.14E-06	Evaluated as 2,3	,
2,3,4,6,7,8-HxCDF	3.10E-07	1.63E-05	mg/kg	C5S-15	99/131	4.07E-06	Evaluated as 2,3	
1,2,3,4,6,7,8-HpCDF	1.68E-06 1.80E-07	1.56E-04	mg/kg	C6S-04 C5S-15	92/131 115/131	3.17E-05 7.22E-06	Evaluated as 2,3	
1,2,3,4,7,8,9-HpCDF Octa CDF	2.20E-06	5.45E-05 2.52E-04	mg/kg mg/kg	C4NF-41	127/131	6.03E-05	Evaluated as 2,3 Evaluated as 2,3	
2,3,7,8-TCDD TEQ	9.24E-07	1.74E-04	mg/kg	C6S-04	131/131	2.18E-05	4.50E-06 C	Yes
Volatile and Semi-Volatile Organi	l .	0.	9.1.9		1017101	2.102 00		
1,2,4-Trichlorobenzene	1.50E-03	3.00E-02	mg/kg	C8S-19	3/23	6.22E-03	6.20E+00 NC	No
1,2-Dichlorobenzene	8.10E-03	8.10E-03	mg/kg	C8S-19	1/21	5.59E-03	1.90E+02 NC	No
1,4-Dichlorobenzene	9.60E-03	9.60E-03	mg/kg	C8S-19	1/21	5.66E-03	2.40E+00 C	No
2-Butanone	5.10E-03	1.30E+00	mg/kg	C8S-19	23/23	8.21E-02	2.80E+03 NC	No
Acetone	7.80E-02	1.50E+01	mg/kg	C8S-19	23/23	9.03E-01	6.10E+03 NC	No
Acetophenone	2.00E-02	5.60E-02	mg/kg	C8S-19	16/23	1.32E-01	7.80E+02 NC	No
Benzaldehyde	5.80E-02	6.70E-02	mg/kg	C7N-31	3/23	3.25E-01	7.80E+02 NC	No
Benzene	1.10E-03	7.90E-03	mg/kg	C8S-19	2/23	5.38E-03	1.10E+00 C	No
Bis(2-Ethylhexyl)phthalate	1.90E-02	9.80E-02	mg/kg	C7S-57	15/23	1.55E-01	3.50E+01 C	No
Bromomethane	5.50E-02	5.50E-02	mg/kg	C8S-19	1/23	7.79E-03	7.30E-01 NC	No
Carbon Disulfide	1.10E-03	1.10E-02	mg/kg	C8S-19	2/23	5.51E-03	8.20E+01 NC	No
Chloromethane Methyl Apoteto	4.40E-03	3.60E-02	mg/kg	C8S-19	2/23	6.75E-03	1.20E+01 NC	No
Methyl Acetate Methylene Chloride	1.20E-02 2.50E-02	8.80E-01 2.50E-02	mg/kg	C8S-19 C8S-19	23/23 1/23	1.26E-01 6.32E-03	7.80E+03 NC 3.60E+01 NC	No No
Toluene	1.30E-03	2.50E-02 2.50E-02	mg/kg mg/kg	C8S-19	3/23	6.03E-03	5.00E+02 NC	No
Pesticides		2.002 02	g/ng	303 10	5,20	0.002 00	3.332.732.140	
4,4'-DDE	3.10E-02	4.60E-02	mg/kg	C7S-28	2/23	1.69E-01	1.40E+00 C	No
4,4'-DDT	2.20E-02	2.20E-02	mg/kg	C8N-12	1/23	1.75E-01	1.70E+00 C	No
Caprolactam	2.70E-02	4.70E-02	mg/kg	C7S-57	4/23	3.08E-01	3.10E+03 NC	No
PAHs			, 5 3			-		-
Benzo(a)anthracene	1.70E-02	8.40E-02	mg/kg	C7S-37	10/23	2.22E-01	1.50E-01 C	Yes
Benzo(a)pyrene	2.00E-02	8.30E-02	mg/kg	C7S-37	9/23	2.38E-01	1.50E-02 C	Yes
Benzo(b)fluoranthene	1.80E-02	9.90E-02	mg/kg	C7S-37	10/23	2.26E-01	1.50E-01 C	Yes
Benzo(g,h,i)perylene	3.10E-02	5.70E-02	mg/kg	C7S-37	6/23	2.81E-01	1.40E+01 NC	No
Benzo(k)fluoranthene	1.90E-02	1.20E-01	mg/kg	C7S-37	9/23	2.40E-01	1.50E+00 C	Yes
Chrysene	1.80E-02	1.30E-01	mg/kg	C7S-37	12/23	2.00E-01	1.50E+01 C	Yes
Fluoranthene	2.20E-02	1.90E-01	mg/kg	C7S-37	12/23	2.11E-01	2.30E+02 NC	No
Indeno(1,2,3-cd)pyrene	3.10E-02	6.30E-02	mg/kg	C7S-37	6/23	2.79E-01	1.50E-01 C	Yes
Phenanthrene	2.60E-02	6.70E-02	mg/kg	C7S-37	6/23	2.79E-01	1.40E+01 NC	No
Pyrene	1.90E-02	1.50E-01	mg/kg	C7S-37	12/23	2.05E-01	1.70E+02 NC	No

TABLE 3-8 SUMMARY OF ANALYTES DETECTED IN FLOODPLAIN SOIL (0 TO 1 FT BGS) AND COMPARISON TO RESIDENTIAL SOIL RSLS **ANNISTON PCB SITE** OU-4

				Location of		Average	Screening	
	Minimum	Maximum		Maximum Detected	Detection	Concentration	Toxicity	COPC
Contaminant	Concentration	Concentration	Units	Concentration	Frequency	(mg/kg)	Value ⁴	Flag
norganics								
Aluminum	5.95E+03	2.08E+04	mg/kg	C8S-19	23/23	1.09E+04	7.70E+03 NC	Yes
Antimony	6.20E-01	1.50E+00	mg/kg	C7N-40	12/23	7.07E-01	3.10E+00 NC	No
Arsenic	2.60E+00	1.85E+01	mg/kg	C7S-28	138/138	6.64E+00	3.90E-01 C	Yes
Barium	5.60E+00	2.81E+02	mg/kg	C6N-10	138/138	1.02E+02	1.50E+03 NC	No
Beryllium	2.10E-01	1.30E+00	mg/kg	C4S-04	138/138	6.47E-01	1.60E+01 NC	No
Cadmium	5.80E-02	2.10E+00	mg/kg	C8N-19	104/138	3.31E-01	7.00E+00 NC	No
Calcium	2.66E+02	1.43E+03	mg/kg	C8S-19	23/23	7.57E+02	NA	No
Chromium	4.60E+00	7.97E+01	mg/kg	C3S-04	138/138	1.68E+01	2.90E-01 C	Yes
Cobalt	2.70E+00	3.51E+01	mg/kg	C6N-10	138/138	8.62E+00	2.30E+00 NC	Yes
Copper	4.80E+00	2.33E+01	mg/kg	C8N-19	23/23	1.21E+01	3.10E+02 NC	No
Cyanide	1.60E-01	6.60E-01	mg/kg	C7S-28	11/23	1.85E-01	4.70E+00 NC	No
ron	9.54E+03	4.28E+04	mg/kg	C7S-28	23/23	1.77E+04	5.50E+03 NC	Yes
_ead	5.40E+00	1.30E+02	mg/kg	C3S-04	138/138	2.77E+01	4.00E+02	No
Magnesium	3.84E+02	1.50E+03	mg/kg	C8S-19	23/23	7.90E+02	NA	No
Manganese	9.85E+01	4.31E+03	mg/kg	C7S-28	138/138	8.30E+02	1.80E+02 NC	Yes
Mercury	4.80E-03	3.34E+01	mg/kg	C3S-02	1120/1128	1.05E+00	2.30E+00 NC	Yes
Nickel	3.10E+00	1.83E+01	mg/kg	C7N-40	138/138	7.25E+00	1.50E+02 NC	No
Potassium	3.64E+02	1.75E+03	mg/kg	C7N-40	23/23	6.62E+02	NA	No
Thallium	5.40E-01	1.50E+00	mg/kg	C7N-40, C8S-12	16/23	1.35E+00	7.80E-02 NC	No
/anadium	7.90E+00	4.54E+01	mg/kg	C7SF-09	138/138	2.05E+01	3.90E+01 NC	No
Zinc	1.80E+01	1.27E+02	mg/kg	C8N-19	23/23	5.36E+01	2.30E+03 NC	No

[&]quot; Residential soil RSLs (April 2012).

NC = noncancer based, hazard index equals 0.1.

C = cancer based, target risk equals 1E-06.
Chromium assumed to be in the hexavalent form.

TABLE 3-9
SUMMARY OF ANALYTES DETECTED IN FLOODPLAIN SOIL (1 TO 4 FT BGS) AND COMPARISON TO RESIDENTIAL SOIL RSLS
ANNISTON PCB SITE
OU-4

				Location of	1	Average	Screening	
						-	_	
	Minimum	Maximum		Maximum Detected	Detection	Concentration	Toxicity Value ^e	COPC
Contaminant	Concentration	Concentration	Units	Concentration	Frequency	(mg/kg)	value	Flag
Aroclors								
Aroclor-1242	2.50E-01	1.20E+00	mg/kg	C3S-22	2/77	2.07E+00	Evaluated	as tPCBs
Aroclor-1248	3.80E-01	3.80E-01	mg/kg	C3SX-04	1/77	2.07E+00	Evaluated	as tPCBs
Aroclor-1254	4.50E-02	2.20E+02	mg/kg	C4S-01	69/77	1.08E+01	Evaluated	as tPCBs
Aroclor-1260	4.10E-02	1.10E+02	mg/kg	C2N-28	72/77	7.66E+00	Evaluated	as tPCBs
Aroclor-1268	4.50E-02	3.80E+00	mg/kg	C4S-04	28/77	2.28E+00	Evaluated	as tPCBs
Total PCBs (sum of Aroclors)	8.60E-02	3.53E+02	mg/kg	OLGP-065	212/240	3.05E+01	1.10E-01 NC	Yes
PCB Dioxin-like Congeners	•							
PCB-105	4.50E-02	7.60E-02	mg/Kg	C4S-03	4/4	5.95E-02	Evaluated a	is PCB TEQ
PCB-118	1.20E-01	1.40E-01	mg/Kg	C4S-03	4/4	1.25E-01	Evaluated a	s PCB TEQ
PCB-126	2.10E-02	2.60E-02	mg/kg	C3SX-01	2/4	1.54E-02	Evaluated a	s PCB TEQ
PCB-153	1.70E-01	2.10E-01	mg/Kg	C3SX-01	4/4	1.95E-01		s PCB TEQ
PCB-156	1.90E-02	2.60E-02	mg/Kg	C4S-03	4/4	2.23E-02	Evaluated a	s PCB TEQ
PCB-157	7.00E-03	7.00E-03	mg/Kg	C4N-06	1/4	1.10E-02	Evaluated a	s PCB TEQ
PCB-167	8.70E-03	1.10E-02	mg/kg	C3SX-01	2/4	1.24E-02		is PCB TEQ
PCB Dioxin-like Congener TEQ	6.88E-04	7.99E-04	mg/Kg	C4S-03	4/4	1.55E-03	4.50E-06 C	Yes
Dioxin/Furan Congeners		-	, 5 3					
1,2,3,7,8-PeCDD	1.70E-07	8.38E-07	mg/kg	C4N-06	3/3	5.03E-07	Evaluated as 2.3	3,7,8-TCDD TEQ
1,2,3,4,7,8-HxCDD	3.10E-07	1.39E-06	mg/kg	C4N-06	3/3	8.23E-07		3,7,8-TCDD TEQ
1,2,3,6,7,8-HxCDD	7.60E-07	5.34E-06	mg/kg	C4N-06	3/3	2.58E-06		3,7,8-TCDD TEQ
1,2,3,7,8,9-HxCDD	8.80E-07	4.23E-06	mg/kg	C4N-06	3/3	2.59E-06		3,7,8-TCDD TEQ
1,2,3,4,6,7,8-HpCDD	2.31E-05	1.30E-04	mg/kg	C4N-06	3/3	7.11E-05		3,7,8-TCDD TEQ
Octa CDD	1.17E-03	2.90E-03	mg/kg	C3SX-01	3/3	2.04E-03		3,7,8-TCDD TEQ
2.3.7.8-TCDF	1.20E-05	1.70E-05	mg/kg	C4N-06	3/3	1.46E-05		3,7,8-TCDD TEQ
1,2,3,7,8-PeCDF	4.73E-06	5.79E-06	mg/kg	C4N-06	3/3	5.27E-06		3,7,8-TCDD TEQ
2,3,4,7,8-PeCDF	6.21E-06	1.44E-05	mg/kg	C4N-06	3/3	9.36E-06		3,7,8-TCDD TEQ
1,2,3,4,7,8-HxCDF	1.68E-05	2.40E-05	mg/kg	C3SX-01	3/3	2.13E-05		3,7,8-TCDD TEQ
1,2,3,6,7,8-HxCDF	3.49E-06	1.03E-05	mg/kg	C3SX-01	3/3	6.76E-06		3,7,8-TCDD TEQ
1,2,3,7,8,9-HxCDF	4.80E-07	7.60E-07	mg/kg	C3SX-01	3/3	6.49E-07		3,7,8-TCDD TEQ
2,3,4,6,7,8-HxCDF	1.90E-06	4.10E-06	mg/kg	C4N-06	3/3	3.26E-06		3,7,8-TCDD TEQ
1,2,3,4,6,7,8-HpCDF	1.08E-05	8.20E-05	mg/kg	C3SX-01	3/3	4.35E-05		3,7,8-TCDD TEQ
1,2,3,4,7,8,9-HpCDF	3.28E-06	8.82E-06	mg/kg	C4N-06	3/3	6.50E-06		3,7,8-TCDD TEQ
Octa CDF	2.18E-05	1.15E-04	mg/kg	C3SX-01	3/3	7.93E-05		3,7,8-TCDD TEQ
2,3,7,8-TCDD TEQ	1.42E-05	1.42E-05	mg/kg	C4N-06	3/3	1.07E-05	4.50E-06 C	Yes
Inorganics					, .			
Aluminum	1.02E+04	1.47E+04	mg/kg	C7S-37	2/2	1.25E+04	7.70E+03 NC	Yes
Antimony	6.90E-01	8.80E-01	mg/kg	C8N-19	2/2	7.85E-01	3.10E+00 NC	No
Arsenic	4.60E+00	8.50E+00	mg/kg	C3SX-01	5/5	6.64E+00	3.90E-01 C	Yes
Barium	9.26E+01	1.99E+02	mg/kg	C4S-01	5/5	1.41E+02	1.50E+03 NC	No
Beryllium	5.60E-01	1.00E+00	mg/kg	C4N-03	5/5	8.18E-01	1.60E+01 NC	No
Cadmium	2.60E-01	2.50E+00	mg/kg	C8N-19	3/5	8.06E-01	7.00E+00 NC	No
Calcium	5.52E+02	1.22E+03	mg/kg	C8N-19	2/2	8.86E+02	NA NA	No
Chromium	1.07E+01	5.17E+01	mg/kg	C4S-01	5/5	2.64E+01	2.90E-01 C	Yes
Cobalt	9.70E+00	1.25E+01	mg/kg	C3SX-01	5/5	1.08E+01	2.30E+00 NC	Yes
Copper	1.28E+01	2.99E+01	mg/kg	C8N-19	2/2	2.14E+01	3.10E+02 NC	No
Iron	1.81E+04	2.00E+04	mg/kg	C7S-37	2/2	1.91E+04	5.50E+03 NC	Yes
Lead	1.40E+01	1.11E+02	mg/kg	C4S-01	5/5	4.59E+01	4.00E+02	No
Magnesium	9.39E+02	9.92E+02	mg/kg	C7S-37	2/2	9.66E+02	NA	No
Manganese	7.22E+02	8.99E+02	mg/kg	C7S-37	5/5	8.27E+02	1.80E+02 NC	Yes
Mercury	1.80E-02	5.90E+00	mg/kg	C8N-19	23/24	8.79E-01	2.30E+00 NC	Yes
Nickel	7.70E+00	1.61E+01	mg/kg	C4S-01	5/5	1.09E+01	1.50E+02 NC	No
Potassium	6.29E+02	7.25E+02	mg/kg	C7S-37	2/2	6.77E+02	NA	No
Thallium	5.50E-01	6.20E-01	mg/kg	C7S-37	2/2	5.85E-01	7.80E-02 NC	No
Vanadium	1.42E+01	2.41E+01	mg/kg	C7S-37	5/5	2.01E+01	3.90E+01 NC	No
Zinc	7.01E+01	1.79E+02	mg/kg	C8N-19	2/2	1.25E+02	2.30E+03 NC	No
		52 1 02	9/119	55.110	-/-	0_10_		. 10

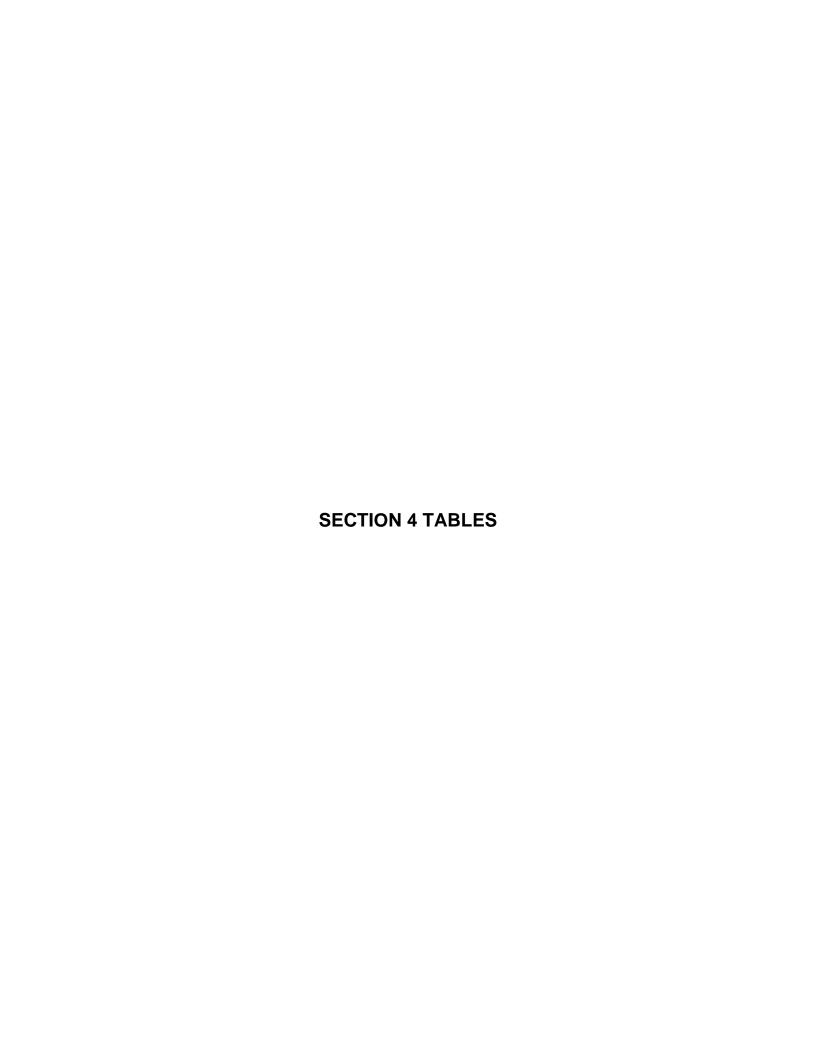
^a Residential soil RSLs (April 2012).

NC = noncancer based, hazard index equals 0.1.

C = cancer based, target risk equals 1E-06.

Chromium assumed to be in the hexavalent form.

TABLE 3-10 SUMMARY OF METALS DETECTED IN BACKGROUND SOIL (0 TO 1 FT BGS) FROM FORT MCCLELLAN ANNISTON PCB SITE OU-4


	Frequency	Range of	Average	Standard	Average	2X Average
	of	Detected Concentrations	Concentration	Deviation	plus 2 SDs	Concentration
Analyte	Detection	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	70 / 70	2.40E+03 - 3.99E+04	8.15E+03	6.10E+03	2.03E+04	1.63E+04
Antimony	47 / 69	1.10E-01 - 2.60E+00	9.90E-01	1.30E+00	3.59E+00	1.98E+00
Arsenic	66 / 66	8.20E-01 - 4.90E+01	6.86E+00	8.00E+00	2.29E+01	1.37E+01
Barium	70 / 70	1.10E+01 - 2.88E+02	6.20E+01	5.40E+01	1.70E+02	1.24E+02
Beryllium	54 / 54	6.20E-02 - 8.70E-01	4.00E-01	2.20E-01	8.40E-01	8.00E-01
Cadmium	45 / 70	2.40E-02 - 2.10E-01	1.40E-01	1.60E-01	4.60E-01	2.80E-01
Calcium	66 / 70	6.30E+01 - 1.79E+04	8.61E+02	2.27E+03	5.39E+03	1.72E+03
Chromium	70 / 70	2.00E+00 - 1.34E+02	1.85E+01	2.00E+01	5.85E+01	3.70E+01
Cobalt	68 / 70	3.90E-01 - 7.10E+01	7.57E+00	1.20E+01	3.16E+01	1.51E+01
Copper	69 / 70	1.30E+00 - 2.40E+01	6.36E+00	4.40E+00	1.52E+01	1.27E+01
Iron	70 / 70	2.51E+03 - 5.63E+04	1.71E+04	1.16E+04	4.02E+04	3.42E+04
Lead	70 / 70	2.90E+00 - 8.30E+01	2.00E+01	1.50E+01	5.00E+01	4.00E+01
Magnesium	70 / 70	6.00E+01 - 9.60E+03	5.16E+02	1.27E+03	3.05E+03	1.03E+03
Manganese	70 / 70	8.00E+00 - 6.85E+03	7.89E+02	1.19E+03	3.17E+03	1.58E+03
Mercury	23 / 70	3.10E-02 - 3.20E-01	4.00E-02	4.60E-02	1.32E-01	8.00E-02
Nickel	56 / 70	1.80E+00 - 2.20E+01	5.17E+00	4.20E+00	1.36E+01	1.03E+01
Potassium	60 / 70	1.04E+02 - 6.01E+03	4.00E+02	9.46E+02	2.29E+03	8.00E+02
Thallium	55 / 68	1.50E-02 - 3.40E+01	1.71E+00	5.90E+00	1.35E+01	3.42E+00
Vanadium	70 / 70	4.70E+00 - 1.58E+02	2.94E+01	2.60E+01	8.14E+01	5.88E+01
Zinc	64 / 70	4.60E+00 - 2.09E+02	2.03E+01	2.60E+01	7.23E+01	4.06E+01

Source of background: Background Metals Survey Report, Fort McClellan, Anniston, Alabama (SAIC, 1998).

TABLE 3-11
COMPARISONS OF SITE SURFACE SOIL METALS CONCENTRATIONS WITH BACKGROUND SOIL LEVELS
ANNISTON PCB SITE
OU-4

	Si	te	Fort	McClellan Backgr	ound	Ratio of Site
	Maximum	Average	Maximum	Average	2X Average	Maximum to Background
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Level of 2X Average
Aluminum *	2.08E+04	1.09E+04	3.99E+04	8.15E+03	1.63E+04	1.3
Antimony	1.50E+00	7.07E-01	2.60E+00	9.90E-01	1.98E+00	0.76
Arsenic *	1.85E+01	6.70E+00	4.90E+01	6.86E+00	1.37E+01	1.3
Barium	2.81E+02	1.00E+02	2.88E+02	6.20E+01	1.24E+02	2.3
Beryllium	1.30E+00	6.50E-01	8.70E-01	4.00E-01	8.00E-01	1.6
Cadmium	2.10E+00	3.21E-01	2.10E-01	1.40E-01	2.80E-01	7.5
Calcium	1.43E+03	7.57E+02	1.79E+04	8.61E+02	1.72E+03	0.83
Chromium *	7.97E+01	1.69E+01	1.34E+02	1.85E+01	3.70E+01	2.2
Cobalt *	3.51E+01	8.74E+00	7.10E+01	7.57E+00	1.51E+01	2.3
Copper	2.33E+01	1.21E+01	2.40E+01	6.36E+00	1.27E+01	1.8
Iron *	4.28E+04	1.77E+04	5.63E+04	1.71E+04	3.42E+04	1.3
Lead	1.30E+02	2.71E+01	8.30E+01	2.00E+01	4.00E+01	3.2
Magnesium	1.50E+03	7.90E+02	9.60E+03	5.16E+02	1.03E+03	1.5
Manganese *	4.31E+03	8.25E+02	6.85E+03	7.89E+02	1.58E+03	2.7
Mercury *	3.34E+01	9.95E-01	3.20E-01	4.00E-02	8.00E-02	418
Nickel	1.83E+01	7.32E+00	2.20E+01	5.17E+00	1.03E+01	1.8
Potassium	1.75E+03	6.62E+02	6.01E+03	4.00E+02	8.00E+02	2.2
Thallium *	1.50E+00	1.35E+00	3.40E+01	1.71E+00	3.42E+00	0.44
Vanadium *	4.54E+01	2.04E+01	1.58E+02	2.94E+01	5.88E+01	0.77
Zinc	1.27E+02	5.36E+01	2.09E+02	2.03E+01	4.06E+01	3.1

^{*} Maximum detected site concentration exceeded the residential soil RSL (see Table 3-8).

TABLE 4-1 NON-CANCER TOXICITY DATA -- ORAL/DERMAL ANNISTON PCB SITE OU-4

Contaminant	Chronic/						Primary	Combined		
of Potential	Subchronic	Ora	al RfD	Oral Absorption	Absorbed RfD	for Dermal (1)	Target	Uncertainty/Modifying	RfD: Target	Organ(s)
Concern		Value	Units	Efficiency for Dermal (1)	Value	Units	Organ(s)	Factors	Source(s)	Dates (2)
Total PCBs (3)	Chronic	2.0E-05	(mg/kg-day)	1.0	2.0E-05	(mg/kg-day)	Eyes, Immune system	300	IRIS	4/2/2012
PCB Dioxin-like Congener TEQ	Chronic	7.0E-10	(mg/kg-day)	1.0	7.0E-10	(mg/kg-day)	Developmental	30	IRIS	3/27/2012
Mercury (4)	Chronic	3.0E-04	(mg/kg-day)	1.0	3.0E-04	(mg/kg-day)	Immune system	1,000	IRIS	4/2/2012
Methylmercury (5)	Chronic	1.0E-04	(mg/kg-day)	1.0	1.0E-04	(mg/kg-day)	Nervous system	10	IRIS	4/2/2012
Total PCBs (3)	Subchronic	6.0E-05	(mg/kg-day)	1.0	6.0E-05	(mg/kg-day)	Eyes, Immune system	100	IRIS (7)	6/13/2012
PCB Dioxin-like Congener TEQ	Subchronic	7.0E-10	(mg/kg-day)	1.0	7.0E-10	(mg/kg-day)	Developmental	30	IRIS (8)	6/13/2012
Mercury (4)	Subchronic	3.0E-03	(mg/kg-day)	1.0	3.0E-03	(mg/kg-day)	Immune system	100	IRIS (9)	6/13/2012
2,3,7,8-TCDD TEQ	Chronic	7.0E-10	(mg/kg-day)	1.0	7.0E-10	(mg/kg-day)	Developmental	30	IRIS	3/27/2012
Benzo(a)anthracene		NA			NA					
Benzo(a)pyrene		NA			NA					
Benzo(b)fluoranthene		NA			NA					
Benzo(k)fluoranthene		NA			NA					
Chrysene		NA			NA					
Indeno(1,2,3-cd)pyrene		NA			NA					
Aluminum	Chronic	1.0E+00	(mg/kg-day)	1.0	1.0E+00	(mg/kg-day)	Nervous system	100	PPRTV	4/2/2012
Arsenic	Chronic	3.0E-04	(mg/kg-day)	1.0	3.0E-04	(mg/kg-day)	Skin	3	IRIS	4/2/2012
Chromium, Total (6)	Chronic	3.0E-03	(mg/kg-day)	0.025	7.5E-05	(mg/kg-day)	None observed	900	IRIS	4/2/2012
Cobalt	Chronic	3.0E-04	(mg/kg-day)	1.0	3.0E-04	(mg/kg-day)	Thyroid	3,000	PPRTV	4/2/2012
Iron	Chronic	7.0E-01	(mg/kg-day)	1.0	7.0E-01	(mg/kg-day)	Gastrointestinal	1.5	PPRTV	4/2/2012
Manganese	Chronic	2.4E-02	(mg/kg-day)	0.04	9.6E-04	(mg/kg-day)	Nervous system	3	IRIS	4/2/2012
2,3,7,8-TCDD TEQ	Subchronic	7.0E-10	(mg/kg-day)	1.0	7.0E-10	(mg/kg-day)	Developmental	30	IRIS (8)	6/13/2012
Benzo(a)anthracene		NA	(mg/kg-day)		NA	(mg/kg-day)				
Benzo(a)pyrene		NA	(mg/kg-day)		NA	(mg/kg-day)				
Benzo(b)fluoranthene		NA	(mg/kg-day)		NA	(mg/kg-day)				
Benzo(k)fluoranthene		NA	(mg/kg-day)		NA	(mg/kg-day)				
Chrysene		NA	(mg/kg-day)		NA	(mg/kg-day)				
Indeno(1,2,3-cd)pyrene		NA	(mg/kg-day)		NA	(mg/kg-day)				
Aluminum	Subchronic	1.0E+00	(mg/kg-day)	1.0	1.0E+00	(mg/kg-day)	Nervous system	100	PPRTV (8)	6/13/2012
Arsenic	Subchronic	3.0E-04	(mg/kg-day)	1.0	3.0E-04	(mg/kg-day)	Skin	3	Chronic value	6/13/2012
Chromium, Total (6)	Subchronic	9.0E-03	(mg/kg-day)	0.025	2.3E-04	(mg/kg-day)	None observed	300	IRIS (7)	6/13/2012
Cobalt	Subchronic	3.0E-03	(mg/kg-day)	1.0	3.0E-03	(mg/kg-day)	Thyroid	300	PPTRV (9)	6/13/2012
Iron	Subchronic	7.0E-01	(mg/kg-day)	1.0	7.0E-01	(mg/kg-day)	Gastrointestinal	1.5	PPRTV	6/13/2012
Manganese	Subchronic	2.4E-02	(mg/kg-day)	0.04	9.6E-04	(mg/kg-day)	Nervous system	3	Chronic value	6/13/2012

(1) Source: RAGS Part E Guidance (EPA, 2004)

Definitions:

IRIS = Integrated Risk Information System

TABLE 4-1 NON-CANCER TOXICITY DATA -- ORAL/DERMAL ANNISTON PCB SITE OU-4

Contaminant	Chronic/						Primary	Combined		
of Potential	Subchronic	Ora	I RfD	Oral Absorption	Absorbed RfD	for Dermal (1)	Target	Uncertainty/Modifying	RfD: Target	Organ(s)
Concern		Value	Units	Efficiency for Dermal (1)	Value	Units	Organ(s)	Factors	Source(s)	Dates (2)

(2) Represents date source was searched.

NA = Not available

(3) Aroclor 1254 toxicity criteria used.

PPRTV = Provisional peer-reviewed toxicity value

- (4) Mercuric chloride toxicity criteria used. Applicable to soil-mediated exposures.
- (5) Methylmercury toxicity values applicable to fish-mediated exposure only. Subchronic RfDs not presented because an age-adjusted approach (resulting in chronic exposure) was used for this pathway.
- (6) Chromium VI toxicity criteria used.
- (7) Chronic RfD times subchronic to chronic modifying factor of 3.
- (8) Chronic RfD times subchronic to chronic modifying factor of 1.
- (9) Chronic RfD times subchronic to chronic modifying factor of 10.

TABLE 4-2 CANCER TOXICITY DATA -- ORAL/DERMAL ANNISTON PCB SITE OU-4

Contaminant				Absorbed Cance	r Slope Factor	Weight of Evidence/		
of Potential	Oral Cancer S	Slope Factor	Oral Absorption	for Derm	for Dermal (1)		Oral	CSF
Concern	Value	Units	Efficiency for Dermal (1)	Value	Units	Description	Source(s)	Dates (2)
Total PCBs (3)	2.00E+00	(mg/kg-day) ⁻¹	1.0	2.00E+00	(mg/kg-day) ⁻¹	B2	IRIS	4/2/2012
Total PCBs (4)	1.00E+00	(mg/kg-day) ⁻¹	1.0	1.00E+00	(mg/kg-day) ⁻¹	B2	IRIS	4/2/2012
PCB Dioxin-like Congener TEQ	1.30E+05	(mg/kg-day) ⁻¹	1.0	1.30E+05	(mg/kg-day) ⁻¹	B2	CalEPA	4/2/2012
Mercury	NA			NA		D	IRIS	4/2/2012
2,3,7,8-TCDD TEQ	1.30E+05	(mg/kg-day) ⁻¹	1.0	1.30E+05	(mg/kg-day) ⁻¹	B2	CalEPA	4/2/2012
Benzo(a)anthracene	7.30E-01	(mg/kg-day) ⁻¹	1.0	7.30E-01	(mg/kg-day) ⁻¹	B2	IRIS	4/2/2012
Benzo(a)pyrene	7.30E+00	(mg/kg-day) ⁻¹	1.0	7.30E+00	(mg/kg-day) ⁻¹	B2	IRIS	4/2/2012
Benzo(b)fluoranthene	7.30E-01	(mg/kg-day) ⁻¹	1.0	7.30E-01	(mg/kg-day) ⁻¹	B2	IRIS	4/2/2012
Benzo(k)fluoranthene	7.30E-02	(mg/kg-day) ⁻¹	1.0	7.30E-02	(mg/kg-day) ⁻¹	B2	IRIS	4/2/2012
Chrysene	7.30E-03	(mg/kg-day) ⁻¹	1.0	7.30E-03	(mg/kg-day) ⁻¹	B2	IRIS	4/2/2012
Indeno(1,2,3-cd)pyrene	7.30E-01	(mg/kg-day) ⁻¹	1.0	7.30E-01	(mg/kg-day) ⁻¹	B2	IRIS	4/2/2012
Aluminum	NA			NA		No information		
Arsenic	1.50E+00	(mg/kg-day) ⁻¹	1.0	1.50E+00	(mg/kg-day) ⁻¹	Α	IRIS	4/2/2012
Chromium, Total (5)	5.00E-01	(mg/kg-day) ⁻¹	0.025	2.00E+01	(mg/kg-day) ⁻¹	Likely to be carcinogenic	NJDEP	4/2/2012
Cobalt	NA			NA		No information		
Iron	NA			NA		No information		
Lead	NA			NA		B2	IRIS	4/2/2012
Manganese	NA			NA		D	IRIS	4/2/2012

- (1) Source: RAGS Part E Guidance (EPA, 2004)
- (2) Represents date source was searched.
- (3) The IRIS upper bound slope factor for high risk and persistence used for RME scenario.
- (4) The IRIS central-estimate slope factor used for CTE scenario.
- (5) Chromium VI toxicity criteria used.

Definitions: CalEPA=California Environmental Protection Agency

B2 = Probable human carcinogen - indicates sufficient evidence in animals and

inadequate or no evidence in humans.

D = Not classifiable as a human carcinogen.

IRIS = Integrated Risk Information System

NA = Not available.

NJDEP = New Jersey Department of Environmental Protection

TABLE 5-1 EXPOSURE POINT CONCENTRATION SUMMARY - LOCATION A FISH ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Location A Fish Tissue

Exposure Point	Contaminant of	Units	Arithmetic	95% UCL	Maximum Concentration			Exposure Point Concentration	
	Potential Concern		Mean			Value Units Statistic Ratio		Rationale	
Group A	All Species								
	Total PCBs	mg/kg	2.11	2.38	9.47	2.38	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation
	PCB Dioxin-like Congener TEQ	mg/kg	0.000012	0.000016	0.000032	0.000016	mg/kg	95% Student's-t UCL - Normal	ProUCL Recommendation
	2,3,7,8-TCDD TEQ	mg/kg	0.0000029	0.0000051	0.000011	0.0000051	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation
	Mercury	mg/kg	0.28	0.32	0.87	0.32	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation
					Bas	s			
	Total PCBs	mg/kg	2.2	2.75	9.5	2.75	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation
	PCB Dioxin-like Congener TEQ	mg/kg	0.000015	NC	0.000021	0.000021	mg/kg	75 th Percentile*	See Text
	2,3,7,8-TCDD TEQ	mg/kg	0.0000031	NC	0.0000048	0.0000039	mg/kg	75 th Percentile*	See Text
	Mercury	mg/kg	0.42	0.48	0.87	0.48	mg/kg	95% H-UCL - Lognormal	ProUCL Recommendation
					Catfi	sh			
	Total PCBs	mg/kg	2.44	2.97	5.8	2.97	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation
	PCB Dioxin-like Congener TEQ	mg/kg	0.0000042	NC	0.0000058	0.0000058	mg/kg	Maximum*	See Text
	2,3,7,8-TCDD TEQ	mg/kg	0.00000091	NC	0.00000093	0.00000093	mg/kg	Maximum*	See Text
	Mercury	mg/kg	0.16	0.19	0.43	0.19	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation
					Panfi	fish			
	Total PCBs	mg/kg	1.69	2.1	4.4	2.11	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation
	PCB Dioxin-like Congener TEQ	mg/kg	0.000011	NC	0.000032	0.000013	mg/kg	75 th Percentile*	See Text
	2,3,7,8-TCDD TEQ	mg/kg	0.0000036	NC	0.000011	0.0000050	mg/kg	75 th Percentile*	See Text
	Mercury	mg/kg	0.27	0.34	0.70	0.34	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation

NC = Not calculated due to insufficient sample size.

^{*} The maximum concentration used for EPC due to less than 3 samples collected; the 75th percentile used for EPC when 3-7 samples collected.

TABLE 5-2 EXPOSURE POINT CONCENTRATION SUMMARY - LOCATION B FISH ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Location B Fish Tissue

Exposure Point	Contaminant of	Units	Arithmetic	95% UCL	Maximum Concentration			Exposure Point Concentration			
	Potential Concern		Mean			Value Units Statistic - Data Distribution		Rationale			
Group B	All Species										
	Total PCBs	mg/kg	2.51	2.88	11.8	2.88	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation		
	PCB Dioxin-like Congener TEQ	mg/kg	0.0000065	NC	0.000010	0.0000074	mg/kg	75 th Percentile*	See Text		
	2,3,7,8-TCDD TEQ	mg/kg	0.0000014	NC	0.0000024	0.0000017	mg/kg	75 th Percentile*	See Text		
	Mercury	mg/kg	0.43	0.48	1.3	0.48	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation		
						Bass					
	Total PCBs	mg/kg	2.9	4.77	11.8	4.77	mg/kg	95% Chebyshev (Mean, Sd) UCL - Not Discernable	ProUCL Recommendation		
	PCB Dioxin-like Congener TEQ	mg/kg	0.0000084	NC	0.000010	0.000010	mg/kg	Maximum*	See Text		
	2,3,7,8-TCDD TEQ	mg/kg	0.0000017	NC	0.0000024	0.0000024	mg/kg	Maximum*	See Text		
	Mercury	mg/kg	0.68	0.77	1.3	0.77	mg/kg	95% Student's-t UCL - Normal	ProUCL Recommendation		
						Catfish					
	Total PCBs	mg/kg	3.09	4.01	10.8	4.01	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation		
	PCB Dioxin-like Congener TEQ	mg/kg	0.0000051	NC	0.0000051	0.0000051	mg/kg	Maximum*	See Text		
	2,3,7,8-TCDD TEQ	mg/kg	0.00000087	NC	0.00000087	0.00000087	mg/kg	Maximum*	See Text		
	Mercury	mg/kg	0.36	0.44	1.3	0.44	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation		
					ı	Panfish					
	Total PCBs	mg/kg	1.55	1.86	4.4	1.86	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation		
	PCB Dioxin-like Congener TEQ	mg/kg	0.0000041	NC	0.0000041	0.0000041	mg/kg	Maximum*	See Text		
	2,3,7,8-TCDD TEQ	mg/kg	0.0000015	NC	0.0000015	0.0000015	mg/kg	Maximum*	See Text		
	Mercury	mg/kg	0.25	0.28	0.51	0.28	mg/kg	95% Student's-t UCL - Normal	ProUCL Recommendation		

NC = Not calculated due to insufficient sample size.

^{*} The maximum concentration used for EPC due to less than 3 samples collected; the 75th percentile used for EPC when 3-7 samples collected.

TABLE 5-3 EXPOSURE POINT CONCENTRATION SUMMARY - LOCATION C FISH ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Location C Fish Tissue

Exposure Point	Contaminant of	Units	Arithmetic	95% UCL	Maximum Concentration			Exposure Point Concentration	
	Potential Concern		Mean			Value	Units	Statistic	Rationale
Group C					All Sp	ecies			
	Total PCBs	mg/kg	4.35	5.43	34	5.43	mg/kg	95% Chebyshev (Mean, Sd) UCL - Not Discernable	ProUCL Recommendation
	PCB Dioxin-like Congener TEQ	mg/kg	0.0000069	0.0000083	0.000018	0.0000083	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation
	2,3,7,8-TCDD TEQ	mg/kg	0.00000068	0.00000079	0.0000014	0.00000079	mg/kg	95% Student's-t UCL - Normal	ProUCL Recommendation
	Mercury	mg/kg	0.39	0.43	1.9	0.43	mg/kg	95% KM (BCA) UCL - Lognormal	ProUCL Recommendation
					Ва	ss			
	Total PCBs	mg/kg	4.75	5.24	14.9	5.24	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation
	PCB Dioxin-like Congener TEQ	mg/kg	0.0000073	NC	0.000010	0.0000081	mg/kg	75 th Percentile*	See Text
	2,3,7,8-TCDD TEQ	mg/kg	0.00000077	NC	0.0000011	0.00000077	mg/kg	75 th Percentile*	See Text
	Mercury	mg/kg	0.64	0.71	1.9	0.71	mg/kg	95% Student's-t UCL - Normal	ProUCL Recommendation
					Cat	fish			
	Total PCBs	mg/kg	5.61	6.68	34	6.68	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation
	PCB Dioxin-like Congener TEQ	mg/kg	0.0000075	NC	0.000012	0.0000088	mg/kg	75 th Percentile*	See Text
	2,3,7,8-TCDD TEQ	mg/kg	0.00000091	NC	0.0000014	0.0000010	mg/kg	75 th Percentile*	See Text
	Mercury	mg/kg	0.29	0.33	0.89	0.33	mg/kg	95% KM (BCA) UCL - Gamma	ProUCL Recommendation
					Pan	nfish			
	Total PCBs	mg/kg	2.94	3.32	10.4	3.32	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation
	PCB Dioxin-like Congener TEQ	mg/kg	0.0000064	0.0000094	0.000018	0.0000094	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation
	2,3,7,8-TCDD TEQ	mg/kg	0.00000053	0.00000062	0.00000072	0.00000062 mg/kg 95% Student's-t UCL - Normal ProUCL R		ProUCL Recommendation	
	Mercury	mg/kg	0.24	0.27	0.53	0.27	mg/kg	95% Approximate Gamma UCL - Gamma	ProUCL Recommendation

NC = Not calculated due to insufficient sample size.

^{*} The maximum concentration used for EPC due to less than 3 samples collected; the 75th percentile used for EPC when 3-7 samples collected.

TABLE 5-4 FISH INGESTION EXPOSURE PARAMETERS ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

EDa

BWc

BWa

AT-C

AT-NC

Exposure Duration - adult

Averaging Time (Cancer)

Averaging Time (Non-Cancer)

Body Weight - child

Body Weight - adult

years

kg

days

days

24

15

70

25,550

10.950

Medium: Fish
Exposure Medium: Fish

Exposure Receptor Receptor Exposure Paramete RME RME CTE CTE Intake Equation/ Route Population Age Point Code Parameter Definition Units Value Rationale/ Value Rationale/ Model Name Reference Reference Recreational Concentration in Fish Group- and COPC- See Tables 5-1 through 5-3 Group- and COPC- See Tables 5-1 through 5-3 Fishermen Young Child Fish Tissue specific specific Ingestion Chronic daily intake - cancer (mg/kg-day) = Age-adjusted fish ingestion rate (1 to 6 years) IRFadj g-yr/kg 16.3 Calculated 1.5 Calculated C_f x IRFadj x FI x CF x IAF x EF x 1/AT-C and Adult IRFc Fish Ingestion Rate - child g/day 15 one-half the adult ingestion rate 1.41 one-half the adult ingestion rate ADEM, 1993 Arcadis, 2009 (age-adjusted) IRFa Fish Ingestion Rate - adult g/day 30 2.83 Chronic daily intake - noncancer (mg/kg-day) = FI Fraction of Ingested Fish from River mile 0-10 = 1 See Section 5.2.2.2 River mile 0-10 = 1 See Section 5.2.2.2 C_f x IRFadj x FI x CF x IAF x EF x 1/AT-NC unitless Choccolocco Creek River mile 10-37 = 0.5 River mile 10-37 = 0.5 1.00E-03 CF Conversion Factor kg/g Unit conversion factor 1.00E-03 Unit conversion factor IAF Gastrointestinal Absorption Factor unitless tPCBs = EPA, 1986; rest = default tPCBs = EPA, 1986; rest = default 1 EF Exposure Frequency 350 Professional judgment 350 Professional judgment IRFadj = (IRFc x EDc x 1/BWc)+(IRFa x EDa x 1/BWa) days/yea EDc Exposure Duration - child years Calculated based on young child's age 6 Calculated based on young child's age

Professional judgment

Total ED (30 years) x 365 days/year

EPA, 2008

EPA, 1989

EPA, 1989

24

15

70

25,550

10.950

Professional judgment

EPA, 2008

EPA, 1989

EPA, 1989

ED x 365 days/year

TABLE 5-5
SUMMARY OF CANCER RISKS AND HAZARD INDICES - RME SCENARIO - PRIMARY COPCS
ANNISTON PCB SITE
OU-4

Location		Cancer Risk	Hazard Index	PCB Dioxin-like	Congener TEQ
Grouping	Species	Total PCBs	Total PCBs and Mercury	Cancer Risk	Hazard Quotient
Α	All Fish	1E-03	64	5E-04	12
	Bass	1E-03	74	6E-04	15
	Catfish	1E-03	78	2E-04	4
	Panfish	9E-04	57	4E-04	9
В	All Fish	6E-04	39	1E-04	3
	Bass	1E-03	64	1E-04	4
	Catfish	9E-04	53	7E-05	2
	Panfish	4E-04	25	6E-05	2
С	All Fish	1E-03	72	1E-04	3
	Bass	1E-03	70	1E-04	3
	Catfish	1E-03	88	1E-04	3
	Panfish	7E-04	44	1E-04	4

No Fill = cancer risk less than 1E-06 or hazard quotient/index less than or equal to 1.0.

= cancer risk between 1E-06 and 1E-04.

= cancer risk greater than 1E-04 or hazard index greater than 1.0.

TABLE 5-6 SUMMARY OF CANCER RISKS AND HAZARD INDICES - RME SCENARIO - TEQS ANNISTON PCB SITE OU-4

			Cancer Risk		Contribution of PCB	На	Hazard Quotient		Contribution of PCB
Location Grouping	Species	PCB Dioxin- like Congener TEQ	2,3,7,8-TCDD TEQ	Total	Dioxin-like Congener to Total TEQ Risk	PCB Dioxin- like Congener TEQ	2,3,7,8-TCDD TEQ	Total	Dioxin-like Congener to Total TEQ HQ
Α	All Fish	5E-04	1E-04	6E-04	76%	12	4	16	76%
1	Bass	6E-04	1E-04	7E-04	84%	15	3	18	84%
1	Catfish	2E-04	3E-05	2E-04	86%	4	0.7	5	86%
1	Panfish	4E-04	1E-04	5E-04	71%	9	4	13	71%
В	All Fish	1E-04	3E-05	1E-04	81%	3	0.6	3	81%
l	Bass	1E-04	4E-05	2E-04	81%	4	0.9	5	81%
l	Catfish	7E-05	1E-05	9E-05	85%	2	0.3	2	85%
	Panfish	6E-05	2E-05	8E-05	73%	2	0.6	2	73%
С	All Fish	1E-04	1E-05	1E-04	91%	3	0.3	3	91%
l	Bass	1E-04	1E-05	1E-04	91%	3	0.3	3	91%
	Catfish	1E-04	2E-05	1E-04	89%	3	0.4	4	89%
	Panfish	1E-04	9E-06	1E-04	94%	4	0.2	4	94%

No Fill = cancer risk less than 1E-06 or hazard quotient/index less than or equal to 1.0. = cancer risk between 1E-06 and 1E-04.

= cancer risk greater than 1E-04 or hazard quotient/index greater than 1.0.

TABLE 5-7 SUMMARY OF CANCER RISKS AND HAZARD INDICES - CTE SCENARIO - PRIMARY COPCS ANNISTON PCB SITE OU-4

Location		Cancer Risk	Hazard Index	PCB Dioxin-like	Congener TEQ
Grouping	Species	Total PCBs	Total PCBs and Mercury	Cancer Risk	Hazard Quotient
Α	All Fish	5E-05	6	4E-05	1
	Bass	6E-05	7	6E-05	1
	Catfish	6E-05	7	2E-05	0.4
	Panfish	4E-05	5	3E-05	0.9
В	All Fish	6E-05	7	2E-05	0.5
	Bass	1E-04	12	3E-05	0.7
	Catfish	8E-05	10	1E-05	0.4
	Panfish	4E-05	5	1E-05	0.3
С	All Fish	1E-04	14	2E-05	0.6
	Bass	1E-04	13	2E-05	0.6
	Catfish	1E-04	17	2E-05	0.6
	Panfish	7E-05	8	3E-05	0.7

No Fill = cancer risk less than 1E-06 or hazard quotient/index less than or equal to 1.0.

= cancer risk between 1E-06 and 1E-04.

= cancer risk greater than 1E-04 or hazard index greater than 1.0.

TABLE 5-8 SUMMARY OF CANCER RISKS AND HAZARD INDICES - CTE SCENARIO - TEQS ANNISTON PCB SITE OU-4

		Cancer Risk			Contribution of PCB	На	Contribution of PCB		
		PCB Dioxin-			Dioxin-like	PCB Dioxin-			Dioxin-like
Location		like Congener	2,3,7,8-TCDD		Congener to Total	like Congener	2,3,7,8-TCDD		Congener to Total
Grouping	Species	TEQ	TEQ	Total	TEQ Risk	TEQ	TEQ	Total	TEQ HQ
Α	All Fish	4E-05	1E-05	6E-05	76%	1	0.4	2	76%
	Bass	6E-05	1E-05	7E-05	84%	1	0.3	2	84%
	Catfish	2E-05	3E-06	2E-05	86%	0.4	0.07	0.5	86%
	Panfish	3E-05	1E-05	5E-05	71%	0.9	0.4	1	71%
В	All Fish	2E-05	5E-06	2E-05	81%	0.5	0.1	0.6	81%
	Bass	3E-05	7E-06	3E-05	81%	0.7	0.2	0.9	81%
	Catfish	1E-05	2E-06	2E-05	85%	0.4	0.06	0.4	85%
	Panfish	1E-05	4E-06	2E-05	73%	0.3	0.1	0.4	73%
С	All Fish	2E-05	2E-06	2E-05	91%	0.6	0.06	0.6	91%
	Bass	2E-05	2E-06	2E-05	91%	0.6	0.05	0.6	91%
	Catfish	2E-05	3E-06	3E-05	89%	0.6	0.07	0.7	89%
	Panfish	3E-05	2E-06	3E-05	94%	0.7	0.04	0.7	94%

No Fill = cancer risk less than 1E-06 or hazard quotient/index less than or equal to 1.0. = cancer risk between 1E-06 and 1E-04.

= cancer risk greater than 1E-04 or hazard quotient/index greater than 1.0.

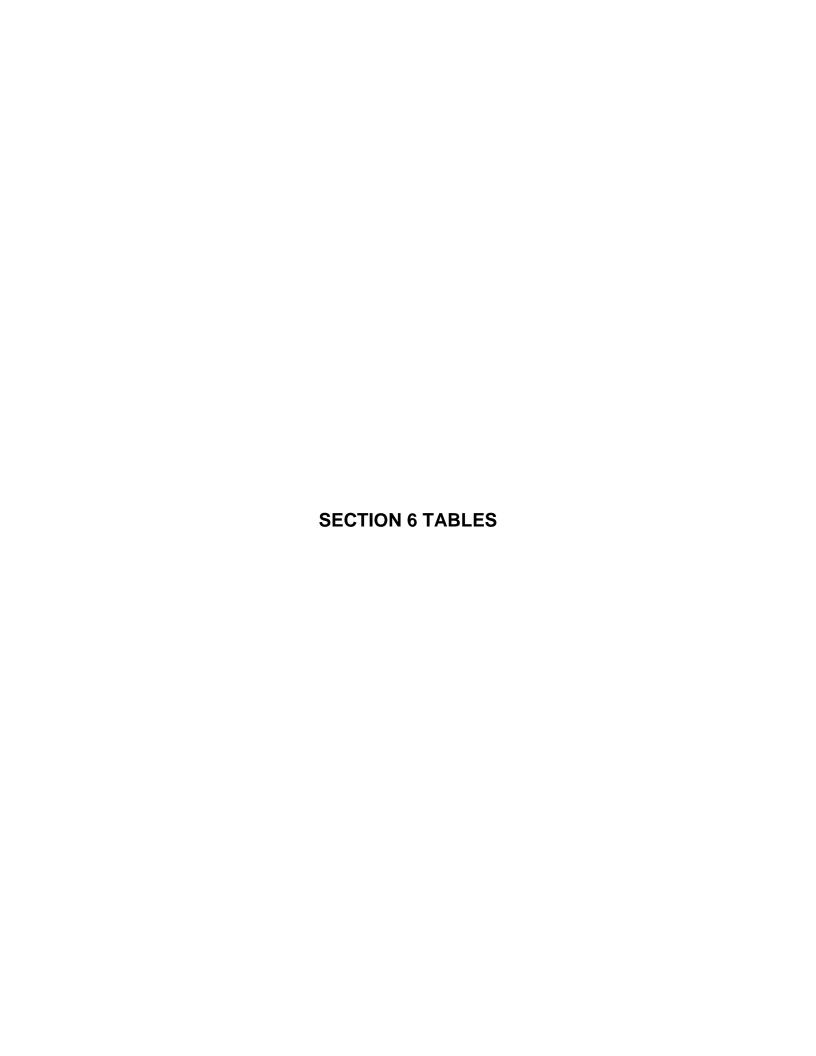


TABLE 6-1 COMPARISON OF EXPOSURE UNIT tPCB CONCENTRATIONS TO 1 MG/KG tPCBS - SURFACE SOIL ANNISTON PCB SITE OU-4

	1				
			tPCB		
			Maximum		
		tPCB	Detected	tPCB	tPCB EPC
Exposure Unit	Units	95% UCL*	Concentration	EPC	> 1 mg/kg
C1-EU1	mg/kg	1.05E+01	5.46E+01	1.05E+01	yes
C1-EU2	mg/kg	4.61E+01	2.28E+02	4.61E+01	yes
C2N-EU1	mg/kg	1.63E+01	7.25E+01	1.63E+01	yes
C2N-EU2	mg/kg	4.82E-01	2.68E+00	4.82E-01	no
C2S-EU1	mg/kg	1.58E-01	5.05E-01	1.58E-01	no
C3N-EU1	mg/kg	2.32E+01	8.95E+01	2.32E+01	yes
C3N-EU2	mg/kg	3.69E+01	7.09E+01	3.69E+01	yes
C3S-EU1	mg/kg	1.95E+01	1.27E+02	1.95E+01	yes
C3S-EU2	mg/kg	2.36E+01	6.94E+01	2.36E+01	yes
C4N-EU1	mg/kg	8.12E+00	2.53E+01	8.12E+00	yes
C4N-EU2	mg/kg	8.50E+00	1.99E+01	8.50E+00	yes
C4S-EU1	mg/kg	1.63E+01	4.29E+01	1.63E+01	yes
C4S-EU2	mg/kg	2.51E+00	1.01E+01	2.51E+00	yes
C4S-EU3	mg/kg	5.50E+00	1.63E+01	5.50E+00	yes
C5N-EU1	mg/kg	6.05E+00	9.01E+00	6.05E+00	yes
C5N-EU2	mg/kg	5.62E-01	8.01E+00	5.62E-01	no
C5S-EU1	mg/kg	1.33E+00	1.45E+01	1.33E+00	yes
C6N-EU1	mg/kg	2.14E+00	7.90E+00	2.14E+00	yes
C6S-EU1	mg/kg	2.88E+00	1.64E+01	2.88E+00	yes
C7N-EU1	mg/kg	3.72E-01	5.02E+00	3.72E-01	no
C7S-EU1	mg/kg	1.32E+00	9.85E+00	1.32E+00	yes
C8N-EU1	mg/kg	3.09E+00	8.13E+00	3.09E+00	yes
C8S-EU1	mg/kg	7.58E-01	3.64E+00	7.58E-01	no
C9N-EU1	mg/kg	9.85E-01	4.46E+00	9.85E-01	no
C9S-EU1	mg/kg	2.52E-01	4.40E-01	2.52E-01	no

Note: Shading Indicates that the EU had a tPCB EPC in exceedance of 1.0 mg/kg. See text for explanation.

* ProUCL was used to calculate the 95% UCLs. Section 6.2.2 presents the approach that was used to calculate the 95% UCLs.

TABLE 6-2 COMPARISONS OF EXPOSURE UNIT tPCB CONCENTRATIONS TO 1 MG/KG tPCBS - TOTAL SOIL ANNISTON PCB SITE OU-4

Exposure Unit	Units	tPCB 95% UCL*	tPCB Maximum Detected Concentration	tPCB EPC	tPCB EPC
C1-EU2	mg/kg	6.69E+01	1.72E+02	6.69E+01	yes
C2N-EU1	mg/kg	3.62E+01	1.71E+02	3.62E+01	yes
C4N-EU1	mg/kg	6.08E+00	1.60E+01	6.08E+00	yes
C5N-EU1	mg/kg	1.19E+01	2.26E+01	1.19E+01	yes

Note: Shading Indicates that the EU had a tPCB EPC in exceedance of 1.0 mg/kg. See text for explanation.

^{*} ProUCL was used to calculate the 95% UCLs. Section 6.2.2 presents the approach that was used to calculate the 95% UCLs.

TABLE 6-3

OCCURRENCE AND DISTRIBUTION OF CONTAMINANTS OF POTENTIAL CONCERN - SURFACE SOIL - PRIMARY COPCS

ANNISTON PCB SITE

OU-4

Exposure Point	Primary COPC	Minimum Detected Concentration	Maximum Detected Concentration	Units	Location of Maximum Detected Concentration	Detection Frequency	Range of Detection Limits
C1-EU1	Total PCBs	3.70E-02	5.46E+01	mg/kg	OLGP-048	47/67	4.00E-02 - 4.00E-02
C1-EU2	Total PCBs	1.15E-01	2.28E+02	mg/kg	NHA-5	28/28	NA
C2N-EU1	Total PCBs	4.35E-02	7.25E+01	mg/kg	C2N-28	7/14	3.75E-02 - 4.70E-02
CZIN-EUT					C2N-26	2/2	
	PCB Dioxin-like Congener TEQ	4.64E-04 1.94E-02	9.43E-04 1.65E+00	mg/kg	C2N-24 C2N-28	14/14	NA NA
CON FUO	Mercury			mg/kg			
C2N-EU2	Total PCBs	4.55E-02	2.68E+00	mg/kg	C2S-18	4/19	4.20E-02 - 4.85E-02
	PCB Dioxin-like Congener TEQ	3.62E-04 2.00E-02	7.49E-04 6.40E-01	mg/kg	C2S-18	2/2 19/19	NA NA
000 5114	Mercury			mg/kg	C2S-18		
C2S-EU1	Total PCBs	5.15E-02	5.05E-01	mg/kg	C2S-20	4/16	
	PCB Dioxin-like Congener TEQ	1.72E-04	1.72E-04	mg/kg	C2S-20	1/1	NA NA
0011 5114	Mercury	1.25E-02	1.26E-01	mg/kg	C2S-17, C2S-20	16/16	NA
C3N-EU1	Total PCBs	7.15E-02	8.95E+01	mg/kg	C3N-05	50/51	3.90E-02 - 3.90E-02
	PCB Dioxin-like Congener TEQ	3.58E-04	2.81E-03	mg/kg	C3NX-12	11/11	NA
	Mercury	6.45E-02	1.44E+01	mg/kg	C3NX-20	51/51	NA
C3N-EU2	Total PCBs	4.20E-02	7.09E+01	mg/kg	C3N-17	11/12	4.00E-02 - 4.00E-02
	PCB Dioxin-like Congener TEQ	3.43E-04	3.43E-04	mg/kg	C3N-15	1/1	NA
	Mercury	3.30E-02	6.14E+00	mg/kg	C3N-15	12/12	NA
C3S-EU1	Total PCBs	4.50E-02	1.27E+02	mg/kg	C3S-02	15/35	3.85E-02 - 4.40E-02
	PCB Dioxin-like Congener TEQ	1.63E-04	3.23E-04	mg/kg	C3S-13	2/2	NA
	Mercury	1.20E-02	1.89E+01	mg/kg	C3S-02	34/35	8.30E-03 - 8.30E-03
C3S-EU2	Total PCBs	1.40E-01	6.94E+01	mg/kg	C3S-18	21/23	3.70E-02 - 3.85E-02
	PCB Dioxin-like Congener TEQ	1.82E-04	8.09E-04	mg/kg	C3SX-09	5/5	NA
	Mercury	3.50E-02	1.35E+01	mg/kg	C3S-18	23/23	NA
C4N-EU1	Total PCBs	4.30E-02	2.53E+01	mg/kg	C3N-23	50/53	3.95E-02 - 4.20E-02
	PCB Dioxin-like Congener TEQ	1.52E-04	2.41E-03	mg/kg	C4N-15	13/13	NA
	Mercury	3.95E-02	8.95E+00	mg/kg	C4N-13	53/53	NA
C4N-EU2	Total PCBs	3.95E-02	1.99E+01	mg/kg	C4N-43	30/41	3.65E-02 - 7.10E-02
	PCB Dioxin-like Congener TEQ	5.05E-04	1.72E-03	mg/kg	C4N-33	5/5	NA
	Mercury	2.80E-02	1.38E+01	mg/kg	C4N-43	41/41	NA
C4S-EU1	Total PCBs	4.20E-02	4.29E+01	mg/kg	C4S-04	28/31	3.50E-02 - 4.25E-02
	PCB Dioxin-like Congener TEQ	1.82E-04	2.81E-03	mg/kg	C4SX-02	6/6	NA
	Mercury	6.15E-03	9.15E+00	mg/kg	C4S-04	31/31	NA
C4S-EU2	Total PCBs	4.70E-02	1.01E+01	mg/kg	C4S-25	25/38	4.05E-02 - 4.80E-02
	PCB Dioxin-like Congener TEQ	5.16E-04	1.71E-03	mg/kg	C4S-19	6/6	NA
	Mercury	1.50E-02	4.95E+00	mg/kg	C4S-25	38/38	NA
C4S-EU3	Total PCBs	5.10E-02	1.63E+01	mg/kg	C4SF-30	23/27	3.95E-02 - 4.25E-02
	PCB Dioxin-like Congener TEQ	4.94E-04	8.58E-04	mg/kg	C4SF-24	4/4	NA
	Mercury	3.70E-02	4.25E+00	mg/kg	C4S-44	27/27	NA
C5N-EU1	Total PCBs	5.65E-02	9.01E+00	mg/kg	C4NF-34	12/12	NA
	PCB Dioxin-like Congener TEQ	9.59E-04	1.71E-03	mg/kg	C4N-48	3/3	NA
	Mercury	3.80E-02	2.20E+00	mg/kg	C4N-48	12/12	NA
C5N-EU2	Total PCBs	4.00E-02	8.01E+00	mg/kg	C5N-18	37/76	3.65E-02 - 4.40E-02
	PCB Dioxin-like Congener TEQ	3.12E-04	9.18E-04	mg/kg	C5N-12	9/9	NA
	Mercury	2.00E-02	4.20E+00	mg/kg	C5N-18	76/76	NA
C5S-EU1	Total PCBs	4.10E-02	1.45E+01	mg/kg	C5S-07	36/78	3.65E-02 - 4.40E-02
	PCB Dioxin-like Congener TEQ	1.82E-04	9.61E-04	mg/kg	C4SF-33	10/10	NA
	Mercury	1.80E-02	4.65E+00	mg/kg	C4S-57	78/78	NA
C6N-EU1	Total PCBs	3.90E-02	7.90E+00	mg/kg	C6N-19	14/20	3.70E-02 - 3.90E-02
	PCB Dioxin-like Congener TEQ	3.63E-04	1.62E-03	mg/kg	C6N-14	6/6	NA
	Mercury	3.00E-02	4.40E+00	mg/kg	C6N-19	20/20	NA NA
C6S-EU1	Total PCBs	4.05E-02	1.64E+01	mg/kg	C6S-02	13/21	3.70E-02 - 4.45E-02
JUJ-LU1	PCB Dioxin-like Congener TEQ	4.05E-02 4.43E-04	1.84E+01	mg/kg	C6S-02	4/4	NA
	. 32 DIONIII IINO OUNGENER TEX	-r.+JL*U4	1.016-03	mg/kg	JUU-U4	7/7	INA

TABLE 6-3

OCCURRENCE AND DISTRIBUTION OF CONTAMINANTS OF POTENTIAL CONCERN - SURFACE SOIL - PRIMARY COPCS

ANNISTON PCB SITE

OU-4

Exposure Point	Primary COPC	Minimum Detected Concentration	Maximum Detected Concentration	Units	Location of Maximum Detected Concentration	Detection Frequency	Range of Detection Limits
C7N-EU1	Total PCBs	3.60E-02	5.02E+00	mg/kg	C7N-15	33/73	3.45E-02 - 5.70E-02
	PCB Dioxin-like Congener TEQ	1.51E-04	3.43E-04	mg/kg	C7NF-17	7/9	1.41E-04 - 1.51E-04
	Mercury	1.10E-02	1.40E+00	mg/kg	C7NF-17	24/25	6.80E-03 - 6.80E-03
C7S-EU1	Total PCBs	4.15E-02	9.85E+00	mg/kg	C7S-26	31/77	3.45E-02 - 4.05E-02
	PCB Dioxin-like Congener TEQ	1.46E-04	3.32E-03	mg/kg	C7S-37	7/8	1.41E-04 - 1.41E-04
	Mercury	7.50E-03	2.98E+00	mg/kg	C7S-37	26/26	NA
C8N-EU1	Total PCBs	3.65E-02	8.13E+00	mg/kg	C8N-16	18/24	3.50E-02 - 3.85E-02
	PCB Dioxin-like Congener TEQ	2.42E-03	4.14E-03	mg/kg	C8N-12	2/2	NA
	Mercury	1.90E-02	5.20E+00	mg/kg	C8N-12	6/6	NA
C8S-EU1	Total PCBs	4.60E-02	3.64E+00	mg/kg	C8S-13	10/20	3.50E-02 - 5.10E-02
	PCB Dioxin-like Congener TEQ	1.62E-04	2.32E-04	mg/kg	C8S-19	2/2	NA
	Mercury	4.35E-01	7.50E-01	mg/kg	C8S-12	2/2	NA
C9N-EU1	Total PCBs	5.75E-02	4.46E+00	mg/kg	C9N-01	7/20	3.70E-02 - 4.15E-02
	PCB Dioxin-like Congener TEQ	4.03E-04	9.62E-04	mg/kg	C9N-02	3/3	NA
	Mercury	3.15E-02	2.79E+00	mg/kg	C9N-02	20/20	NA
C9S-EU1	Total PCBs	1.26E-01	4.40E-01	mg/kg	C9S-07	11/20	3.85E-02 - 4.10E-02
	PCB Dioxin-like Congener TEQ	3.22E-04	3.32E-04	mg/kg	C9S-12	3/3	NA
	Mercury	3.95E-02	7.00E-01	mg/kg	C9S-03	20/20	NA

NA = Not available

TABLE 6-4 OCCURRENCE AND DISTRIBUTION OF CONTAMINANTS OF POTENTIAL CONCERN - TOTAL SOIL - PRIMARY COPCS ANNISTON PCB SITE

OU-4

Exposure Point	Primary COPC	Minimum Detected Concentration	Maximum Detected Concentration	Units	Location of Maximum Detected Concentration	Detection Frequency	Range of Detection Limits
C1-EU1	Total PCBs	3.70E-02	1.19E+02	mg/kg	OLHA-004	55/72	4.00E-02 - 4.00E-02
C1-EU2	Total PCBs	1.15E-01	1.72E+02	mg/kg	NHA-2	28/28	NA
C2N-EU1	Total PCBs	4.35E-02	1.71E+02	mg/kg	C2N-28	7/14	3.75E-02 - 4.70E-02
	PCB Dioxin-like Congener TEQ	4.64E-04	9.43E-04	mg/kg	C2N-24	2/2	NA
	Mercury	1.94E-02	1.65E+00	mg/kg	C2N-28	14/14	NA
C2N-EU2	Total PCBs	4.55E-02	2.68E+00	mg/kg	C2S-18	4/19	4.20E-02 - 4.85E-02
	PCB Dioxin-like Congener TEQ	3.62E-04	7.49E-04	mg/kg	C2S-18	2/2	NA
	Mercury	2.00E-02	6.40E-01	mg/kg	C2S-18	19/19	NA
C2S-EU1	Total PCBs	5.15E-02	5.05E-01	mg/kg	C2S-20	4/16	4.00E-02 - 4.55E-02
	PCB Dioxin-like Congener TEQ	1.72E-04	1.72E-04	mg/kg	C2S-20	1/1	NA
	Mercury	1.25E-02	1.26E-01	mg/kg	C2S-20, C2S-17	16/16	NA
C3N-EU1	Total PCBs	7.15E-02	6.70E+01	mg/kg	C3NX-20	50/51	3.90E-02 - 3.90E-02
	PCB Dioxin-like Congener TEQ	3.58E-04	2.81E-03	mg/kg	C3NX-12	11/11	NA
	Mercury	6.45E-02	1.44E+01	mg/kg	C3NX-20	51/51	NA
C3N-EU2	Total PCBs	4.20E-02	5.05E+01	mg/kg	C3N-17	11/12	4.00E-02 - 4.00E-02
	PCB Dioxin-like Congener TEQ	3.43E-04	3.43E-04	mg/kg	C3N-15	1/1	NA
	Mercury	3.30E-02	6.14E+00	mg/kg	C3N-15	12/12	NA
C3S-EU1	Total PCBs	4.50E-02	8.73E+01	mg/kg	C3S-02	15/35	3.85E-02 - 4.40E-02
	PCB Dioxin-like Congener TEQ	1.63E-04	3.23E-04	mg/kg	C3S-13	2/2	NA
	Mercury	1.20E-02	1.89E+01	mg/kg	C3S-02	34/35	8.30E-03 - 8.30E-03
C3S-EU2	Total PCBs	1.40E-01	3.83E+01	mg/kg	C3S-18	21/23	3.70E-02 - 3.85E-02
	PCB Dioxin-like Congener TEQ	1.82E-04	2.61E-03	mg/kg	C3SX-01	7/7	NA
	Mercury	3.50E-02	1.35E+01	mg/kg	C3S-18	23/23	NA
C4N-EU1	Total PCBs	4.30E-02	1.60E+01	mg/kg	C4N-10	50/53	3.95E-02 - 4.15E-02
	PCB Dioxin-like Congener TEQ	1.52E-04	2.41E-03	mg/kg	C4N-15	13/13	NA
	Mercury	2.93E-02	8.95E+00	mg/kg	C4N-13	53/53	NA
C4N-EU2	Total PCBs	3.95E-02	1.08E+01	mg/kg	C4N-43	30/41	3.65E-02 - 7.10E-02
	PCB Dioxin-like Congener TEQ	5.05E-04	1.72E-03	mg/kg	C4N-33	5/5	NA
	Mercury	2.80E-02	1.38E+01	mg/kg	C4N-43	41/41	NA
C4S-EU1	Total PCBs	4.20E-02	9.77E+01	mg/kg	C4S-01	28/31	3.50E-02 - 4.25E-02
	PCB Dioxin-like Congener TEQ	1.82E-04	2.81E-03	mg/kg	C4SX-02	6/6	NA
	Mercury	6.15E-03	6.85E+00	mg/kg	C3S-25	31/31	NA
C4S-EU2	Total PCBs	4.70E-02	1.25E+01	mg/kg	C4S-33	25/38	4.05E-02 - 4.80E-02
	PCB Dioxin-like Congener TEQ	5.16E-04	1.71E-03	mg/kg	C4S-19	6/6	NA
	Mercury	1.50E-02	4.95E+00	mg/kg	C4S-25	38/38	NA
C4S-EU3	Total PCBs	5.10E-02	1.63E+01	mg/kg	C4SF-30	23/27	3.95E-02 - 4.25E-02
	PCB Dioxin-like Congener TEQ	4.94E-04	8.58E-04	mg/kg	C4SF-24	4/4	NA
	Mercury	3.70E-02	4.25E+00	mg/kg	C4S-44	27/27	NA
C5N-EU1	Total PCBs	5.65E-02	2.26E+01	mg/kg	C4N-48	12/12	NA
	PCB Dioxin-like Congener TEQ	9.59E-04	1.71E-03	mg/kg	C4N-48	3/3	NA
	Mercury	3.80E-02	2.20E+00	mg/kg	C4N-48	12/12	NA
C5N-EU2	Total PCBs	4.00E-02	5.11E+00	mg/kg	C5N-18	37/76	3.65E-02 - 4.40E-02
	PCB Dioxin-like Congener TEQ	3.12E-04	9.18E-04	mg/kg	C5N-12	9/9	NA
	Mercury	2.00E-02	4.20E+00	mg/kg	C5N-18	76/76	NA
C5S-EU1	Total PCBs	4.10E-02	2.40E+01	mg/kg	C4S-57	36/78	3.65E-02 - 4.40E-02
	PCB Dioxin-like Congener TEQ	1.82E-04	9.61E-04	mg/kg	C4SF-33	10/10	NA
	Mercury	1.80E-02	4.65E+00	mg/kg	C4S-57	78/78	NA
C6N-EU1	Total PCBs	3.90E-02	4.87E+00	mg/kg	C6N-20	14/20	3.70E-02 - 3.90E-02
	PCB Dioxin-like Congener TEQ	3.63E-04	1.62E-03	mg/kg	C6N-14	6/6	NA
	Mercury	3.00E-02	4.40E+00	mg/kg	C6N-19	20/20	NA
C6S-EU1	Total PCBs	4.05E-02	9.78E+00	mg/kg	C6S-02	13/21	3.70E-02 - 4.45E-02
	PCB Dioxin-like Congener TEQ	4.43E-04	1.81E-03	mg/kg	C6S-04	4/4	NA
	Mercury	2.60E-02	9.35E+00	mg/kg	C6S-02	21/21	NA

TABLE 6-4
OCCURRENCE AND DISTRIBUTION OF CONTAMINANTS OF POTENTIAL CONCERN - TOTAL SOIL - PRIMARY COPCS
ANNISTON PCB SITE

OU-4

Exposure Point	Primary COPC	Minimum Detected Concentration	Maximum Detected Concentration	Units	Location of Maximum Detected Concentration	Detection Frequency	Range of Detection Limits
C7N-EU1	Total PCBs	3.60E-02	7.54E+00	mg/kg	C7N-39	33/73	3.45E-02 - 5.70E-02
	PCB Dioxin-like Congener TEQ	1.51E-04	3.43E-04	mg/kg	C7NF-17	7/9	1.41E-04 - 1.51E-04
	Mercury	1.10E-02	1.40E+00	mg/kg	C7NF-17	24/25	6.80E-03 - 6.80E-03
C7S-EU1	Total PCBs	4.15E-02	9.85E+00	mg/kg	C7S-26	31/77	3.45E-02 - 4.05E-02
	PCB Dioxin-like Congener TEQ	1.46E-04	3.32E-03	mg/kg	C7S-37	7/8	1.41E-04 - 1.41E-04
	Mercury	7.50E-03	1.89E+00	mg/kg	C7S-37	26/26	NA
C8N-EU1	Total PCBs	3.65E-02	8.13E+00	mg/kg	C8N-16	18/24	3.50E-02 - 3.85E-02
	PCB Dioxin-like Congener TEQ	2.42E-03	4.14E-03	mg/kg	C8N-12	2/2	NA
	Mercury	1.90E-02	5.20E+00	mg/kg	C8N-12	6/6	NA
C8S-EU1	Total PCBs	4.60E-02	5.96E+00	mg/kg	C8S-13	10/20	3.50E-02 - 5.10E-02
	PCB Dioxin-like Congener TEQ	1.62E-04	2.32E-04	mg/kg	C8S-19	2/2	NA
	Mercury	4.35E-01	7.50E-01	mg/kg	C8S-12	2/2	NA
C9N-EU1	Total PCBs	5.75E-02	4.46E+00	mg/kg	C9N-01	7/20	3.70E-02 - 4.15E-02
	PCB Dioxin-like Congener TEQ	4.03E-04	9.62E-04	mg/kg	C9N-02	3/3	NA
	Mercury	3.15E-02	2.79E+00	mg/kg	C9N-02	20/20	NA
C9S-EU1	Total PCBs	1.26E-01	4.40E-01	mg/kg	C9S-07	11/20	3.85E-02 - 4.10E-02
	PCB Dioxin-like Congener TEQ	3.22E-04	3.32E-04	mg/kg	C9S-12	3/3	NA
	Mercury	3.95E-02	7.00E-01	mg/kg	C9S-03	20/20	NA

NA = Not available

TABLE 6-5 OCCURRENCE AND DISTRIBUTION OF CONTAMINANTS OF POTENTIAL CONCERN IN AGRICULTURAL EXPOSURE UNITS SURFACE SOIL - PRIMARY COPCS

ANNISTON PCB SITE

OU-4

Exposure Point	Primary COPC	Minimum Detected Concentration	Maximum Detected Concentration	Units	Location of Maximum Detected	Detection Frequency	Range of Detection Limits
					Concentration		
Ag-EU1	Total PCBs	1.10E-01	1.27E+02	mg/kg	C3S-02	10/15	4.15E-02 - 4.40E-02
	PCB Dioxin-like Congener TEQ	3.23E-04	3.23E-04	mg/kg	C3S-13	1/1	NA
	Mercury	3.05E-02	1.89E+01	mg/kg	C3S-02	15/15	NA
Ag-EU2	Total PCBs	7.15E-02	8.95E+01	mg/kg	C3N-05	44/45	3.90E-02 - 3.90E-02
	PCB Dioxin-like Congener TEQ	3.58E-04	2.81E-03	mg/kg	C3NX-12	9/9	NA
	Mercury	6.45E-02	1.15E+01	mg/kg	C3NX-17	45/45	NA
Ag-EU3	Total PCBs	1.65E-01	4.29E+01	mg/kg	C4S-04	12/12	NA
	PCB Dioxin-like Congener TEQ	6.65E-04	2.81E-03	mg/kg	C4SX-02	3/3	NA
	Mercury	1.77E-01	9.15E+00	mg/kg	C4S-04	12/12	NA
Ag-EU4	Total PCBs	5.40E-02	4.63E+00	mg/kg	C4S-16	7/14	4.05E-02 - 4.70E-02
	PCB Dioxin-like Congener TEQ	1.71E-03	1.71E-03	mg/kg	C4S-19	1/1	NA
	Mercury	1.50E-02	2.30E+00	mg/kg	C4S-16	14/14	NA
Ag-EU5	Total PCBs	5.10E-02	1.63E+01	mg/kg	C4SF-30	18/22	3.95E-02 - 4.25E-02
	PCB Dioxin-like Congener TEQ	8.43E-04	8.58E-04	mg/kg	C4SF-24	2/2	NA
	Mercury	3.70E-02	4.25E+00	mg/kg	C4S-44	22/22	NA
Ag-EU6	Total PCBs	4.10E-02	1.15E+00	mg/kg	C5S-13	3/11	3.65E-02 - 4.05E-02
	Mercury	2.95E-02	3.75E-01	mg/kg	C5S-13	11/11	NA
Ag-EU7	Total PCBs	1.84E-01	1.41E+00	mg/kg	C5S-25	2/3	4.00E-02 - 4.00E-02
	PCB Dioxin-like Congener TEQ	3.14E-04	3.14E-04	mg/kg	C5S-25	1/1	NA
	Mercury	1.05E-01	7.05E-01	mg/kg	C5S-25	3/3	NA
Ag-EU8	Total PCBs	1.08E-01	1.37E+00	mg/kg	C5SF-17	3/5	3.75E-02 - 4.05E-02
	Mercury	3.10E-02	1.40E+00	mg/kg	C5SF-14	5/5	NA

NA = Not available

TABLE 6-6 EXPOSURE POINT CONCENTRATION SUMMARY - tPCBs AND MERCURY - SURFACE SOIL ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Medium: Soil

Exposure Medium: Surface Soil

Exposure Unit	Contaminant of	Units	Arithmetic	95% UCL	Maximum Concentration			Exposure Point Concentration	
•	Potential Concern		Mean			Value	Units	Statistic	Rationale
C1-EU1	Total PCBs	mg/kg	5.69E+00	1.05E+01	5.46E+01	1.05E+01	mg/kg	95% KM (Chebyshev) UCL	ProUCL Recommendation
C1-EU2	Total PCBs	mg/kg	3.16E+01	4.61E+01	2.28E+02	4.61E+01	mg/kg	95% Approximate Gamma UCL	ProUCL Recommendation
C2N-EU1	Total PCBs	mg/kg	6.72E+00	1.63E+01	7.25E+01	1.63E+01	mg/kg	95% KM (t) UCL	ProUCL Recommendation
	Mercury	mg/kg	3.74E-01	1.33E+00	1.65E+00	1.33E+00	mg/kg	97.5% Chebyshev(Mean, Sd) UCL	See Text
C3N-EU1	Total PCBs	mg/kg	1.20E+01	2.32E+01	8.95E+01	2.32E+01	mg/kg	95% KM (Chebyshev) UCL	ProUCL Recommendation
	Mercury	mg/kg	2.58E+00	3.32E+00	1.44E+01	3.32E+00	mg/kg	95% Approximate Gamma UCL	ProUCL Recommendation
C3N-EU2	Total PCBs	mg/kg	1.07E+01	3.69E+01	7.09E+01	3.69E+01	mg/kg	95% KM (Chebyshev) UCL	ProUCL Recommendation
	Mercury	mg/kg	1.49E+00	4.62E+00	6.14E+00	4.62E+00	mg/kg	95% Adjusted Gamma UCL	ProUCL Recommendation
C3S-EU1	Total PCBs	mg/kg	1.07E+01	1.95E+01	1.27E+02	1.95E+01	mg/kg	95% KM (t) UCL	ProUCL Recommendation
	Mercury	mg/kg	1.63E+00	8.96E+00	1.89E+01	8.96E+00	mg/kg	99% KM (Chebyshev) UCL	ProUCL Recommendation
C3S-EU2	Total PCBs	mg/kg	9.40E+00	2.36E+01	6.94E+01	2.36E+01	mg/kg	95% KM (Chebyshev) UCL	ProUCL Recommendation
	Mercury	mg/kg	2.34E+00	3.90E+00	1.35E+01	3.90E+00	mg/kg	95% Approximate Gamma UCL	ProUCL Recommendation
C4N-EU1	Total PCBs	mg/kg	3.42E+00	8.12E+00	2.53E+01	8.12E+00	mg/kg	97.5% KM (Chebyshev) UCL	ProUCL Recommendation
	Mercury	mg/kg	1.32E+00	2.28E+00	8.95E+00	2.28E+00	mg/kg	95% H-UCL	ProUCL Recommendation
C4N-EU2	Total PCBs	mg/kg	1.94E+00	8.50E+00	1.99E+01	8.50E+00	mg/kg	99% KM (Chebyshev) UCL	ProUCL Recommendation
	Mercury	mg/kg	1.04E+00	2.74E+00	1.38E+01	2.74E+00	mg/kg	95% Chebyshev (Mean, Sd) UCL	ProUCL Recommendation
C4S-EU1	Total PCBs	mg/kg	7.49E+00	1.63E+01	4.29E+01	1.63E+01	mg/kg	95% KM (Chebyshev) UCL	ProUCL Recommendation
	Mercury	mg/kg	2.27E+00	3.47E+00	9.15E+00	3.47E+00	mg/kg	95% Approximate Gamma UCL	ProUCL Recommendation
C4S-EU2	Total PCBs	mg/kg	1.71E+00	2.51E+00	1.01E+01	2.51E+00	mg/kg	95% KM (BCA) UCL	ProUCL Recommendation
	Mercury	mg/kg	8.45E-01	1.27E+00	4.95E+00	1.27E+00	mg/kg	95% Approximate Gamma UCL	ProUCL Recommendation
C4S-EU3	Total PCBs	mg/kg	2.33E+00	5.50E+00	1.63E+01	5.50E+00	mg/kg	95% KM (Chebyshev) UCL	ProUCL Recommendation
	Mercury	mg/kg	1.09E+00	1.69E+00	4.25E+00	1.69E+00	mg/kg	95% Approximate Gamma UCL	ProUCL Recommendation
C5N-EU1	Total PCBs	mg/kg	2.54E+00	6.05E+00	9.01E+00	6.05E+00	mg/kg	95% Approximate Gamma UCL	ProUCL Recommendation
	Mercury	mg/kg	1.06E+00	1.51E+00	2.20E+00	1.51E+00	mg/kg	95% Student's-t UCL	ProUCL Recommendation
C5S-EU1	Total PCBs	mg/kg	8.85E-01	1.33E+00	1.45E+01	1.33E+00	mg/kg	95% KM (t) UCL	ProUCL Recommendation
	Mercury	mg/kg	4.72E-01	8.86E-01	4.65E+00	8.86E-01	mg/kg	95% Chebyshev (Mean, Sd) UCL	ProUCL Recommendation
C6N-EU1	Total PCBs	mg/kg	1.31E+00	2.14E+00	7.90E+00	2.14E+00	mg/kg	95% KM (BCA) UCL	ProUCL Recommendation
	Mercury	mg/kg	7.84E-01	1.41E+00	4.40E+00	1.41E+00	mg/kg	95% Approximate Gamma UCL	ProUCL Recommendation
C6S-EU1	Total PCBs	mg/kg	1.38E+00	2.88E+00	1.64E+01	2.88E+00	mg/kg	95% KM (BCA) UCL	ProUCL Recommendation
	Mercury	mg/kg	9.66E-01	2.95E+00	9.35E+00	2.95E+00	mg/kg	95% Chebyshev (Mean, Sd) UCL	ProUCL Recommendation
C7S-EU1	Total PCBs	mg/kg	5.20E-01	1.32E+00	9.85E+00	1.32E+00	mg/kg	95% KM (Chebyshev) UCL	ProUCL Recommendation
	Mercury	mg/kg	1.85E-01	6.77E-01	2.98E+00	6.77E-01	mg/kg	95% Chebyshev (Mean, Sd) UCL	ProUCL Recommendation
C8N-EU1	Total PCBs	mg/kg	1.31E+00	3.09E+00	8.13E+00	3.09E+00	mg/kg	95% KM (Chebyshev) UCL	ProUCL Recommendation
	Mercury	mg/kg	1.23E+00	1.57E+00	5.20E+00	1.57E+00	mg/kg	75th Percentile	See Text

TABLE 6-7 EXPOSURE POINT CONCENTRATION SUMMARY - tPCBs AND MERCURY - TOTAL SOIL ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Medium: Soil

Exposure Medium: Total Soil

Exposure Unit	Contaminant of	Units	Arithmetic	95% UCL	Maximum Concentration	Exposure Point Concentration					
	Potential Concern		Mean			Value	Units	Statistic	Rationale		
C1-EU2	Total PCBs	mg/kg	4.79E+01	6.69E+01	1.72E+02	6.69E+01	mg/kg	95% Approximate Gamma UCL	ProUCL Recommendation		
C2N-EU1	Total PCBs	mg/kg	1.38E+01	3.62E+01	1.71E+02	3.62E+01	mg/kg	95% KM (t) UCL	ProUCL Recommendation		
	Mercury	mg/kg	3.74E-01	1.33E+00	1.65E+00	1.33E+00	mg/kg	97.5% Chebyshev(Mean, Sd) UCL	See Text		
C4N-EU1	Total PCBs	mg/kg	2.71E+00	6.08E+00	1.60E+01	6.08E+00	mg/kg	97.5% KM (Chebyshev) UCL	ProUCL Recommendation		
	Mercury	mg/kg	1.26E+00	2.12E+00	8.95E+00	2.12E+00	mg/kg	95% H-UCL	ProUCL Recommendation		
C5N-EU1	Total PCBs	mg/kg	3.83E+00	1.19E+01	2.26E+01	1.19E+01	mg/kg	95% Adjusted Gamma UCL	ProUCL Recommendation		
	Mercury	mg/kg	1.06E+00	1.51E+00	2.20E+00	1.51E+00	mg/kg	95% Student's-t UCL	ProUCL Recommendation		

TABLE 6-8 EXPOSURE POINT CONCENTRATION SUMMARY - tPCBs AND MERCURY IN AGRICULTURAL EXPOSURE UNITS- SURFACE SOIL ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Medium: Soil

Exposure Medium: Surface Soil

Exposure Unit	Contaminant of	Units	Arithmetic	95% UCL	Maximum Concentration	Exposure Point Concentration				
	Potential Concern		Mean			Value	Units	Statistic	Rationale	
Ag-EU1	Total PCBs Mercury	mg/kg mg/kg	2.14E+01 3.30E+00	4.25E+01 1.34E+01	1.27E+02 1.89E+01	4.25E+01 1.34E+01	mg/kg mg/kg	95% KM (BCA) UCL 97.5% Chebyshev (Mean, Sd) UCL	ProUCL Recommendation See Text	
Ag-EU2	Total PCBs Mercury	mg/kg mg/kg	1.11E+01 2.44E+00	2.23E+01 3.15E+00	8.95E+01 1.15E+01	2.23E+01 3.15E+00	mg/kg mg/kg	95% KM (Chebyshev) UCL 95% Approximate Gamma UCL	ProUCL Recommendation ProUCL Recommendation	
Ag-EU3	Total PCBs Mercury	mg/kg mg/kg	9.57E+00 2.60E+00	2.87E+01 4.97E+00	4.29E+01 9.15E+00	2.87E+01 4.97E+00	mg/kg mg/kg	95% Adjusted Gamma UCL 95% Approximate Gamma UCL	ProUCL Recommendation ProUCL Recommendation	
Ag-EU4	Total PCBs Mercury	mg/kg mg/kg	9.64E-01 4.99E-01	1.74E+00 1.66E+00	4.63E+00 2.30E+00	1.74E+00 1.66E+00	mg/kg mg/kg	95% KM (t) UCL 97.5% Chebyshev (Mean, Sd) UCL	ProUCL Recommendation See Text	
Ag-EU5	Total PCBs Mercury	mg/kg mg/kg	1.83E+00 9.71E-01	5.29E+00 1.65E+00	1.63E+01 4.25E+00	5.29E+00 1.65E+00	mg/kg mg/kg	95% KM (Chebyshev) UCL 95% Approximate Gamma UCL	ProUCL Recommendation ProUCL Recommendation	
Ag-EU6	Total PCBs Mercury	mg/kg mg/kg	1.41E-01 8.34E-02	4.08E-02 2.14E-01	1.15E+00 3.75E-01	4.08E-02 2.14E-01	mg/kg mg/kg	75th Percentile 95% Chebyshev (Mean, Sd) UCL	See Text ProUCL Recommendation	
Ag-EU7	Total PCBs Mercury	mg/kg mg/kg	5.45E-01 3.85E-01	7.97E-01 5.25E-01	1.41E+00 7.05E-01	7.97E-01 5.25E-01	mg/kg mg/kg	75th Percentile 75th Percentile	See Text See Text	
Ag-EU8	Total PCBs Mercury	mg/kg mg/kg	4.00E-01 6.07E-01	4.44E-01 1.20E+00	1.37E+00 1.40E+00	4.44E-01 1.20E+00	mg/kg mg/kg	75th Percentile 75th Percentile	See Text See Text	

TABLE 6-9 PCB CONGENER TEQ SUMMARY - SURFACE SOIL ANNISTON PCB SITE OU-4

Linear Regression Equation

PCB-105 = 0.021(tPCB) - 0.0015 PCB-118 = 0.0394(tPCB) - 0.0011 PCB-156 = 0.007(tPCB) + 0.0005

			Predicted PCB Congener		Predicted
	Total PCBs		Concentration Based on		PCB Congener
	EPC ^a	PCB	Linear Regression Equation		TEQ ^c
Exposure Unit	(mg/kg)	Congener	(mg/kg)	TEF ^b	(mg/kg)
C1-EU1	1.05E+01	PCB-105	2.19E-01	0.00003	6.56E-06
		PCB-118	4.12E-01	0.00003	1.24E-05
		PCB-156	7.39E-02	0.00003	2.22E-06
			PCB Dioxin-like Cong	ener TEQ	2.11E-05
C1-EU2	4.61E+01	PCB-105	9.67E-01	0.00003	2.90E-05
		PCB-118	1.82E+00	0.00003	5.45E-05
		PCB-156	3.23E-01	0.00003	9.70E-06
			PCB Dioxin-like Cong	ener TEQ	9.32E-05
C2N-EU1	1.63E+01	PCB-105	3.41E-01	0.00003	1.02E-05
		PCB-118	6.41E-01	0.00003	1.92E-05
		PCB-156	1.15E-01	0.00003	3.44E-06
			PCB Dioxin-like Cong	ener TEQ	3.29E-05
C3N-EU1	2.05E+01	PCB-105	4.29E-01	0.00003	1.29E-05
		PCB-118	8.06E-01	0.00003	2.42E-05
		PCB-156	1.44E-01	0.00003	4.32E-06
			PCB Dioxin-like Cong	ener TEQ	4.14E-05
C3N-EU2	4.80E+01	PCB-105	1.01E+00	0.00003	3.02E-05
		PCB-118	1.89E+00	0.00003	5.67E-05
		PCB-156	3.36E-01	0.00003	1.01E-05
			PCB Dioxin-like Cong	ener TEQ	9.70E-05
C3S-EU1	1.95E+01	PCB-105	4.07E-01	0.00003	1.22E-05
		PCB-118	7.66E-01	0.00003	2.30E-05
		PCB-156	1.37E-01	0.00003	4.10E-06
			PCB Dioxin-like Cong	ener TEQ	3.93E-05
C3S-EU2	5.31E+01	PCB-105	1.11E+00	0.00003	3.34E-05
		PCB-118	2.09E+00	0.00003	6.27E-05
		PCB-156	3.72E-01	0.00003	1.12E-05
			PCB Dioxin-like Cong	ener TEQ	1.07E-04
C4N-EU1	9.13E+00	PCB-105	1.90E-01	0.00003	5.71E-06
		PCB-118	3.59E-01	0.00003	1.08E-05
		PCB-156	6.44E-02	0.00003	1.93E-06
			PCB Dioxin-like Cong	ener TEQ	1.84E-05
C4N-EU2	8.90E+00	PCB-105	1.85E-01	0.00003	5.56E-06
		PCB-118	3.50E-01	0.00003	1.05E-05
		PCB-156	6.28E-02	0.00003	1.88E-06
	_		PCB Dioxin-like Cong	ener TEQ	1.79E-05
C4S-EU1	1.97E+01	PCB-105	4.13E-01	0.00003	1.24E-05
		PCB-118	7.76E-01	0.00003	2.33E-05
		PCB-156	1.39E-01	0.00003	4.16E-06
	_		PCB Dioxin-like Cong	ener TEQ	3.98E-05
C4S-EU2	2.57E+00	PCB-105	5.24E-02	0.00003	1.57E-06
		PCB-118	1.00E-01	0.00003	3.00E-06
		PCB-156	1.85E-02	0.00003	5.54E-07
			PCB Dioxin-like Cong	ener TEQ	5.12E-06

TABLE 6-9 PCB CONGENER TEQ SUMMARY - SURFACE SOIL ANNISTON PCB SITE OU-4

Linear Regression Equation

PCB-105 = 0.021(tPCB) - 0.0015 PCB-118 = 0.0394(tPCB) - 0.0011 PCB-156 = 0.007(tPCB) + 0.0005

			Predicted PCB Congener		Predicted
	Total PCBs		Concentration Based on		PCB Congener
	EPC ^a	РСВ	Linear Regression Equation		TEQ°
Exposure Unit	(mg/kg)	Congener	(mg/kg)	TEF ^b	(mg/kg)
C4S-EU3	5.50E+00	PCB-105	1.14E-01	0.00003	3.42E-06
		PCB-118	2.16E-01	0.00003	6.47E-06
		PCB-156	3.90E-02	0.00003	1.17E-06
			PCB Dioxin-like Cong	ener TEQ	1.11E-05
C5N-EU1	6.05E+00	PCB-105	1.25E-01	0.00003	3.76E-06
		PCB-118	2.37E-01	0.00003	7.11E-06
		PCB-156	4.28E-02	0.00003	1.28E-06
			PCB Dioxin-like Cong	ener TEQ	1.22E-05
C5S-EU1	1.33E+00	PCB-105	2.65E-02	0.00003	7.95E-07
		PCB-118	5.14E-02	0.00003	1.54E-06
		PCB-156	9.83E-03	0.00003	2.95E-07
			PCB Dioxin-like Cong	ener TEQ	2.63E-06
C6N-EU1	2.08E+00	PCB-105	4.21E-02	0.00003	1.26E-06
		PCB-118	8.08E-02	0.00003	2.42E-06
		PCB-156	1.50E-02	0.00003	4.51E-07
			PCB Dioxin-like Cong	ener TEQ	4.14E-06
C6S-EU1	2.92E+00	PCB-105	5.98E-02	0.00003	1.79E-06
		PCB-118	1.14E-01	0.00003	3.41E-06
		PCB-156	2.09E-02	0.00003	6.28E-07
			PCB Dioxin-like Cong	ener TEQ	5.84E-06
C7S-EU1	1.32E+00	PCB-105	2.63E-02	0.00003	7.88E-07
		PCB-118	5.10E-02	0.00003	1.53E-06
		PCB-156	9.76E-03	0.00003	2.93E-07
			PCB Dioxin-like Cong	ener TEQ	2.61E-06
C8N-EU1	3.60E+00	PCB-105	7.42E-02	0.00003	2.23E-06
		PCB-118	1.41E-01	0.00003	4.23E-06
		PCB-156	2.57E-02	0.00003	7.72E-07
			PCB Dioxin-like Cong	ener TEQ	7.22E-06

Note: Appendix D presents the statistical analysis used to generate the linear regression equations.

^a See Table 6-6.

^b Van den Berg et al., 2006.

 $^{^{\}rm c}$ Predicted PCB congener TEQ = predicted PCB congener concentration x TEF.

TABLE 6-10 PCB CONGENER TEQ SUMMARY - TOTAL SOIL ANNISTON PCB SITE OU-4

Linear Regression Equation

PCB-105 = 0.021(tPCB) - 0.0015 PCB-118 = 0.0394(tPCB) - 0.0011 PCB-156 = 0.007(tPCB) + 0.0005

Exposure Unit	Total PCBs EPC ^a (mg/kg)	PCB Congener	Predicted PCB Congener Concentration Based on Linear Regression Equation (mg/kg)	TEF⁵	Predicted PCB Congener TEQ ^c (mg/kg)
C1-EU2	6.69E+01	PCB-105	1.40E+00	0.00003	4.21E-05
		PCB-118	2.63E+00	0.00003	7.90E-05
		PCB-156	4.69E-01	0.00003	1.41E-05
			PCB Dioxin-like Cong	ener TEQ	1.35E-04
C2N-EU1	3.62E+01	PCB-105	7.58E-01	0.00003	2.28E-05
		PCB-118	1.42E+00	0.00003	4.27E-05
		PCB-156	2.54E-01	0.00003	7.61E-06
			PCB Dioxin-like Cong	ener TEQ	7.31E-05
C4N-EU1	6.62E+00	PCB-105	1.38E-01	0.00003	4.13E-06
		PCB-118	2.60E-01	0.00003	7.79E-06
		PCB-156	4.68E-02	0.00003	1.41E-06
			PCB Dioxin-like Cong	ener TEQ	1.33E-05
C5N-EU1	1.19E+01	PCB-105	2.48E-01	0.00003	7.43E-06
		PCB-118	4.67E-01	0.00003	1.40E-05
		PCB-156	8.36E-02	0.00003	2.51E-06
			PCB Dioxin-like Cong	ener TEQ	2.39E-05

Note: Appendix D presents the statistical analysis used to generate the linear regression equations.

^a See Table 6-7.

^b Van den Berg et al., 2006.

^c Predicted PCB congener TEQ = predicted PCB congener concentration x TEF.

TABLE 6-11 PCB CONGENER TEQ SUMMARY IN AGRICULTURAL EXPOSURE UNITS - SURFACE SOIL ANNISTON PCB SITE OU-4

Linear Regression Equation

PCB-105 = 0.021(tPCB) - 0.0015

PCB-118 = 0.0394(tPCB) - 0.0011

PCB-156 = 0.007(tPCB) + 0.0005

			Predicted PCB Congener		Predicted
	Total PCBs		Concentration Based on		PCB Congener
	EPC ^a	PCB	Linear Regression Equation		TEQ ^c
Exposure Unit	(mg/kg)	Congener	(mg/kg)	TEF ^b	(mg/kg)
Ag-EU1	4.25E+01	PCB-105	8.91E-01	0.00003	2.67E-05
		PCB-118	1.67E+00	0.00003	5.02E-05
		PCB-156	2.98E-01	0.00003	8.94E-06
			PCB Dioxin-like Cong	ener TEQ	8.59E-05
Ag-EU2	2.23E+01	PCB-105	4.67E-01	0.00003	1.40E-05
		PCB-118	8.78E-01	0.00003	2.63E-05
		PCB-156	1.57E-01	0.00003	4.70E-06
			PCB Dioxin-like Cong	ener TEQ	4.50E-05
Ag-EU3	2.87E+01	PCB-105	6.00E-01	0.00003	1.80E-05
		PCB-118	1.13E+00	0.00003	3.38E-05
		PCB-156	2.01E-01	0.00003	6.03E-06
			PCB Dioxin-like Cong	ener TEQ	5.79E-05
Ag-EU4	1.74E+00	PCB-105	3.49E-02	0.00003	1.05E-06
		PCB-118	6.73E-02	0.00003	2.02E-06
		PCB-156	1.26E-02	0.00003	3.79E-07
			PCB Dioxin-like Cong	ener TEQ	3.45E-06
Ag-EU5	5.29E+00	PCB-105	1.09E-01	0.00003	3.28E-06
		PCB-118	2.07E-01	0.00003	6.21E-06
		PCB-156	3.75E-02	0.00003	1.12E-06
			PCB Dioxin-like Cong	ener TEQ	1.06E-05
Ag-EU6	4.08E-02	PCB-105	-6.44E-04	0.00003	-1.93E-08
		PCB-118	5.06E-04	0.00003	1.52E-08
		PCB-156	7.85E-04	0.00003	2.36E-08
			PCB Dioxin-like Cong	ener TEQ	1.94E-08
Ag-EU7	7.97E-01	PCB-105	1.52E-02	0.00003	4.57E-07
		PCB-118	3.03E-02	0.00003	9.09E-07
		PCB-156	6.08E-03	0.00003	1.82E-07
			PCB Dioxin-like Cong	ener TEQ	1.55E-06
Ag-EU8	4.44E-01	PCB-105	7.81E-03	0.00003	2.34E-07
		PCB-118	1.64E-02	0.00003	4.91E-07
		PCB-156	3.60E-03	0.00003	1.08E-07
			PCB Dioxin-like Cong	ener TEQ	8.34E-07

Note: Appendix D presents the statistical analysis used to generate the linear regression equations.

^a See Table 6-8.

^b Van den Berg et al., 2006.

^c Predicted PCB congener TEQ = predicted PCB congener concentration x TEF.

TABLE 6-12 EXPOSURE POINT CONCENTRATION SUMMARY - OTHER COPCs - SURFACE SOIL ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Medium: Surface Soil
Exposure Medium: Surface Soil

							Exposure Point Concentra	ition
СОРС	Units	Arithmetic Mean	95% UCL	Maximum Concentration	Value	Units	Statistic	Rationale
Dioxin/Furan Congener								
2,3,7,8-TCDD TEQ	mg/kg	2.12E-05	2.50E-05	1.74E-04	2.50E-05	mg/kg	95% KM (BCA) UCL	ProUCL Recommendation
PAHs	•							
Benzo(a)anthracene	mg/kg	2.32E-01	1.37E-01	2.05E-01	1.37E-01	mg/kg	95% KM (t) UCL	ProUCL Recommendation
Benzo(a)pyrene	mg/kg	2.45E-01	1.20E-01	2.07E-01	1.20E-01	mg/kg	95% KM (t) UCL	ProUCL Recommendation
Benzo(b)fluoranthene	mg/kg	2.36E-01	6.37E-02	8.25E-02	6.37E-02	mg/kg	95% KM (t) UCL	ProUCL Recommendation
Benzo(k)fluoranthene	mg/kg	2.47E-01	1.25E-01	2.06E-01	1.25E-01	mg/kg	95% KM (t) UCL	ProUCL Recommendation
Chrysene	mg/kg	2.17E-01	1.32E-01	1.92E-01	1.32E-01	mg/kg	95% KM (t) UCL	ProUCL Recommendation
Indeno(1,2,3-cd)pyrene	mg/kg	2.88E-01	1.51E-01	2.00E-01	1.51E-01	mg/kg	95% KM (t) UCL	ProUCL Recommendation
Inorganics								
Aluminum	mg/kg	1.12E+04	1.27E+04	1.72E+04	1.27E+04	mg/kg	95% Student's-t UCL	ProUCL Recommendation
Arsenic	mg/kg	6.86E+00	7.46E+00	1.85E+01	7.46E+00	mg/kg	95% Student's-t UCL	ProUCL Recommendation
Chromium	mg/kg	1.69E+01	1.87E+01	6.75E+01	1.87E+01	mg/kg	95% H-UCL	ProUCL Recommendation
Cobalt	mg/kg	8.81E+00	9.47E+00	2.52E+01	9.47E+00	mg/kg	95% Approximate Gamma UCL	ProUCL Recommendation
Iron	mg/kg	1.92E+04	2.43E+04	4.28E+04	2.43E+04	mg/kg	95% Approximate Gamma UCL	ProUCL Recommendation
Manganese	mg/kg	8.57E+02	9.64E+02	4.31E+03	9.64E+02	mg/kg	95% Approximate Gamma UCL	ProUCL Recommendation

TABLE 6-13 SOIL CONTACT EXPOSURE PARAMETERS ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Medium: Soils

Exposure Medium: Surface/Total Soils

							RME	RME	CTE	CTE	
Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter	Parameter Definition	Units	Value	Rationale/	Value	Rationale/	Intake Equation/
				Code				Reference		Reference	Model Name
Ingestion	Recreational Users	Young Child	Surface Soils	EPC	Exposure Point Concentration	mg/kg	EU-Specific	See Tables 6-6 and 6-12	EU-Specific	See Tables 6-6 and 6-12	Chronic daily intake (mg/kg-day) =
		(1 to 6 years)		IRS	Ingestion Rate of Soil	mg/day	200	EPA, 1991, 1997	100	EPA, 1991, 1997	EPC x IRS x CF x FI x IAF x EF x ED x 1/BW x 1/AT
				FI	Fraction Ingested	unitless	1	EPA, 1989	0.5	Professional judgment	
				IAF	Gastrointestinal Absorption Factor	unitless	0.3 (PCBs); 1.0 (other COPCs)	PCBs - Solutia, 2002	0.3 (PCBs); 1.0 (other COPCs)	PCBs - Solutia, 2002	
				EF	Exposure Frequency	days/year	Varies from 104 to 52 depending of accessibility	Professional judgment	Varies from 52 to 26 depending of accessibility	Professional judgment	
				ED	Exposure Duration	years	6	Calculated based on young child's age	6	Calculated based on young child's age	
				CF	Conversion Factor	kg/mg	1.00E-06	Unit Conversion Factor	1.00E-06	Unit Conversion Factor	
				BW	Body Weight	kg	15	EPA, 2008	15	EPA, 2008	
				AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	25,550	EPA, 1989	
				AT-NC	Averaging Time (Non-Cancer)	days	2,190	ED x 365 days/year	2,190	ED x 365 days/year	
		Adolescent	Surface Soils	EPC	Exposure Point Concentration	mg/kg	EU-Specific	See Tables 6-6 and 6-12	EU-Specific	See Tables 6-6 and 6-12	Chronic daily intake (mg/kg-day) =
		(7 to 16 years)		IRS	Ingestion Rate of Soil	mg/day	100	EPA, 1991, 1997	50	EPA, 1991, 1997	EPC x IRS x CF x FI x IAF x EF x ED x 1/BW x 1/AT
				FI	Fraction Ingested	unitless	1	EPA, 1989	0.5	Professional judgment	
				IAF	Gastrointestinal Absorption Factor	unitless	0.3 (PCBs); 1.0 (other COPCs)	PCBs - Solutia, 2002	0.3 (PCBs); 1.0 (other COPCs)	PCBs - Solutia, 2002	
				EF	Exposure Frequency	days/year	Varies from 104 to 52 depending of accessibility	Professional judgment	Varies from 52 to 26 depending of accessibility	Professional judgment	
				ED	Exposure Duration	years	10	Calculated based on adolescent's age	10	Calculated based on adolescent's age	
				CF	Conversion Factor	kg/mg	1.00E-06	Unit Conversion Factor	1.00E-06	Unit Conversion Factor	
				BW	Body Weight	kg	45	EPA, 1997, 2000	45	EPA, 1997, 2000	
				AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	25,550	EPA, 1989	
				AT-NC	Averaging Time (Non-Cancer)	days	3,650	ED x 365 days/year	3,650	ED x 365 days/year	
		Adult	Surface Soils	EPC	Exposure Point Concentration	mg/kg	EU-Specific	See Tables 6-6 and 6-12	EU-Specific	See Tables 6-6 and 6-12	Chronic daily intake (mg/kg-day) =
				IRS	Ingestion Rate of Soil	mg/day	100	EPA, 1991, 1997	50	EPA, 1991, 1997	EPC x IRS x CF x FI x IAF x EF x ED x 1/BW x 1/AT
				FI	Fraction Ingested	unitless	1	EPA, 1989	0.5	Professional judgment	
				IAF	Gastrointestinal Absorption Factor	unitless	0.3 (PCBs); 1.0 (other COPCs)	PCBs - Solutia, 2002	0.3 (PCBs); 1.0 (other COPCs)	PCBs - Solutia, 2002	
				EF	Exposure Frequency	days/year	Varies from 104 to 52 depending of accessibility	Professional judgment	Varies from 52 to 26 depending of accessibility	Professional judgment	
				ED	Exposure Duration	years	30	Professional judgment; U.S. Census Bureau, 2007a, 2007b	30	Professional judgment; U.S. Census Bureau, 2007a, 2007b	
				CF	Conversion Factor	kg/mg	1.00E-06	Unit Conversion Factor	1.00E-06	Unit Conversion Factor	
				BW	Body Weight	kg	70	EPA, 1989	70	EPA, 1989	
				AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	25,550	EPA, 1989	
				AT-NC	Averaging Time (Non-Cancer)	days	10,950	ED x 365 days/year	10,950	ED x 365 days/year	

TABLE 6-13 SOIL CONTACT EXPOSURE PARAMETERS ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Medium: Soils

Exposure Medium: Surface/Total Soils

Department March			I				1	RME	RME	CTE	CTE	
March Marc	Function Davids	December December	Danastas Ass	Function Deint	Da	December Definition	Unite			_	-	latalia Faustian/
Second Control Contr	Exposure Route	Receptor Population	Receptor Age	Exposure Folia		Farameter Definition	Units	value		value		·
Process Proc	Ingestion	Utility Worker	Adult	Total Soils	EPC	Exposure Point Concentration	mg/kg	EU-Specific	See Table 6-7	EU-Specific	See Table 6-7	Chronic daily intake (mg/kg-day) =
Part	(continued)				IRS	Ingestion Rate of Soil	mg/day	330	EPA, 2002	100	EPA, 2003b	EPC x IRS x CF x FI x IAF x EF x ED x 1/BW x 1/AT
Part					FI	Fraction Ingested	unitless	1	EPA, 1989	0.5	Professional judgment	
Part					IAF	,	unitless		PCBs - Solutia, 2002		PCBs - Solutia, 2002	
Communication Part					EF	Exposure Frequency	days/year	10	Professional judgment	5	Professional judgment	
No.					ED	Exposure Duration	years	1	Professional judgment	1	Professional judgment	
Parmer					CF	Conversion Factor	kg/mg	1.00E-06	Unit Conversion Factor	1.00E-06	Unit Conversion Factor	
Famor AdJit Surface Solar EPC Register Race of Solar mg/sq mg/					BW	Body Weight	kg	70	EPA, 1989	70	EPA, 1989	
Famor					AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	25,550	EPA, 1989	
Part					AT-NC	Averaging Time (Non-Cancer)	days	365	ED x 365 days/year	365	ED x 365 days/year	
File Fraction linguisted Life File Fraction linguisted Life File Fraction linguisted Life Gastionized lineal Absorption Findor Life Gastionized lineal Absorption Findor Life Suppose Duration Life Suppose Duration Life Life Suppose Duration Life Li		Farmer	Adult	Surface Soils	EPC	Exposure Point Concentration	mg/kg	EU-Specific		EU-Specific	See Table 6-8	Chronic daily intake (mg/kg-day) =
AFF Gastroinesteined Absorption Factor Content Corporation						Ingestion Rate of Soil	mg/day	200	(1997)	100	EPA, 2003b	EPC x IRS x CF x FI x IAF x EF x ED x 1/BW x 1/AT
Part					FI	Fraction Ingested	unitless	· ·				
Part						·		(other COPCs)		(other COPCs)		
CF Conversion Factor Ng Mg 1,00E-06 Unit Conversion Factor 1,00E-06 Unit Conversion Factor FPA, 1989 770 FPA, 1989 7									· -	-	· -	
BW Body Weight AT-C Averaging Time (Conce) At-D Conversion Factor At-B						•						
Dermal Contact Recreational Users Voung Child Surface Soils EPC Exposure Profusion Factor APS Exposure Duration APS Exposure Duration APS Exposure Duration APS Exposure Profusion Factor APS Bady Weight APS Averaging Time (Cancer) APS Averaging Time (Cancer) APS APS Exposure Duration APS Exposure Profusion APS Exposur					-							
Dermail Contact Recreational Users Young Child Surface Soils EPC Exposure Proint Concentration Conversion Factor Conversion Factor Brown Art Conversion Factor Brown A					BW	· -	kg	70				
Darmal Contact Paragraph											·	
SA						0 0 ()	_	i i		·		
ASS Dermal Absorption Factor unifies	Dermal Contact	Recreational Users	_	Surface Soils		•	mg/kg			· ·		
ABS Demail Absorption Factor Separation			(1 to 6 years)		-	· ·	cm ² /day				·	EPC x CF x SA x AF x ABS x EF x ED x 1/BW x 1/AT
EF Exposure Frequency days/year Varies from 104 to 2 depending of accessibility ED Exposure Duration years 6 Conversion Factor kg/mg 1.00E-06 Unit Conversion Factor 1.00E-06 Unit Con							_		· ·		*	
ED Exposure Duration S2 depending of accessibility Calculated based on young child's age Calculated based on young child's age Calculated based on young child's age 1.00E-06 Unit Conversion Factor Unit Conversion Factor 1.00E-06 Unit Conversion Factor 1.00E-						·		·		· ·		
ED Exposure Duration Years 6 Calculated based on young child's age Calculated based on young child's age Calculated based on young child's age Unit Conversion Factor 1.00E-06 Unit Conversion Factor 1.00E-06 Unit Conversion Factor Unit Conversion Factor 1.00E-06 EPA, 2008 EPA, 2009 EPA, 2004 EPC x CF x SA x AF x ABS x EF x ED x 1/BW x 1/AT EPA, 2004					EF	Exposure Frequency	days/year	52 depending of	Professional judgment	26 depending of	Professional judgment	
BW AT-C Averaging Time (Cancer) Averaging Time (Cancer) Adveraging Time (Cancer) Adveraging Time (Non-Cancer) Adveraging Time (Non-Cancer) Adveraging Time (Non-Cancer) Adveraging Time (Non-Cancer) Averaging Time (Non-Cancer) Adveraging Time (Non-Cancer) Averaging Time (Non-Can					ED	Exposure Duration	years		Calculated based on young child's age		Calculated based on young child's age	
BW					CF	Conversion Factor	kg/mg	1.00E-06	Unit Conversion Factor	1.00E-06	Unit Conversion Factor	
AT-NC Averaging Time (Non-Cancer) days 2,190 ED x 365 days/year 3,190 E					BW	Body Weight	kg	15	EPA, 2008	15	EPA, 2008	
Adolescent Surface Soils					AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	25,550	EPA, 1989	
SA					AT-NC	Averaging Time (Non-Cancer)	days	2,190	ED x 365 days/year	2,190	ED x 365 days/year	
AF Soil to Skin Adherence Factor mg/cm² 0.4 EPA, 2004 0.04 EPA, 2004 ABS Dermal Absorption Factor unitless COPC-specific days/year Frequency days/year 10 Calculated based on adolescent's age CF Conversion Factor kg/mg BW Body Weight kg 45 EPA, 1997, 2000 45 EPA, 1989 25,550 EPA, 1989			Adolescent	Surface Soils	EPC	Exposure Point Concentration	mg/kg	EU-Specific	See Tables 6-6 and 6-12	EU-Specific	See Tables 6-6 and 6-12	Dermally Absorbed Dose (mg/kg-day) =
ABS Dermal Absorption Factor unifless COPC-specific days/year Varies from 104 to 52 depending of accessibility ED Exposure Duration years 10 Calculated based on adolescent's age CF Conversion Factor kg/mg 1.00E-06 Unit Conversion Factor 1.00E-06 Unit Co			(7 to 16 years)		SA	Exposed Skin Surface Area	cm ² /day	5,300	EPA, 2004	5,300	EPA, 2004	EPC x CF x SA x AF x ABS x EF x ED x 1/BW x 1/AT
EF Exposure Frequency days/year Varies from 104 to 52 depending of accessibility ED Exposure Duration years 10 Calculated based on adolescent's age CF Conversion Factor kg/mg 1.00E-06 Unit Conversion Factor 1.00E-06 BW Body Weight kg 45 EPA, 1997, 2000 45 EPA, 1997, 2000 AT-C Averaging Time (Cancer) days 25,550 EPA, 1989 25,550 EPA, 1989					AF	Soil to Skin Adherence Factor	mg/cm ²	0.4	EPA, 2004	0.04	EPA, 2004	
ED Exposure Duration years 10 Calculated based on adolescent's age 10 Calculated based					ABS	Dermal Absorption Factor	unitless	COPC-specific	See Section 6.3.1.3	COPC-specific	See Section 6.3.1.3	
ED Exposure Duration years 10 Calculated based on adolescent's age 10 Calculated based on adolescent's age CF Conversion Factor kg/mg 1.00E-06 Unit Conversion Factor 1.00E-06 Unit Conversion Factor Unit Conversion Factor Unit Conversion Factor EPA, 1997, 2000 45 EPA, 1997, 2000 EPA, 1989					EF	Exposure Frequency	days/year	52 depending of	Professional judgment	26 depending of	Professional judgment	
CF Conversion Factor kg/mg 1.00E-06 Unit Conversion Factor 1.00E-06 Unit Conversion Factor BW Body Weight kg 45 EPA, 1997, 2000 45 EPA, 1997, 2000 AT-C Averaging Time (Cancer) days 25,550 EPA, 1989 25,550 EPA, 1989					ED	Exposure Duration	years	1	Calculated based on adolescent's age	-	Calculated based on adolescent's age	
BW Body Weight kg 45 EPA, 1997, 2000 45 EPA, 1997, 2000 AT-C Averaging Time (Cancer) days 25,550 EPA, 1989 25,550 EPA, 1989							'			_		
AT-C Averaging Time (Cancer) days 25,550 EPA, 1989 25,550 EPA, 1989					BW	Body Weight		45	EPA, 1997, 2000	45	EPA, 1997, 2000	
					AT-C							
					AT-NC	Averaging Time (Non-Cancer)	days	3,650	ED x 365 days/year	3,650	ED x 365 days/year	

TABLE 6-13 SOIL CONTACT EXPOSURE PARAMETERS ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Medium: Soils

Exposure Medium: Surface/Total Soils

							RME	RME	CTE	CTE	
Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter	Parameter Definition	Units	Value	Rationale/	Value	Rationale/	Intake Equation/
				Code				Reference		Reference	Model Name
Dermal Contact		Adult	Surface Soils	EPC	Exposure Point Concentration	mg/kg	EU-Specific	See Tables 6-6 and 6-12	EU-Specific	See Tables 6-6 and 6-12	Dermally Absorbed Dose (mg/kg-day) =
(continued)				SA	Exposed Skin Surface Area	cm ² /day	3,300	EPA, 2004	3,300	EPA, 2004	EPC x CF x SA x AF x ABS x EF x ED x 1/BW x 1/AT
				AF	Soil to Skin Adherence Factor	mg/cm ²	0.1	EPA, 2004	0.02	EPA, 2004	
				ABS	Dermal Absorption Factor	unitless	COPC-specific	See Section 6.3.1.3	COPC-specific	See Section 6.3.1.3	
				EF	Exposure Frequency	days/year	Varies from 104 to 52 depending of accessibility	Professional judgment	Varies from 52 to 26 depending of accessibility	Professional judgment	
				ED	Exposure Duration	years	30	Professional judgment; U.S. Census Bureau, 2007a, 2007b	30	Professional judgment; U.S. Census Bureau, 2007a, 2007b	
				CF	Conversion Factor	kg/mg	1.00E-06	Unit Conversion Factor	1.00E-06	Unit Conversion Factor	
				BW	Body Weight	kg	70	EPA, 1989	70	EPA, 1989	
				AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	25,550	EPA, 1989	
				AT-NC	Averaging Time (Non-Cancer)	days	10,950	ED x 365 days/year	10,950	ED x 365 days/year	
	Utility Worker	Adult	Total Soils	EPC	Exposure Point Concentration	mg/kg	EU-Specific		EU-Specific	See Table 6-7	Dermally Absorbed Dose (mg/kg-day) =
				SA	Exposed Skin Surface Area	cm ² /day	3,300	EPA, 2004	3,300	EPA, 2004	EPC x CF x SA x AF x ABS x EF x ED x 1/BW x 1/AT
				AF	Soil to Skin Adherence Factor	mg/cm ²	0.3	EPA, 2004	0.1	EPA, 2004	
				ABS	Dermal Absorption Factor	unitless	COPC-specific	See Section 6.3.1.3	COPC-specific	See Section 6.3.1.3	
				EF	Exposure Frequency	days/year	10	Professional judgment	5	Professional judgment	
				ED	Exposure Duration	years	1	Professional judgment	1	Professional judgment	
				CF	Conversion Factor	kg/mg	1.00E-06	Unit Conversion Factor	1.00E-06	Unit Conversion Factor	
				BW	Body Weight	kg	70	EPA, 1989	70	EPA, 1989	
				AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	25,550	EPA, 1989	
				AT-NC	Averaging Time (Non-Cancer)	days	365	ED x 365 days/year	365	ED x 365 days/year	
	Farmer	Adult	Surface Soils	EPC	Exposure Point Concentration	mg/kg	EU-Specific	See Table 6-8	EU-Specific	See Table 6-8	Dermally Absorbed Dose (mg/kg-day) =
				SA	Exposed Skin Surface Area	cm ² /day	3,300	EPA, 2004	3,300	EPA, 2004	EPC x CF x SA x AF x ABS x EF x ED x 1/BW x 1/AT
				AF	Soil to Skin Adherence Factor	mg/cm ²	0.4	EPA, 2004	0.1	EPA, 2004	
				ABS EF	Dermal Absorption Factor	unitless	COPC-specific	See Section 6.3.1.3	COPC-specific 5	See Section 6.3.1.3	
				EF ED	Exposure Frequency	days/year	40	Professional judgment	40	Professional judgment EPA, 2005	
				CF	Exposure Duration Conversion Factor	years	40 1.00E-06	EPA, 2005 Unit Conversion Factor	1.00E-06	Unit Conversion Factor	
				BW	Body Weight	kg/mg kg	70 70	EPA, 1989	70	EPA, 1989	
				AT-C	Averaging Time (Cancer)	-	25,550	EPA, 1989 EPA, 1989	25,550	EPA, 1989 EPA, 1989	
				AT-NC	Averaging Time (Non-Cancer)	days days	14,600	ED x 365 days/year	14,600	ED x 365 days/year	

TABLE 6-14

SUMMARY OF CANCER RISKS AND NONCANCER HAZARD INDICES FROM PRIMARY COPCS REASONABLE MAXIMUM EXPOSURE ANNISTON PCB SITE

OU-4

			Cancer Risk (Total PCBs)	Hazard Index (Total PCBs and	Cancer Risk (PCB Dioxin-like	Hazard Index (PCB Dioxin-like
Exposure Unit	Exposure Scenario	Receptor		Mercury)	Congener TEQ)	Congener TEQ)
C1-EU1	High contact recreational	Young child	4E-06	0.4	5E-07	0.06
		Adolescent	3E-06	0.5	4E-07	0.03
		Adult	2E-06	0.1	2E-07	0.006
C1-EU2	Low contact recreational	Adolescent	7E-06	1	9E-07	0.07
		Adult	4E-06	0.2	5E-07	0.01
	Worker	Adult	1E-07	0.2	2E-08	0.01
C2N-EU1	Low contact recreational	Adolescent	2E-06	0.4	3E-07	0.02
		Adult	1E-06	0.08	2E-07	0.005
	Worker	Adult	6E-08	0.1	8E-09	0.006
C3N-EU1	Low contact recreational	Adolescent	3E-06	0.6	4E-07	0.03
		Adult	2E-06	0.1	2E-07	0.006
C3N-EU2	Low contact recreational	Adolescent	5E-06	0.6	4E-07	0.03
		Adult	3E-06	0.1	2E-07	0.006
C3S-EU1	High contact recreational	Young child	7E-06	1	9E-07	0.1
		Adolescent	6E-06	1	7E-07	0.06
		Adult	3E-06	0.2	4E-07	0.01
C3S-EU2	High contact recreational	Young child	8E-06	1	3E-06	0.3
		Adolescent	7E-06	1	2E-06	0.2
		Adult	4E-06	0.2	1E-06	0.03
C4N-EU1	Low contact recreational	Adolescent	1E-06	0.2	2E-07	0.01
		Adult	7E-07	0.04	1E-07	0.003
	Worker	Adult	1E-08	0.02	2E-09	0.001
C4N-EU2	Low contact recreational	Adolescent	1E-06	0.2	2E-07	0.01
		Adult	7E-07	0.04	1E-07	0.003
C4S-EU1	Low contact recreational	Adolescent	2E-06	0.4	4E-07	0.03
		Adult	1E-06	0.09	2E-07	0.006
C4S-EU2	Low contact recreational	Adolescent	4E-07	0.06	5E-08	0.004
		Adult	2E-07	0.01	3E-08	0.0007
C4S-EU3	Low contact recreational	Adolescent	8E-07	0.1	1E-07	0.008
		Adult	5E-07	0.03	6E-08	0.002
C5N-EU1	Low contact recreational	Adolescent	9E-07	0.2	1E-07	0.009
		Adult	5E-07	0.03	7E-08	0.002
	Worker	Adult	2E-08	0.04	3E-09	0.002
C5S-EU1	Low contact recreational	Adolescent	2E-07	0.03	2E-08	0.002
		Adult	1E-07	0.007	1E-08	0.0004
C6N-EU1	Low contact recreational	Adolescent	3E-07	0.05	4E-08	0.003
		Adult	2E-07	0.01	2E-08	0.0006
C6S-EU1	Low contact recreational	Adolescent	4E-07	0.07	5E-08	0.004
		Adult	3E-07	0.02	3E-08	0.0008
C7S-EU1	Low contact recreational	Adolescent	2E-07	0.03	2E-08	0.002
		Adult	1E-07	0.007	1E-08	0.0004
C8N-EU1	Low contact recreational	Adolescent	4E-07	0.08	7E-08	0.005
		Adult	3E-07	0.02	4E-08	0.001

No Fill = total cancer risk less than 1E-06 or total hazard index less than or equal to 1.0.

⁼ total cancer risk between 1E-06 and 1E-04.

⁼ total cancer risk greater than 1E-4 or total hazard index greater than 1.0.

TABLE 6-15

SUMMARY OF CANCER RISKS AND NONCANCER HAZARD INDICES FROM PRIMARY COPCS - AGRICULTURAL EXPOSURE UNITS

REASONABLE MAXIMUM EXPOSURE ANNISTON PCB SITE

OU-4

Exposure Unit	Exposure Scenario	Receptor	Cancer Risk (Total PCBs)	Hazard Index (Total PCBs and Mercury)	Cancer Risk (PCB Dioxin-like Congener TEQ)	Hazard Index (PCB Dioxin-like Congener TEQ)
Ag-EU1	Farmer	Adult	3E-06	0.1	3E-07	0.007
Ag-EU2	Farmer	Adult	1E-06	0.06	2E-07	0.004
Ag-EU3	Farmer	Adult	2E-06	0.08	2E-07	0.005
Ag-EU4	Farmer	Adult	1E-07	0.005	1E-08	0.0003
Ag-EU5	Farmer	Adult	3E-07	0.01	4E-08	0.0008
Ag-EU6	Farmer	Adult	3E-09	0.0002	8E-11	0.000002
Ag-EU7	Farmer	Adult	5E-08	0.002	6E-09	0.0001
Ag-EU8	Farmer	Adult	3E-08	0.002	3E-09	0.00006

No Fill = total cancer risk less than 1E-06 or total hazard index less than or equal to 1.0.

= total cancer risk between 1E-06 and 1E-04.

TABLE 6-16 SITE-WIDE CANCER RISKS FROM OTHER COPCs ANNISTON PCB SITE OU-4

					Cance	er Risks		
	EPC	CSF	High Cont	act Recreational	Exposure	Low Conta	Exposure	
COPC	(mg/kg)	(mg/kg-day)	Young Child	Adolescent	Adult	Young Child	Adolescent	Adult
Dioxin/Furan Congener								
2,3,7,8-TCDD TEQ	2.50E-05	1.30E+05	1E-06	5E-07	6E-07	6E-07	2E-07	3E-07
PAHs								
Benzo(a)anthracene	1.37E-01	7.30E-01	5E-08	3E-08	2E-08	3E-08	2E-08	1E-08
Benzo(a)pyrene	1.20E-01	7.30E+00	4E-07	3E-07	2E-07	2E-07	1E-07	1E-07
Benzo(b)fluoranthene	6.37E-02	7.30E-01	2E-08	2E-08	1E-08	1E-08	8E-09	6E-09
Benzo(k)fluoranthene	1.25E-01	7.30E-02	5E-09	3E-09	2E-09	2E-09	2E-09	1E-09
Chrysene	1.32E-01	7.30E-03	5E-10	3E-10	2E-10	2E-10	2E-10	1E-10
Indeno(1,2,3-cd)pyrene	1.51E-01	7.30E-01	6E-08	4E-08	3E-08	3E-08	2E-08	1E-08
Inorganics		•				•	•	
Aluminum	1.27E+04	NA	NA	NA	NA	NA	NA	NA
Arsenic	7.46E+00	1.50E+00	4E-06	2E-06	2E-06	2E-06	8E-07	1E-06
Chromium	1.87E+01	5.00E-01	3E-06	8E-07	2E-06	2E-06	4E-07	8E-07
Cobalt	9.47E+00	NA	NA	NA	NA	NA	NA	NA
Iron	2.43E+04	NA	NA	NA	NA	NA	NA	NA
Manganese	9.64E+02	NA	NA	NA	NA	NA	NA	NA
		Total:	9E-06	3E-06	5E-06	4E-06	2E-06	2E-06

NA = Not available.

Presented cancer risks are based on the incidental ingestion and dermal contact exposure pathways.

Chromium CSF is based on hexavalent form.

TABLE 6-17 SITE-WIDE HAZARD INDICES FROM OTHER COPCs ANNISTON PCB SITE OU-4

					Hazar	d Indices		
	EPC	RfD	High Cont	act Recreational	Exposure	Low Contact Recreational Expo		
COPC	(mg/kg)	(mg/kg-day)	Young Child	Adolescent	Adult	Young Child	Adolescent	Adult
Dioxin/Furan Congener								
2,3,7,8-TCDD TEQ	2.50E-05	7.00E-10	0.2	0.04	0.02	0.08	0.02	0.008
PAHs								
Benzo(a)anthracene	1.37E-01	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	1.20E-01	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	6.37E-02	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	1.25E-01	NA	NA	NA	NA	NA	NA	NA
Chrysene	1.32E-01	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	1.51E-01	NA	NA	NA	NA	NA	NA	NA
Inorganics		•		•		•		
Aluminum	1.27E+04	1.00E+00	0.05	0.008	0.005	0.02	0.004	NA
Arsenic	7.46E+00	3.00E-04	0.1	0.03	0.01	0.05	0.01	0.006
Chromium	1.87E+01	3.00E-03	0.02	0.004	0.003	0.01	0.002	0.001
Cobalt	9.47E+00	3.00E-04	0.1	0.02	0.01	0.06	0.01	0.006
Iron	2.43E+04	7.00E-01	0.1	0.02	0.01	0.07	0.01	0.007
Manganese	9.64E+02	2.40E-02	0.2	0.03	0.02	0.08	0.01	0.008
		Total:	0.7	0.1	0.08	0.4	0.07	0.04

NA = Not available.

Presented hazard indices are based on the incidental ingestion and dermal contact exposure pathways. Chromium RfD is based on hexavalent form.

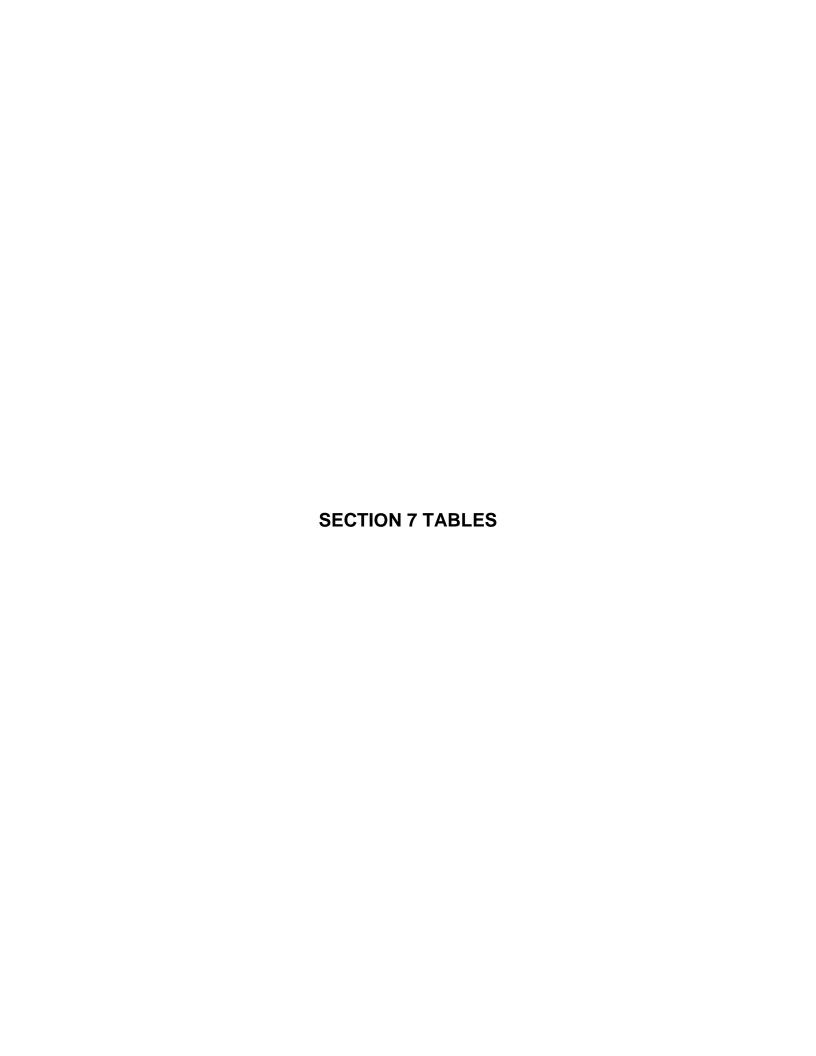


TABLE 7-1
SUMMARY OF TOTAL PCBS DETECTED IN AGRICULTURAL EXPOSURE UNITS - SURFACE SOIL
ANNISTON PCB SITE
OU-4

Agricultural EU ID	Minimum Concentration	Maximum Concentration	Units	Location of Maximum Concentration	Detection Frequency ^a	Detection Limits ^b	Arithmetic Mean ^c	Exposure Point Concentration ^d
Ag-EU1	1.10E-01	1.27E+02	mg/kg	C3S-02	10/15	4.15E-02 - 4.40E-02	2.14E+01	4.25E+01
Ag-EU2	7.15E-02	8.95E+01	mg/kg	C3N-05	44/45	3.90E-02 - 3.90E-02	1.11E+01	2.23E+01
Ag-EU3	1.65E-01	4.29E+01	mg/kg	C4S-04	12/12	NA	9.57E+00	2.87E+01
Ag-EU4	5.40E-02	4.63E+00	mg/kg	C4S-16	7/14	4.05E-02 - 4.70E-02	9.64E-01	1.74E+00
Ag-EU5	5.10E-02	1.63E+01	mg/kg	C4SF-30	18/22	3.95E-02 - 4.25E-02	1.83E+00	5.29E+00
Ag-EU6	4.10E-02	1.15E+00	mg/kg	C5S-13	3/11	3.65E-02 - 4.05E-02	1.41E-01	4.08E-02
Ag-EU7	1.84E-01	1.41E+00	mg/kg	C5S-25	2/3	4.00E-02 - 4.00E-02	5.45E-01	7.97E-01
Ag-EU8	1.08E-01	1.37E+00	mg/kg	C5SF-17	3/5	3.75E-02 - 4.05E-02	4.00E-01	4.44E-01

^aNumber of sampling locations at which analyte was detected compared with total number of sampling locations; duplicates at a location were averaged and considered one sample. ^bBased on nondetected samples.

mg/kg = Milligrams per kilogram.

NA = Not applicable.

^cNondetects were included at the full detection limit.

^dSee Section 6.2.2 for an explanation of the approach used to determine UCLs.

TABLE 7-2 AGRICULTURAL PRODUCT MODELING PARAMETERS ANNISTON PCB SITE OU-4

Parameter	Value	Units	Source
log K _{ow}	6.5	unitless	Aroclor 1254; EPA, 2005
Kds	24535	cm ³ /gram	Aroclor 1254; EPA, 2005
Empirical correction factor	0.01	unitless	EPA, 2005
% Moisture _{ag}	0.94	unitless	EPA, 1997
BTF _{aq}	6.78E-03	(mg COPC/kg dry weight plant)/(mg COPC/kg dry weight soil)	calculated; Equation 7-1
log RCF _{ww}	3.485	(mg COPC/kg wet weight plant)/(mg COPC/L soil water)	calculated; Equation 7-2
BTF _{bg}	1.25E-03	(mg COPC/kg wet weight plant)/(mg COPC/kg dry weight soil)	calculated; Equation 7-3
log BTF _{fat}	-0.78775	(mg/kg fat)/(mg/day)	calculated; Equation 7-6
BTF _{beef}	3.10E-02	day/kg wet weight tissue	calculated; Equation 7-7
BTF _{milk}	6.52E-03	day/kg wet weight tissue	calculated; Equation 7-9
BTF _{chicken}	2.28E-02	day/kg wet weight tissue	calculated; Equation 7-11
BTF _{eggs}	1.30E-02	day/kg wet weight tissue	calculated; Equation 7-11

TABLE 7-3
AGRICULTURAL PRODUCTS - MODELED CONCENTRATIONS ASSUMING 1 MG/KG TOTAL PCBS
ANNISTON PCB SITE
OU-4

	Portio	n of Ingested Pla	nt Type	Portion of Soil		Modeled Total PCB	Concentration (mg/kg	wet weight) fro	m 1 mg Total PC	B/kg Soil	
	Grown in	Contaminated F	loodplain	Ingested	Pro	duce	Forage/Silage/				
Scenario	Forage	Silage	Grain	from Floodplain	Above Ground	Below Ground	Grain*	Beef	Milk	Chicken	Eggs
Not Applicable	le			Not Applicable	4.07E-04	1.25E-03	6.78E-03				
Consuming G	Grain Only										
			100%	100%						5.33E-04	3.05E-04
			50%	50%						2.67E-04	1.52E-04
			25%	25%						1.33E-04	7.61E-05
			10%	10%						5.33E-05	3.05E-05
Consuming F	orage/Silage/Grai	in									
	50%	50%	50%	50%				8.98E-03	1.75E-03		
	25%	25%	25%	25%				4.49E-03	8.76E-04		
	10%	10%	10%	10%				1.80E-03	3.51E-04		
	50%	0%	0%	50%				8.67E-03	1.60E-03		
	25%	0%	0%	25%				4.33E-03	7.98E-04		
	10%	0%	0%	10%				1.73E-03	3.19E-04		

^{*}Units mg/kg dry weight.

TABLE 7-4 AGRICULTURAL PRODUCT INGESTION EXPOSURE PARAMETERS - VEGETABLES AND BEEF ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Medium: Agricultural Products

Exposure Medium: Agricultural Products

							RME	RME	
Exposure Route	Receptor Population	Receptor Age	Exposure Point		Parameter Definition	Units	Value	Rationale/	Intake Equation/
				Code				Reference	Model Name
Ingestion	Farmers	Young Child (1 to 6 years)	Above Ground	C_{ag}	Concentration in Above Ground Vegetables	mg/kg, wet weight	See Table 7-3	see text	Chronic daily intake - cancer (mg/kg-day) =
ingestion	rainiers	and Adult	Vegetables	IR-ADJ _{ag}	Age-adjusted Ingestion Rate of Above Ground Vegetables	g-year/kg-day, wet weight	43.9	Calculated	Chronic daily intake - cancer (mg/kg-day) = C _{ag} x IR-ADJ _{ag} x FI x CF x IAF x EF x 1/AT-C
		(age-adjusted)		IR-C _{ag}	Ingestion Rate of Above Ground Vegetables - child	g/kg-day, wet weight	1.7	Table 7-8	
				IR-A _{ag}	Ingestion Rate of Above Ground Vegetables - adult	g/kg-day, wet weight	0.99	Table 7-8	Observice delibelistates
				FI	Fraction of Ingested Above Ground	unitless	multiple	see text	Chronic daily intake - noncancer (mg/kg-day) = $C_{ag} \times IR-ADJ_{ag} \times FI \times CF \times IAF \times EF \times 1/AT-NC$
				CF	Vegetables Grown in the Floodplain Conversion Factor	kg/g	1.00E-03	Unit conversion factor	
				IAF	Gastrointestinal Absorption Factor	unitless	1	Default	where:
				EF	Exposure Frequency	days/year	350	Professional judgment	$IR-ADJ_{ag} = (IR-C_{ag} \times EDc) + (IR-A_{ag} \times EDa)$
				EDc	Exposure Duration - child	years	6	Calculated based on young child's age	
				EDa	Exposure Duration - adult	years	34	EPA, 2005	
				AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	
				AT-NC	Averaging Time (Non-Cancer)	days	14,600	Total ED (40 years) x 365 days/year	
		Young Child (1		C _{bg}	Concentration in Below Ground Vegetables	mg/kg, wet weight	See Table 7-3	see text	
		to 6 years) and Adult	Below Ground Vegetables	IR-ADJ _{bg}	Age-adjusted Ingestion Rate of Below	g-year/kg-day, wet	17.7	Calculated	Chronic daily intake - cancer (mg/kg-day) = $C_{bg} \times IR-ADJ_{bg} \times FI \times CF \times IAF \times EF \times 1/AT-C$
		(age-adjusted)		IR-C _{bg}	Ground Vegetables Ingestion Rate of Below Ground Vegetables	weight g/kg-day, wet weight	0.85	Table 7-8	
				IR-A _{bg}	child Ingestion Rate of Below Ground Vegetables -	g/kg-day, wet weight	0.37	Table 7-8	
				FI	adult Fraction of Ingested Below Ground Vegetables Grown in the Floodplain	unitless	multiple	see text	Chronic daily intake - noncancer (mg/kg-day) = $C_{bg} \times IR-ADJ_{bg} \times FI \times CF \times IAF \times EF \times 1/AT-NC$
				CF	Conversion Factor	kg/g	1.00E-03	Unit conversion factor	
				IAF	Gastrointestinal Absorption Factor	unitless	1	Default	where:
				EF	Exposure Frequency	days/year	350	Professional judgment	$IR-ADJ_{bg} = (IR-C_{bg} \times EDc) + (IR-A_{bg} \times EDa)$
				EDc	Exposure Duration - child	years	6	Calculated based on young child's age	
				EDa	Exposure Duration - adult	years	34	EPA, 2005	
				AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	
				AT-NC	Averaging Time (Non-Cancer)	days	14,600	Total ED (40 years) x 365 days/year	
		Young Child (1		C _{beef}	Concentration in Beef	mg/kg, wet weight	See Table 7-3	see text	
		to 6 years) and Adult	Beef	IR-ADJ _{beef}	Age-adjusted Ingestion Rate of Beef	g-year/kg-day, wet weight	45.2	Calculated	Chronic daily intake - cancer (mg/kg-day) = $C_{beef} \times IR-ADJ_{beef} \times CF \times IAF \times EF \times 1/AT-C$
		(age-adjusted)		IR-C _{beef}	Ingestion Rate of Beef - child	g/kg-day, wet weight	2.1	Table 7-8	
				IR-A _{beef}	Ingestion Rate of Beef - adult	g/kg-day, wet weight	0.96	Table 7-8	Chronic daily intake - noncancer (mg/kg-day) =
				CF	Conversion Factor	kg/g	1.00E-03	Unit conversion factor	C _{beef} x IR-ADJ _{beef} x CF x IAF x EF x 1/AT-NC
				IAF	Gastrointestinal Absorption Factor	unitless	1	Default	
				EF	Exposure Frequency	days/year	350	Professional judgment	where:
				EDc	Exposure Duration - child	years	6	Calculated based on young child's age	$IR-ADJ_{beef} = (IR-C_{beef} \times EDc) + (IR-A_{beef} \times EDa)$
				EDa	Exposure Duration - adult	years	34	EPA, 2005	
				AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	
				AT-NC	Averaging Time (Non-Cancer)	days	14,600	Total ED (40 years) x 365 days/year	

TABLE 7-5 AGRICULTURAL PRODUCT INGESTION EXPOSURE PARAMETERS - DAIRY, CHICKENS, AND EGGS ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Medium: Agricultural Products

Exposure Medium: Agricultural Products

							RME	RME	
Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Units	Value	Rationale/ Reference	Intake Equation/ Model Name
		Young Child (1		C _{dairy}	Concentration in Dairy Products	mg/kg, wet weight	See Table 7-3	see text	
Ingestion	Farmers	to 6 years) and Adult	Dairy Products	IR-ADJ _{dairy}	Age-adjusted Ingestion Rate of Dairy Products	g-year/kg-day, wet weight	154	Calculated	Chronic daily intake - cancer (mg/kg-day) = $C_{dairy} \times IR-ADJ_{dairy} \times CF \times IAF \times EF \times 1/AT-C$
		(age-adjusted)		IR-C _{dairy}	Ingestion Rate of Dairy Products - child	g/kg-day, wet weight	14.4	Table 7-8	
		, , ,		IR-A _{dairy}	Ingestion Rate of Dairy Products - adult	g/kg-day, wet weight	2.0	Table 7-8	Chronic daily intake - noncancer (mg/kg-day) =
				CF	Conversion Factor	kg/g	1.00E-03	Unit conversion factor	C _{dairy} x IR-ADJ _{dairy} x CF x IAF x EF x 1/AT-NC
				IAF	Gastrointestinal Absorption Factor	unitless	1	Default	,
				EF	Exposure Frequency	days/year	350	Professional judgment	where:
				EDc	Exposure Duration - child	years	6	Calculated based on young child's age	IR-ADJ _{dairy} = (IR-C _{dairy} x EDc) + (IR-A _{dairy} x EDa)
				EDa	Exposure Duration - adult	years	34	EPA, 2005	
				AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	
				AT-NC	Averaging Time (Non-Cancer)	days	14,600	Total ED (40 years) x 365 days/year	
		Young Child (1		C _{chicken}	Concentration in Chicken	mg/kg, wet weight	See Table 7-3	see text	
		to 6 years) and Adult	Chickens	IR-ADJ _{chicken}	Age-adjusted Ingestion Rate of Chicken	g-year/kg-day, wet	20.9	Calculated	Chronic daily intake - cancer (mg/kg-day) = C _{chicken} x IR-ADJ _{chicken} x CF x IAF x EF x 1/AT-C
		(age-adjusted)		IR-C _{chicken}	Ingestion Rate of Chicken - child	weight g/kg-day, wet weight	1.1	Table 7-8	
		, ,		IR-A _{chicken}	Ingestion Rate of Chicken - adult	g/kg-day, wet weight	0.42	Table 7-8	Chronic daily intake - noncancer (mg/kg-day) =
				CF	Conversion Factor	kg/g	1.00E-03	Unit conversion factor	C _{chicken} x IR-ADJ _{chicken} x CF x IAF x EF x 1/AT-NC
				IAF	Gastrointestinal Absorption Factor	unitless	1	Default	
				EF	Exposure Frequency	days/year	350	Professional judgment	where:
				EDc	Exposure Duration - child	years	6	Calculated based on young child's age	IR-ADJ _{chicken} = (IR-C _{chicken} x EDc) + (IR-A _{chicken} x EDa)
				EDa	Exposure Duration - adult	years	34	EPA, 2005	
				AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	
				AT-NC	Averaging Time (Non-Cancer)	days	14,600	Total ED (40 years) x 365 days/year	
		Young Child (1		C _{eggs}	Concentration in Eggs	mg/kg, wet weight	See Table 7-3	see text	
		to 6 years) and Adult	Eggs	IR-ADJ _{eggs}	Age-adjusted Ingestion Rate of Eggs	g-year/kg-day, wet weight	14.3	Calculated	Chronic daily intake - cancer (mg/kg-day) = $C_{\text{eggs}} \times \text{IR-ADJ}_{\text{eggs}} \times \text{CF} \times \text{IAF} \times \text{EF} \times \text{1/AT-C}$
		(age-adjusted)		IR-C _{eggs}	Ingestion Rate of Eggs - child	g/kg-day, wet weight	0.91	Table 7-8	
				IR-A _{eggs}	Ingestion Rate of Eggs - adult	g/kg-day, wet weight	0.26	Table 7-8	Chronic daily intake - noncancer (mg/kg-day) =
				CF	Conversion Factor	kg/g	1.00E-03	Unit conversion factor	$C_{\text{eqgs}} \times \text{IR-ADJ}_{\text{eqgs}} \times \text{CF} \times \text{IAF} \times \text{EF} \times \text{1/AT-NC}$
				IAF	Gastrointestinal Absorption Factor	unitless	1	Default	
				EF	Exposure Frequency	days/year	350	Professional judgment	where:
				EDc	Exposure Duration - child	years	6	Calculated based on young child's age	IR-ADJ _{eggs} = (IR-C _{eggs} x EDc) + (IR-A _{eggs} x EDa)
				EDa	Exposure Duration - adult	years	34	EPA, 2005	
				AT-C	Averaging Time (Cancer)	days	25,550	EPA, 1989	
				AT-NC	Averaging Time (Non-Cancer)	days	14,600	Total ED (40 years) x 365 days/year	

TABLE 7-6

SUMMARY OF AGRICULTURAL PRODUCT INTAKE RATES (AS CONSUMED) ANNISTON PCB SITE

OU-4

	95th Percentile								
		e Rate							
Age Group	(g/kg-day wet weight)	(ounces/day wet weight)*							
	oosed Vegetables (obtained from Tab	lle 3-11, EPA, 2003a)							
Young Child	0.0								
1-2	8.6	•							
3-5	6.4	4.0							
Average:	7.5	4.0							
Adult		<u> </u>							
20-39	4.1								
40-69	4.3								
70+	4.4								
Average:	4.3	10.7							
	oot Vegetables (obtained from Table	3-13, EPA, 2003a)							
Young Child									
1-2	8.3	 							
3-5	7.1								
Average:	7.7	4.1							
Adult									
20-39	3.5								
40-69	3.1								
70+	3.4								
Average:	3.4	8.4							
	Beef (obtained from Table 3-23,	EPA, 2003a)							
Young Child									
1-2	4.6								
3-5	4.2								
Average:	4.4	2.3							
Adult									
20-39	2.5								
40-69	2.0								
70+	1.5								
Average:	2.0	1.1							
	Dairy Products (obtained from Table	3-5, EPA, 2003a)							
Young Child	-	-							
1-2	90.1								
3-5	48.8	<u> </u>							
Average:	69.4	37.2							
Adult									
20-39	10.7								
40-69	8.7	†							
70+	9.9								
Average:	9.8	5.2							
	represented by poultry (obtained fro								
Young Child	The state of the s								
1-2	4.958								
3-5	4.361	†							
Average:	4.7	2.5							
Adult									
20-39	2.0								
40-69	1.7								
70+	1.5	<u> </u>							
Average:	1.7	0.93							
Average.	1.7	0.33							

TABLE 7-6

SUMMARY OF AGRICULTURAL PRODUCT INTAKE RATES (AS CONSUMED) ANNISTON PCB SITE OU-4

	95th Percentile										
	Intak	Intake Rate									
Age Group	(g/kg-day wet weight)	(ounces/day wet weight)*									
	Eggs (obtained from Table 3-6,	EPA, 2003a)									
Young Child											
1-2	5.1										
3-5	3.4										
Average:	4.3	2.3									
Adult											
20-39	1.4										
40-69	1.2										
70+	1.1										
Average:	1.2	0.65									

EPA, 2003a - CSFII Analysis of Food Intake Distributions. National Center for Environmental Assessment. EPA/600/R-03/029.

* Calculated from g/kg-day intake rate. Young child body weight was assumed to be 15 kg and adult body weight was assumed to be 70 kg. There are 28 grams in an ounce.

TABLE 7-7 FRACTION OF FOOD INTAKE THAT IS HOME PRODUCED* ANNISTON PCB SITE OU-4

Category	Exposed Vegetables	Root Vegetables	Beef	Dairy Products	Poultry	Eggs
Total Population	0.095	0.043	0.038	0.012	0.013	0.014
South Region	0.091	0.042	0.022	0.006	0.012	0.012
Households who farm	0.42	0.17	0.49	0.25	0.24	0.15
Households who garden	0.23	0.11	not applicable	not applicable	not applicable	not applicable
Households who raised animals	not applicable	not applicable	0.48	0.21	0.24	0.21

^{*} See Table 13-71 of the Exposure Factors Handbook (EPA, 1997).

TABLE 7-8 DERIVATION OF AGRICULTURAL PRODUCT INGESTION RATES ANNISTON PCB SITE OU-4

			Reasonable Maximum Exposure (RME)		
Age Group	95th Percentile ^a Intake Rate (g/kg-day wet weight)	Fraction of Food Intake that is Home Produced ^b	Basis	RME ^c Ingestion Rate (g/kg-day wet weight)	(ounces/day wet weight) ^d
			Exposed Vegetables		
Young Child	7.5	0.23	Based on households who garden	1.7	0.92
Adult	4.3	0.23	Based on households who garden	0.99	2.5
			Root Vegetables		
Young Child	7.7	0.11	Based on households who garden	0.85	0.46
Adult	3.4	0.11	Based on households who garden	0.37	0.9
			Beef		
Young Child	4.4	0.48	Based on households who raised animals	2.1	1.1
Adult	2.0	0.48	Based on households who raised animals	0.96	2.4
			Dairy Products		
Young Child	69.4	0.21	Based on households who raised animals	14.4	7.7
Adult	9.8	0.21	Based on households who raised animals	2.0	5.1
			Chicken		
Young Child	4.7	0.24	Based on households who raised animals	1.1	0.6
Adult	1.7	0.24	Based on households who raised animals	0.42	1.0
			Eggs		
Young Child	4.3	0.21	Based on households who raised animals	0.91	0.5
Adult	1.2	0.21	Based on households who raised animals	0.26	0.6

^a See Table 7-6.

^b See Table 7-7.

^c Calculated by multiplying intake rate and fraction of food intake that is home produced.

d Calculated from g/kg-day intake rate. Young child body weight was assumed to be 15 kg and adult body weight was assumed to be 70 kg. There are 28 grams in an ounce.

TABLE 7-9 VEGETABLE INGESTION RISK MATRIX ANNISTON PCB SITE OU-4

		Cance	er Risk			Hazard Quotient				
Fraction Ingested from Floodplain/	Tota	I PCB Soil Co	ncentration (n	ng/kg)		Tota	I PCB Soil Co	ncentration (m	g/kg)	
Vegetable Growing Scenario	1	5	20	40		1	5	20	40	
100%										
Aboveground	5E-07	2E-06	1E-05	2E-05		0.02	0.1	0.4	0.9	
Root	6E-07	3E-06	1E-05	2E-05		0.03	0.1	0.5	1	
Total	1E-06	5E-06	2E-05	4E-05		0.05	0.2	1	2	
75%		•		•		•	•	•	•	
Aboveground	4E-07	2E-06	7E-06	1E-05		0.02	0.08	0.3	0.6	
Root	5E-07	2E-06	9E-06	2E-05		0.02	0.10	0.4	0.8	
Total	8E-07	4E-06	2E-05	3E-05		0.04	0.2	0.7	1	
50%										
Aboveground	2E-07	1E-06	5E-06	1E-05		0.01	0.05	0.2	0.4	
Root	3E-07	2E-06	6E-06	1E-05		0.01	0.07	0.3	0.5	
Total	5E-07	3E-06	1E-05	2E-05		0.02	0.1	0.5	1	
25%		•		•	•	•	•	•		
Aboveground	1E-07	6E-07	2E-06	5E-06		0.005	0.03	0.1	0.2	
Root	2E-07	8E-07	3E-06	6E-06		0.007	0.03	0.1	0.3	
Total	3E-07	1E-06	5E-06	1E-05		0.01	0.06	0.2	0.5	
10%										
Aboveground	5E-08	2E-07	1E-06	2E-06	·	0.002	0.01	0.04	0.09	
Root	6E-08	3E-07	1E-06	2E-06		0.003	0.01	0.05	0.1	
Total	1E-07	5E-07	2E-06	4E-06		0.005	0.02	0.10	0.2	

No Fill = cancer risk less than 1E-06 or hazard quotient/index less than or equal to 1.0.

= cancer risk between 1E-06 and 1E-04.

TABLE 7-10 BEEF INGESTION RISK MATRIX ANNISTON PCB SITE OU-4

		Cance	er Risk			Hazard Quotient					
	Total	PCB Soil Co	ncentration (m	ng/kg)		Total PCB Soil Concentration (mg/kg)					
Cattle Ingestion Scenario	1 5 20 40					1	5	20	40		
Forage/Silage/Grain/Soil - FI 50%	1E-05	6E-05	2E-04	4E-04		0.5	2	10	19		
Forage/Silage/Grain/Soil - Fl 25%	6E-06	3E-05	1E-04	2E-04		0.2	1	5	10		
Forage/Silage/Grain/Soil - FI 10%	2E-06 1E-05 4E-05 9E-05			0.1	0.5	2	4				
Forage/Soil - FI 50%	1E-05	5E-05	2E-04	4E-04		0.5	2	9	19		
Forage/Soil - Fl 25%	5E-06	3E-05	1E-04	2E-04		0.2	1	5	9		
Forage/Soil - FI 10%	2E-06	1E-05	4E-05	9E-05		0.09	0.5	2	4		

No Fill = cancer risk less than 1E-06 or hazard quotient/index less than or equal to 1.0.

= cancer risk between 1E-06 and 1E-04.

TABLE 7-11 DAIRY INGESTION RISK MATRIX ANNISTON PCB SITE OU-4

		Cance	er Risk		Hazard Quotient					
	Total	PCB Soil Co	ncentration (n	ng/kg)	Total PCB Soil Concentration (mg/kg)					
Cattle Ingestion Scenario	1 5 20 40				1	5	20	40		
Forage/Silage/Grain/Soil - FI 50%	7E-06	4E-05	1E-04	3E-04	0.3	2	6	13		
Forage/Silage/Grain/Soil - FI 25%	4E-06	2E-05	7E-05	1E-04	0.2	0.8	3	6		
Forage/Silage/Grain/Soil - FI 10%	1E-06	7E-06	3E-05	6E-05	0.06	0.3	1	3		
Forage/Soil - FI 50%	7E-06	3E-05	1E-04	3E-04	0.3	1	6	12		
Forage/Soil - FI 25%	3E-06	2E-05	7E-05	1E-04	0.1	0.7	3	6		
Forage/Soil - FI 10%	1E-06	7E-06	3E-05	5E-05	0.06	0.3	1	2		

No Fill = cancer risk less than 1E-06 or hazard quotient/index less than or equal to 1.0.

= cancer risk between 1E-06 and 1E-04.

TABLE 7-12 CHICKEN INGESTION RISK MATRIX ANNISTON PCB SITE OU-4

	Cancer Risk					Hazard Quotient				
	Total Soil PCB Concentration (mg/kg)					Total	PCB Soil Cor	ncentration (m	ng/kg)	
Chicken Ingestion Scenario	1 5 20 40					1	5	20	40	
Grain/Soil - FI 100%	3E-07	2E-06	6E-06	1E-05		0.01	0.07	0.3	0.5	
Grain/Soil - FI 50%	2E-07	8E-07	3E-06	6E-06		0.007	0.03	0.1	0.3	
Grain/Soil - FI 25%	8E-08	4E-07	2E-06	3E-06		0.003	0.02	0.07	0.1	
Grain/Soil - FI 10%	3E-08 2E-07 6E-07 1E-06					0.001	0.007	0.03	0.05	

No Fill = cancer risk less than 1E-06 or hazard quotient/index less than or equal to 1.0.

= cancer risk between 1E-06 and 1E-04.

TABLE 7-13 EGG INGESTION RISK MATRIX ANNISTON PCB SITE OU-4

	Cancer Risk					Hazard Quotient				
	Total PCB Soil Concentration (mg/kg)					Total	PCB Soil Cor	ncentration (m	ng/kg)	
Chicken Ingestion Scenario	1 5 20 40					1	5	20	40	
Grain/Soil - FI 100%	1E-07	6E-07	2E-06	5E-06		0.005	0.03	0.1	0.2	
Grain/Soil - FI 50%	6E-08	3E-07	1E-06	2E-06		0.003	0.01	0.05	0.1	
Grain/Soil - FI 25%	3E-08	1E-07	6E-07	1E-06		0.001	0.007	0.03	0.05	
Grain/Soil - FI 10%	1E-08 6E-08 2E-07 5E-07					0.0005	0.003	0.01	0.02	

No Fill = cancer risk less than 1E-06 or hazard quotient/index less than or equal to 1.0.

= cancer risk between 1E-06 and 1E-04.

TABLE 7-14 BEEF INGESTION RISK MATRIX - SENSITIVITY ANALYSIS FOR LOWER SOIL BIOAVAILABILITY ANNISTON PCB SITE OU-4

	To	Cancer Risk Total PCB Concentration (mg/kg)				Hazard Quotient Total PCB Concentration (mg/kg)			
Cattle Ingestion Scenario	1	1 5 20 40				1	20	40	
Forage/Silage/Grain/Soil - FI 50%	6E-06	3E-05	1E-04	3E-04		0.3	1	6	11
Forage/Silage/Grain/Soil - FI 25%	3E-06	2E-05	6E-05	1E-04		0.1	0.7	3	6
Forage/Silage/Grain/Soil - FI 10%	1E-06	6E-06	3E-05	5E-05		0.06	0.3	1	2
Forage/Soil - FI 50%	6E-06	3E-05	1E-04	2E-04		0.3	1	5	10
Forage/Soil - FI 25%	3E-06	1E-05	6E-05	1E-04		0.1	0.6	3	5
Forage/Soil - FI 10%	1E-06	6E-06	2E-05	5E-05		0.05	0.3	1	2

No Fill = cancer risk less than 1E-06 or hazard quotient/index less than or equal to 1.0.

= cancer risk between 1E-06 and 1E-04.

= cancer risk greater than 1E-04 or hazard quotient/index greater than 1.0.

Note: All the risk values presented in Table 7-14 are based on an assumed bioavailability of 50% for PCBs in soil ingested by cattle. This is a lower bounding estimate to the 100% assumed bioavailability used in the HHRA.

TABLE 7-15 DAIRY INGESTION RISK MATRIX - SENSITIVITY ANALYSIS FOR LOWER SOIL BIOAVAILABILITY ANNISTON PCB SITE OU-4

	To	Cancer Risk Total PCB Concentration (mg/kg)				Hazard Quotient Total PCB Concentration (
Cattle Ingestion Scenario	1	5	20	40		1	5	20	40
Forage/Silage/Grain/Soil - FI 50%	5E-06	2E-05	9E-05	2E-04		0.2	1	4	8
Forage/Silage/Grain/Soil - FI 25%	2E-06	1E-05	5E-05	9E-05		0.1	0.5	2	4
Forage/Silage/Grain/Soil - FI 10%	9E-07	5E-06	2E-05	4E-05		0.04	0.2	0.8	2
Forage/Soil - FI 50%	4E-06	2E-05	8E-05	2E-04		0.2	0.9	3	7
Forage/Soil - Fl 25%	2E-06	1E-05	4E-05	8E-05		0.09	0.4	2	3
Forage/Soil - FI 10%	8E-07	4E-06	2E-05	3E-05		0.03	0.2	0.7	1

No Fill = cancer risk less than 1E-06 or hazard quotient/index less than or equal to 1.0.

= cancer risk between 1E-06 and 1E-04.

= cancer risk greater than 1E-04 or hazard quotient/index greater than 1.0.

Note: All the risk values presented in Table 7-15 are based on an assumed bioavailability of 50% for PCBs in soil ingested by cattle. This is a lower bounding estimate to the 100% assumed bioavailability used in the HHRA.

APPENDIX A INHALATION SCREENING EVALUATION

APPENDIX A

INHALATION SCREENING ANALYSIS

As noted in Section 2, the soil contact exposure pathway includes incidental soil ingestion, dermal contact and absorption, and inhalation of particulates as pathways of concern. Typically, the inhalation of particulates exposure pathway results in exposure and risks that are minimal compared to the exposure and risks associated with the incidental ingestion and dermal contact and absorption exposure pathways. The mechanism of the inhalation exposure relevant for this HHRA is the release of particulates (i.e., PCB-contaminated soil) from soil due to wind erosion.

The analysis performed in this appendix demonstrates that the inhalation of particulates exposure pathway results in negligible risks. This was done using the highest tPCB concentration observed in the floodplain soil and the most conservative inhalation exposure parameters to determine if the inhalation of particulates pathway warranted further evaluation in the HHRA.

Table A-1 shows the maximum tPCB soil concentration (from 0-1 bgs) compared with the inhalation-based residential RSL, the integrated residential RSL (i.e., based on all three exposure routes), and the contribution of the inhalation pathway to the overall risks. The ratio of the maximum concentration to the inhalation screening value is less than one (0.04); therefore, cancer risk from this pathway would be less than 1E-07, and well below the EPA risk range. In addition, the comparison of the inhalation risk to total direct contact risk is 0.004%, which further supports the contention that inhalation risk is not of concern for OU-4. As such, it was not evaluated quantitatively in the HHRA.

TABLE A-1
FLOODPLAIN SOIL (0 TO 1 FT BGS) MAXIMUM tPCB CONCENTRATIONS COMPARISON TO RESIDENTIAL SOIL RSLS
ANNISTON PCB SITE
OU-4

Contaminant	Maximum Concentration	Units	Inhalation Screening Toxicity Value ^a	Ratio	Residential Screening Toxicity Value ^b	Ratio	% Contribution of Inhalation Pathway to Total Risks
Aroclors							
Total PCBs (sum of Aroclors)	2.28E+02	mg/kg	5.80E+03 C	0.04	2.20E-01 C	1036	0.004%

^a Residential soil inhalation RSL (May 2012).

C = cancer based, target risk equals 1E-06.

Total PCBs (sum of Aroclors) toxicity value assumed to be the most conservative cancer-based value of the detected Aroclors.

^b Residential soil RSL, includes all routes (i.e., inhalation, dermal, and ingestion; May 2012).

APPENDIX B SURFACE WATER SCREENING EVALUATION

APPENDIX B

SURFACE WATER SCREENING ANALYSIS

As noted in Section 2, the surface water contact exposure scenarios were eliminated from consideration based on the low levels observed in the available surface water data. This risk-based surface water screening evaluation was the basis of that determination.

To perform this analysis, available surface water data from October 2009 and February 2010 were used. Table B-1 presents the data that were collected by Solutia during the Phase 2 ecological risk assessment sampling. There were 49 surface water samples collected from 48 locations within Choccolocco Creek. All of the these surface water samples were analyzed for inorganics and mercury, with a subset of six sample locations analyzed for PCB dioxin-like congeners and dioxin/furan congeners, and one sample location analyzed for tPCBs as Aroclors. The one tPCB (Aroclor) value and all PCB congener values were nondetects; however, PCB homologs were analyzed for in all surface water samples and total homolog PCB concentrations were able to be calculated from those concentrations. Therefore, total homolog PCB values were used in this exercise.

Table B-2 presents a summary of the analytes detected in surface water, the screening toxicity value, and whether the ratio of the maximum detected concentration versus the screening toxicity value is greater than one. The site-specific surface water values for recreational exposure were calculated using the EPA on-line RSL calculator (EPA, 2012a) and input values used are as noted on Table B-3. If a site-specific RSL could not be calculated, the Maximum Contaminant Level (MCL) was used (EPA, 2012b).

All of the detected chemicals were below the screening value, with the exception of tPCBs (homolog) and chromium. The ratios of the maximum detected concentrations to the respective RSLs were 15 and 38.1. Note that the chromium ratio is conservative as it was calculated assuming that all of the chromium present was in the +6 valence state.

The ratios calculated from comparisons of soil and fish tPCB concentrations with their RSLs were 2,073 and 21,250 respectively. From this, it is clear that the contribution to risk from the surface water pathway would be very small compared to the risk from other pathways.

Given that only two chemicals detected in surface water would be considered COPCs based on a conservative screening and that the contribution to overall risk would be minimal, the surface water pathway was not evaluated quantitatively in this risk assessment.

EPA (U.S. Environmental Protection Agency). 2012a. Regional Screening Levels for Chemical Contaminants at Superfund Sites. http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search

_____. 2012b. Regional Screening Levels Table. May 2012.

TABLE B-1 SURFACE WATER SAMPLES USED IN HHRA ANNISTON PCB SITE OU-4

						Anal	yses		
			•		PCB	PCB		Dioxins/	
Location	Sample ID	Sample Type	Date	PCBs	Congeners	Homologs	Mercury	Furans	Inorganics
ELA-01-07	C50636	N	10/3/2009			X	X		X
ELA-02-13	C50637	N	10/3/2009		Х	Х	Х	Х	Х
ELA-03-14	C50638	N	10/3/2009			Х	Х		Х
ELW-01-05	C50620	N	10/2/2009			Х	Х		Х
ELW-02-06	C50621	N	10/2/2009			Х	Х		Х
ELW-03-08	C50622	N	10/3/2009			X	Х		Х
ELW-03-08	C50623	FD	10/3/2009			X	X		Х
ELW-04-09	C50624	N	10/3/2009			X	X		Х
ELW-04-09	C50639	N	2/24/2010			X	X		Х
ELW-05-10	C50625	N	10/3/2009			X	X		Х
ELW-06-11	C50626	N	10/3/2009			X	X		Х
ELW-07-12	C50627	N	10/3/2009			X	X		Х
ELW-08-15	C50628	N	10/3/2009			X	Х		Х
ELW-09-16	C50629	N	10/3/2009			X	X		Х
EMA-01-08	C50633	N	10/3/2009			X	Х		Х
EMA-02-26	C50634	N	10/4/2009			X	X		Х
EMA-03-28	C50635	N	10/4/2009			X	X		Х
EMW-01-17	C50611	N	10/3/2009			X	X		Х
EMW-02-22	C50612	N	10/4/2009		Х	X	X	Х	Х
EMW-03-23	C50613	N	10/4/2009			X	X		Х
EMW-04-24	C50614	N	10/4/2009		Х	X	X	Х	Х
EMW-05-25	C50615	N	10/4/2009			X	X		Х
EMW-06-27	C50616	N	10/4/2009			X	X		Х
EMW-07-19	C50617	N	10/3/2009			X	Х		Х
EMW-08-20	C50618	N	10/3/2009			Х	Х		Х
EMW-09-21	C50619	N	10/3/2009			X	X		Х
ERA-01-45	R50001	N	2/23/2010			Х	Х		Х
ERA-01-46	R50004	N	2/23/2010			Х	Х		Х
ERA-01-47	R50008	N	2/23/2010			Х	X		X
ERA-01-48	R50011	N	2/23/2010			Х	X		Х
ERA-02-41	R50002	N	10/6/2009	Χ		X	X		X
ERA-02-42	R50005	N	10/6/2009			X	X		X
ERA-02-42	R50006	FD	10/6/2009			X	X		X
ERA-02-43	R50009	N	10/6/2009		X	X	X	X	X
ERA-02-44	R50012	N	10/6/2009			X	X		Х
ERA-03-01	R50003	N	10/2/2009			X	X		X
ERA-03-02	R50007	N	10/2/2009			X	X		X
ERA-03-03	R50010	N	10/2/2009			X	X		X
ERA-03-04	R50013	N	10/2/2009			X	X		Х
EUA-01-40	C50630	N	10/4/2009			X	X		X
EUA-02-35	C50631	N	10/4/2009			X	X		X
EUA-03-31	C50632	N	10/4/2009		X	X	X	Х	X
EUW-01-37	C50601	N	10/4/2009			X	X		X
EUW-01-37	C50602	FD	10/4/2009			X	X		X
EUW-02-39	C50603	N	10/4/2009			X	X		X
EUW-03-38	C50604	N	10/4/2009			X	X		Х
EUW-04-36	C50605	N	10/4/2009			Х	X		Х
EUW-05-34	C50606	N	10/4/2009			X	Χ		Х
EUW-06-32	C50607	N	10/4/2009			Х	X		Х
EUW-07-33	C50608	N	10/4/2009		Х	Х	X	Х	Х
EUW-08-29	C50609	N	10/4/2009			X	X		X
EUW-09-30	C50610	N	10/4/2009			X	X		X

^{*}Sample Types:

FD = Field duplicate sample.

N = Primary sample.

TABLE B-2 SUMMARY OF ANALYTES DETECTED IN SURFACE WATER AND COMPARISON TO SITE-SPECIFIC RECREATOR SURFACE WATER RSLS ANNISTON PCB SITE

OU-4

				Location of		Average	Screening	
	Minimum	Maximum		Maximum Detected	Detection	Concentration	Toxicity	Ratio Greater
Contaminant	Concentration	Concentration	Units	Concentration	Frequency	(mg/kg)	Value ^a	than One?
PCB Homologs	l					(0 0)		
Decachlorobiphenyl	1.20E-06	5.30E-06	mg/L	EMW-02-22	5/49	1.75E-05	Evaluated	as tPCBs
Total Trichlorobiphenyl	7.60E-06	4.60E-05	mg/L	ELA-02-13	34/49	5.60E-05	Evaluated	
Total Pentachlorobiphenyl	6.00E-06	2.60E-05	mg/L	EUW-07-33	33/49	6.00E-05	Evaluated	as tPCBs
Total Dichlorobiphenyl	4.50E-06	7.50E-05	mg/L	ELA-02-13	35/49	2.34E-05	Evaluated	as tPCBs
Total Hexachlorobiphenyl	3.00E-06	3.10E-05	mg/L	EUW-07-33	32/49	6.18E-05	Evaluated	as tPCBs
Total Tetrachlorobiphenyl	7.60E-06	2.50E-05	mg/L	EMW-02-22	32/49	6.54E-05	Evaluated	as tPCBs
Total Monochlorobiphenyl	1.00E-06	1.00E-05	mg/L	EUW-06-32	16/49	1.44E-05	Evaluated	as tPCBs
Total Heptachlorobiphenyl	4.70E-06	1.70E-05	mg/L	EUW-07-33	16/49	9.77E-05	Evaluated	as tPCBs
Total Octachlorobiphenyl	6.60E-06	1.50E-04	mg/L	ELA-02-13	14/49	4.18E-05	Evaluated	as tPCBs
Total Nonachlorobiphenyl	9.60E-06	9.60E-06	mg/L	EMW-02-22	1/49	4.67E-05	Evaluated	as tPCBs
Total Homolog PCB	6.60E-06	3.09E-04	mg/L	ELA-02-13	39/49	9.02E-05	2.03E-05 C	Yes
Dioxin/Furan Congeners	.							
1,2,3,4,7,8-HxCDD	7.00E-10	7.00E-10	mg/L	EMW-02-22	1/6	6.50E-10	Evaluated as 2,3	7.8-TCDD TEQ
1,2,3,6,7,8-HxCDD	5.30E-10	1.66E-09	mg/L	EMW-02-22	2/6	7.63E-10	Evaluated as 2,3	
1.2.3.7.8.9-HxCDD	1.26E-09	1.26E-09	ma/L	EMW-02-22	1/6	7.00E-10	Evaluated as 2.3	. ,
1,2,3,4,6,7,8-HpCDD	1.81E-08	3.86E-08	mg/L	EMW-02-22	2/6	1.08E-08	Evaluated as 2,3	, ,
Octa CDD	2.50E-08	6.42E-07	mg/L	EMW-02-22	6/6	2.22E-07	Evaluated as 2,3	,
2,3,7,8-TCDF	1.03E-09	5.67E-08	mg/L	EMW-02-22	5/6	1.57E-08	Evaluated as 2,3	. ,
1.2.3.7.8-PeCDF	1.68E-09	3.52E-09	mg/L	EUW-07-33	2/6	1.27E-09	Evaluated as 2,3	. ,
2,3,4,7,8-PeCDF	4.86E-09	8.34E-09	mg/L	EUW-07-33	2/6	2.72E-09	Evaluated as 2,3	. ,
1,2,3,4,7,8-HxCDF	1.26E-09	5.37E-09	mg/L	EMW-02-22	2/6	1.46E-09	Evaluated as 2,3	7.8-TCDD TEQ
1,2,3,6,7,8-HxCDF	2.79E-09	9.75E-09	mg/L	EMW-02-22	2/6	2.45E-09	Evaluated as 2,3	
2.3.4.6.7.8-HxCDF	9.10E-10	1.22E-09	mg/L	EMW-02-22	2/6	7.48E-10	Evaluated as 2.3	
1,2,3,4,7,8,9-HpCDF	1.86E-09	1.86E-09	mg/L	EMW-02-22	1/6	8.40E-10	Evaluated as 2,3	7,8-TCDD TEQ
Octa CDF	1.80E-09	2.67E-08	mg/L	EMW-02-22	4/6	6.03E-09	Evaluated as 2,3	7,8-TCDD TEQ
2.3.7.8-TCDD TEQ		1.09E-08	mg/L				2.35E-08 C	No
Inorganics					!			l.
Arsenic	2.10E-04	1.20E-03	mg/L	EMW-02-22	5/5	6.50E-04	1.63E-03 C	No
Barium	1.74E-02	4.28E-02	mg/L	EMW-02-22	5/5	2.72E-02	3.61E+00 NC	No
Beryllium	1.00E-04	1.00E-04	mg/L	EMW-02-22	1/5	5.52E-05	5.23E-03 NC	No
Cadmium	2.10E-04	2.10E-04	mg/L	EMW-02-22	1/5	1.62E-04	7.15E-03 NC	No
Chromium	4.90E-04	4.00E-03	mg/L	EMW-02-22	4/5	1.96E-03	1.05E-04 C	Yes
Cobalt	2.20E-03	2.20E-03	mg/L	EMW-02-22	1/5	8.44E-03	1.50E-02 NC	No
Lead	3.40E-04	4.80E-03	mg/L	EMW-02-22	4/5	1.66E-03	1.50E-02 MCL	No
Manganese	2.89E-02	2.10E-01	mg/L	EMW-02-22	5/5	1.09E-01	2.90E-01 NC	No
Mercury	6.90E-05	6.90E-05	mg/L	ELW-04-09	1/49	6.80E-05	5.42E-03 NC	No
Methyl Mercury	1.00E-07	1.00E-07	mg/L	ELW-04-09	1/1	1.00E-07	4.64E-03 NC	No
Nickel	2.30E-04	1.80E-03	mg/L	EMW-02-22	4/5	5.64E-04	6.30E-01 NC	No
Vanadium	3.60E-04	3.10E-03	mg/L	EMW-02-22	5/5	1.04E-03	2.34E-01 NC	No

^a Site-specific recreator RSL, unless unavailable in which case the MCL used.

MCL = maximum contaminant level.

NC = noncancer based, hazard index equals 0.1.
2,3,7,8-TCDD TEQ conservatively calculated by multiplying the maximum detected concentration of each congener by the TEF and summing. Chromium VI noncancer value used.

C = cancer based, target risk equals 1E-06.

TABLE B-3 SITE-SPECIFIC RECREATOR EQUATION INPUTS FOR SURFACE WATER ANNISTON PCB SITE OU-4

Variable	Value
TR (target cancer risk) unitless	1.00E-06
THQ (target hazard quotient) unitless	0.1
EF _{recwc} (child exposure frequency) day/year	104
EF _{recwa} (adult exposure frequency) day/year	104
EF ₀₋₂ (mutagenic exposure frequency) day/year	104
EF ₂₋₆ (mutagenic exposure frequency) day/year	104
EF ₆₋₁₆ (mutagenic exposure frequency) day/year	104
EF ₁₆₋₃₀ (mutagenic exposure frequency) day/year	104
ED _{recwc} (exposure duration - child) year	6
ED _{recwa} (exposure duration - adult) year	24
ED ₀₋₂ (mutagenic exposure duration) year	2
ED ₂₋₆ (mutagenio exposure duration) year	4
ED ₆₋₁₆ (mutagenic exposure duration) year	10
	14
ED ₁₆₋₃₀ (mutagenic exposure duration) year LT (lifetime - recreator) year	70
	1
EV _{recwa} (adult) events/day	1
EV _{recwc} (child) events/day	1
EV ₀₋₂ (mutagenic) events/day	
EV ₂₋₆ (mutagenic) events/day	1
EV ₆₋₁₆ (mutagenic) events/day	1 1
EV ₁₆₋₃₀ (mutagenic) events/day	1
ET _{recwa} (adult exposure time) hour/event	2
ET _{recwc} (child exposure time) hour/event	2
ET _{recw0-2} (mutagenic exposure time) hour/event	2
ET _{recw2-6} (mutagenic exposure time) hour/event	2
ET _{recw6-16} (mutagenic exposure time) hour/event	2
ET _{recw16-30} (mutagenic exposure time) hour/event	2
ET _{recw-adj} (age-adjusted exposure time) hour/event	2
ET _{recw-madj} (mutagenic age-adjusted exposure time) hour/event	2
BW _{recwa} (body weight - adult) kg	59.583
BW _{recwc} (body weight - child) kg	15
BW ₀₋₂ (mutagenic body weight) kg	15
BW ₂₋₆ (mutagenic body weight) kg	15
BW ₆₋₁₆ (mutagenic body weight) kg	45
BW ₁₆₋₃₀ (mutagenic body weight) kg	70
IRW _{recwa} (water intake rate - adult) L/hr	0.05
IRW _{recwc} (water intake rate - child) L/hr	0.05
IRW ₀₋₂ (mutagenic water intake rate) L/hr	0.05
IRW ₂₋₆ (mutagenic water intake rate) L/hr	0.05
IRW ₆₋₁₆ (mutagenic water intake rate) L/hr	0.05
IRW ₁₆₋₃₀ (mutagenic water intake rate) L/hr	0.05
SA _{recwa} (skin surface area - adult) cm ²	18150
SA _{recwc} (skin surface area - child) cm ²	6700
SA ₀₋₂ (mutagenic skin surface area) cm ²	5300
SA ₂₋₆ (mutagenic skin surface area) cm ²	7400
SA ₆₋₁₆ (mutagenic skin surface area) cm ²	15700
SA ₁₆₋₃₀ (mutagenic skin surface area) cm ²	19900
I _{sc} (apparent thickness of stratum corneum) cm	0.001
IFW _{rec-adj} (age-adjusted water intake rate) L/kg	8.349
IFWM _{rec-adj} (mutagenic age-adjusted water intake rate) L/kg	31.2
DFW _{rec-adj} (age-adjusted dermal factor) cm ² -event/kg	1039044.254
DFWM _{rec-adj} (mutagenic age-adjusted dermal factor) cm ² -event/kg	2853066.667

Output generated 20APR2012:16:03:36

APPENDIX C FISH SAMPLE LOCATION GROUPINGS

APPENDIX C

FISH SAMPLE LOCATION GROUPINGS HUMAN HEALTH RISK ASSESSMENT ANNISTON PCB SITE – OU4

PCBs are the primary COPCs at the site; and therefore, PCB concentrations are the most important metric when performing statistics to determine which locations should be grouped. Using the four categories of fish species selected for use in the human health risk assessment (i.e., all species, bass, catfish, and panfish), one way analysis of variance (ANOVA) and Tukey Honestly Significant Difference (HSD) comparisons were made. An ANOVA is a statistical technique for comparing the means among more than two sample groups. If the ANOVA (at a 95% confidence interval) indicated that there were differences among the means, the Tukey's HSD Test was used for indicating specifically which of the locations were different from one another (that is, a pair-wise comparison) within a species grouping. In this case the ANOVA test indicated that there were differences among the means so the HSD test was run for all pairings.

This is important because if the means of two different groups of data are statistically different, the potential exists for the final EPC to be inflated or unrealistically high. A visual depiction of the HSD test results is presented below and the statistical outputs follow this text. A summary of the results is presented below.

	Species Groupings														
Location	All	Species				Bass	;			Catf	ish	Р	anfis	sh	
1															
2															
3															
4															
5															
6															
7															
8															
9															

Note: Similar color bars indicate that those locations are not different from one another. Comparisons only apply within species groupings.

In general:

- The locations downstream of Jackson Shoals (Locations 1 and 2) were not statistically different from each other for any of the species groupings. That is, as on the summary table, locations 1 and 2 have the same colors within species groupings.
- The four most upstream locations (Locations 6 through 9) were not statistically different from each other for any of the species groupings. For example, as on the summary table, locations 6 through 9 have a similar color blue for each location in the "all species" group.

All species:

- Location 3 was not similar to Locations 5, 6, or 7.
- Location 4 was not similar to Location 7.

Bass:

- Location 3 was not similar to Locations 6 and 7.
- Location 5 was not similar to Location 6.

Catfish:

• Locations 3 and 4 were not similar to Location 5.

Panfish:

- Location 3 was not similar to Locations 7 and 8.
- Locations 4 and 5 were not similar to Location 7.

Given the creek characteristics and statistical results, certain location groupings are indicated:

- Locations 1 and 2;
- Locations 3 and 4;
- Location 5 alone; and
- Locations 6 through 9.

However, it was only the bass species grouping that precluded Location 5 from being grouped with Location 6. Running an ANOVA and subsequent Tukey HSD on Locations 3 and 4 combined, Location 5 alone, and Locations 6 through 9 combined indicated no statistical difference between Location 5 and the other two groupings. Therefore, because all other species groups indicate no differences among Locations 5 through 9, Location 5 was grouped with Locations 6 through 9.

Therefore, the final data groupings used to evaluate fishing in the Choccolocco Creek are based on each targeted species group (i.e., bass, catfish, and panfish) and all species combined in the following location groupings:

- Group A Locations 1 and 2;
- Group B Locations 3 and 4; and
- Group C Locations 5 through 9.

All Species Locations 1 through 9

ONEWAY PCBconc BY Location
/STATISTICS DESCRIPTIVES
/MISSING ANALYSIS
/POSTHOC=TUKEY ALPHA(0.05).

Oneway

[DataSet1] E:\Anniston ANOVA Runs\anniston-pcbs anova-1through9all.sav

Descriptives

PCB conc.

					95% Confidence Interval for Mean				
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound			
1	42	2.0829	1.25156	.19312	1.6929	2.4729			
2	42	2.1376	1.63638	.25250	1.6277	2.6476			
3	42	1.9459	1.89025	.29167	1.3569	2.5349			
4	42	3.0757	2.13297	.32912	2.4111	3.7404			
5	42	4.5024	5.30006	.81782	2.8508	6.1540			
6	42	4.7257	3.07600	.47464	3.7672	5.6843			
7	42	5.1012	2.99713	.46247	4.1672	6.0352			
8	42	3.5833	2.30404	.35552	2.8653	4.3013			
9	25	3.4596	1.93697	.38739	2.6601	4.2591			
Total	361	3.3989	2.98310	.15701	3.0901	3.7076			

Descriptives

PCB conc.

	Minimum	Maximum
1	.22	5.40
2	.45	9.47
3	.24	10.80
4	.62	11.80
5	.89	34.00
6	.43	15.50
7	.23	12.90
8	.51	11.80
9	.76	11.00
Total	.22	34.00

ANOVA

PCB conc.

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	480.917	8	60.115	7.772	.000
Within Groups	2722.680	352	7.735		
Total	3203.596	360			

Post Hoc Tests

Multiple Comparisons

(I) Location	(J) Location				95% Confide	ence Interval
		Mean Difference (l- J)	Std. Error	Sig.	Lower Bound	Upper Bound
1	2	05469	.60690	1.000	-1.9490	1.8396
	3	.13702	.60690	1.000	-1.7572	2.0313
	4	99281	.60690	.784	-2.8871	.9015
	5	-2.41948 [*]	.60690	.003	-4.3137	5252
	6	-2.64279 [*]	.60690	.001	-4.5371	7485
	7	-3.01826 [*]	.60690	.000	-4.9125	-1.1240
	8	-1.50040	.60690	.249	-3.3947	.3939
	9	-1.37667	.70254	.573	-3.5694	.8161
2	1	.05469	.60690	1.000	-1.8396	1.9490
	3	.19171	.60690	1.000	-1.7026	2.0860
	4	93812	.60690	.833	-2.8324	.9561
	5	-2.36479 [*]	.60690	.004	-4.2591	4705
	6	-2.58810 [*]	.60690	.001	-4.4824	6938
	7	-2.96357	.60690	.000	-4.8578	-1.0693
	8	-1.44571	.60690	.297	-3.3400	.4486

^{*.} The mean difference is significant at the 0.05 level.

(I) Location	(J) Location				95% Confide	ence Interval
		Mean				
		Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
2	9	-1.32198	.70254	.627	-3.5148	.8708
3	1	13702	.60690	1.000	-2.0313	1.7572
	2	19171	.60690	1.000	-2.0860	1.7026
	4	-1.12983	.60690	.641	-3.0241	.7644
	5	-2.55650 [*]	.60690	.001	-4.4508	6622
	6	-2.77981 [*]	.60690	.000	-4.6741	8855
	7	-3.15529 [*]	.60690	.000	-5.0496	-1.2610
	8	-1.63743	.60690	.152	-3.5317	.2568
	9	-1.51370	.70254	.438	-3.7065	.6791
4	1	.99281	.60690	.784	9015	2.8871
	2	.93812	.60690	.833	9561	2.8324
	3	1.12983	.60690	.641	7644	3.0241
	5	-1.42667	.60690	.315	-3.3209	.4676
	6	-1.64998	.60690	.145	-3.5442	.2443
	7	-2.02545	.60690	.026	-3.9197	1312
	8	50760	.60690	.996	-2.4019	1.3867
	9	38386	.70254	1.000	-2.5766	1.8089
5	1	2.41948	.60690	.003	.5252	4.3137
	2	2.36479 [*]	.60690	.004	.4705	4.2591
	3	2.55650 [*]	.60690	.001	.6622	4.4508
	4	1.42667	.60690	.315	4676	3.3209
	6	22331	.60690	1.000	-2.1176	1.6710
	7	59879	.60690	.987	-2.4931	1.2955
	8	.91907	.60690	.848	9752	2.8133

^{*.} The mean difference is significant at the 0.05 level.

(I) Location	(J) Location		Tukey 113D		95% Confide	ence Interval
		Mean				
		Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
5	9	1.04280	.70254	.862	-1.1500	3.2356
6	1	2.64279	.60690	.001	.7485	4.5371
	2	2.58810 [*]	.60690	.001	.6938	4.4824
	3	2.77981*	.60690	.000	.8855	4.6741
	4	1.64998	.60690	.145	2443	3.5442
	5	.22331	.60690	1.000	-1.6710	2.1176
	7	37548	.60690	1.000	-2.2697	1.5188
	8	1.14238	.60690	.626	7519	3.0366
	9	1.26611	.70254	.681	9267	3.4589
7	1	3.01826	.60690	.000	1.1240	4.9125
	2	2.96357	.60690	.000	1.0693	4.8578
	3	3.15529 [*]	.60690	.000	1.2610	5.0496
	4	2.02545*	.60690	.026	.1312	3.9197
	5	.59879	.60690	.987	-1.2955	2.4931
	6	.37548	.60690	1.000	-1.5188	2.2697
	8	1.51786	.60690	.235	3764	3.4121
	9	1.64159	.70254	.323	5512	3.8344
8	1	1.50040	.60690	.249	3939	3.3947
	2	1. 44 571	.60690	.297	4486	3.3400
	3	1.63743	.60690	.152	2568	3.5317
	4	.50760	.60690	.996	-1.3867	2.4019
	5	91907	.60690	.848	-2.8133	.9752
	6	-1.14238	.60690	.626	-3.0366	.7519
	7	-1.51786	.60690	.235	-3.4121	.3764
	9	.12373	.70254	1.000	-2.0690	2.3165

^{*.} The mean difference is significant at the 0.05 level.

PCB conc. Tukey HSD

(I) Location	(J) Location				95% Confide	ence Interval
		Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
9	1	1.37667	.70254	.573	8161	3.5694
	2	1.32198	.70254	.627	8708	3.5148
	3	1.51370	.70254	.438	6791	3.7065
	4	.38386	.70254	1.000	-1.8089	2.5766
	5	-1.04280	.70254	.862	-3.2356	1.1500
	6	-1.26611	.70254	.681	-3.4589	.9267
	7	-1.64159	.70254	.323	-3.8344	.5512
	8	12373	.70254	1.000	-2.3165	2.0690

Homogeneous Subsets

PCB conc.

Tukey HSD^{a,b}

Location		Subset for alpha = 0.05						
	N	1	2	3				
3	42	1.9459						
1	42	2.0829						
2	42	2.1376						
4	42	3.0757	3.0757					
9	25	3.4596	3.4596	3.4596				
8	42	3.5833	3.5833	3.5833				
5	42		4.5024	4.5024				
6	42		4.7257	4.7257				
7	42			5.1012				
Sig.		.190	.181	.187				

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 39.050.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Bass Locations 1 through 9

ONEWAY PCBconc BY Location
/STATISTICS DESCRIPTIVES
/MISSING ANALYSIS
/POSTHOC=TUKEY ALPHA(0.05).

Oneway

[DataSet1] E:\Anniston ANOVA Runs\anniston-pcbs anova-1through9bass.sav

Descriptives

PCB conc.

						95% Confidence Interval for Mean		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound		
1	14	1.6952	.86653	.23159	. 1.1949	2.1955		
2	14	2.7164	2.20650	.58971	1.4424	3.9904		
3	14	2.0476	1.18253	.31604	1.3649	2.7304		
4	13	3.8932	2.63558	.73098	2.3005	5.4858		
5	14	3.5607	1.24844	.33366	2.8399	4.2815		
6	14	6.2729	2.96534	.79252	4.5607	7.9850		
7	14	5.6479	3.16350	.84548	3.8213	7.4744		
8	14	3.8450	1.29630	.34645	3.0965	4.5935		
9	11	4.3400	2.48036	.74786	2.6737	6.0063		
Total	122	3.7652	2.54139	.23009	3.3097	4.2207		

Descriptives

PCB conc.

	Minimum	Maximum
1	.22	3.70
2	.81	9.47
3	.33	3.60
4	.62	11.80
5	1.64	6.07
6	2.39	14.90
7	2.19	12.90
8	1.65	6.00
9	1.63	11.00
Total	.22	14.90

ANOVA

PCB conc.

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	258.867	8	32.358	6.996	.000
Within Groups	522.629	113	4.625		
Total	781.496	121			

Post Hoc Tests

Multiple Comparisons

			Takey 1100			
(I) Location	(J) Location				95% Confide	ence Interval
		Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
1	2	-1.02121	.81285	.942	-3.5921	1.5496
	3	35243	.81285	1.000	-2.9233	2.2184
	4	-2.19794	.82833	.177	-4.8178	.4219
	5	-1.86550	.81285	.354	-4.4364	.7054
	6	-4.57764 [*]	.81285	.000	-7.1485	-2.0068
	7	-3.95264 [*]	.81285	.000	-6.5235	-1.3818
	8	-2.14979	.81285	.180	-4.7206	.4211
	9	-2.64479	.86650	.067	-5.3853	.0958
2	1	1.02121	.81285	.942	-1.5496	3.5921
	3	.66879	.81285	.996	-1.9021	3.2396
	4	-1.17673	.82833	.888	-3.7966	1.4431
	5	84429	.81285	.981	-3.4151	1.7266
	6	-3.55643 [*]	.81285	.001	-6.1273	9856
	7	-2.93143 [*]	.81285	.013	-5.5023	3606
	8	-1.12857	.81285	.900	-3.6994	1.4423

^{*.} The mean difference is significant at the 0.05 level.

(I) Location	(J) Location				95% Confide	ence Interval
		Mean Difference (I-				
		J)	Std. Error	Sig.	Lower Bound	Upper Bound
2	9	-1.62357	.86650	.633	-4.3641	1.1170
3	1	.35243	.81285	1.000	-2.2184	2.9233
	2	66879	.81285	.996	-3.2396	1.9021
	4	-1.84551	.82833	.395	-4.4653	.7743
	5	-1.51307	.81285	.641	-4.0839	1.0578
	6	-4.22521 [*]	.81285	.000	-6.7961	-1.6544
	7	-3.60021 [*]	.81285	.001	-6.1711	-1.0294
	8	-1.79736	.81285	.406	-4.3682	.7735
	9	-2.29236	.86650	.180	-5.0329	.4482
4	1	2.19794	.82833	.177	4219	4.8178
	2	1.17673	.82833	.888	-1.4431	3.7966
	3	1.84551	.82833	.395	7743	4.4653
	5	.33244	.82833	1.000	-2.2874	2.9523
	6	-2.37970	.82833	.107	-4.9995	.2401
	7	-1.75470	.82833	.466	-4.3745	.8651
	8	.04815	.82833	1.000	-2.5717	2.6680
	9	44685	.88104	1.000	-3.2334	2.3397
5	1	1.86550	.81285	.354	7054	4.4364
	2	.84429	.81285	.981	-1.7266	3.4151
	3	1.51307	.81285	.641	-1.0578	4.0839
	4	33244	.82833	1.000	-2.9523	2.2874
	6	-2.71214	.81285	.030	-5.2830	1413
	7	-2.08714	.81285	.212	-4.6580	.4837
	8	28429	.81285	1.000	-2.8551	2.2866

^{*.} The mean difference is significant at the 0.05 level.

	4.0.4		Tukey HSD	-		
(I) Location	(J) Location				95% Confide	ence Interval
		Mean Difference (I-				
		J)	Std. Error	Sig.	Lower Bound	Upper Bound
5	9	77929	.86650	.993	-3.5198	1.9613
6	1	4.57764	.81285	.000	2.0068	7.1485
	2	3.55643 [*]	.81285	.001	.9856	6.1273
	3	4.22521 [*]	.81285	.000	1.6544	6.7961
	4	2.37970	.82833	.107	2401	4.9995
	5	2.71214 [*]	.81285	.030	.1413	5.2830
	7	.62500	.81285	.997	-1.9459	3.1959
	8	2.42786	.81285	.080	1430	4.9987
	9	1.93286	.86650	.393	8077	4.6734
7	1	3.95264	.81285	.000	1.3818	6.5235
	2	2.93143	.81285	.013	.3606	5.5023
	3	3.60021	.81285	.001	1.0294	6.1711
	4	1.75470	.82833	.466	8651	4.3745
	5	2.08714	.81285	.212	4837	4.6580
	6	62500	.81285	.997	-3.1959	1.9459
	8	1.80286	.81285	.401	7680	4.3737
	9	1.30786	.86650	.849	-1.4327	4.0484
8	1	2.14979	.81285	.180	4211	4.7206
	2	1.12857	.81285	.900	-1.4423	3.6994
	3	1.79736	.81285	.406	7735	4.3682
	4	04815	.82833	1.000	-2.6680	2.5717
	5	.28429	.81285	1.000	-2.2866	2.8551
	6	-2.42786	.81285	.080	-4.9987	.1430
	7	-1.80286	.81285	.401	-4.3737	.7680
	9	49500	.86650	1.000	-3.2355	2.2455

^{*.} The mean difference is significant at the 0.05 level.

PCB conc. Tukey HSD

(I) Location	(J) Location				95% Confidence Interval		
	•	Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound	
9	1	2.64479	.86650	.067	0958	5.3853	
	2	1.62357	.86650	.633	-1.1170	4.3641	
	3	2.29236	.86650	.180	4482	5.0329	
	4	.44685	.88104	1.000	-2.3397	3.2334	
	5	.77929	.86650	.993	-1.9613	3.5198	
	6	-1.93286	.86650	.393	-4.6734	.8077	
	7	-1.30786	.86650	.849	-4.0484	1.4327	
	8	.49500	.86650	1.000	-2.2455	3.2355	

Homogeneous Subsets

PCB conc.

Tukey HSD^{a,b}

Location		Subset for alpha = 0.05					
	N	1	2	3	4		
1	14	1.6952					
3	14	2.0476	2.0476				
2	14	2.7164	2.7164				
5	14	3.5607	3.5607	3.5607			
8	14	3.8450	3.8450	3.8450	3.8450		
4	13	3.8932	3.8932	3.8932	3.8932		
9	11		4.3400	4.3400	4.3400		
7	14			5.6479	5.6479		
6	14				6.2729		
Sig.		.177	.137	.234	.092		

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 13.476.

Catfish Locations 1 through 8

GET

FILE='E:\Anniston ANOVA Runs\anniston-pcbs anova-1through9catfish.sav'. DATASET NAME DataSet2 WINDOW=FRONT.

SAVE OUTFILE='E:\Anniston ANOVA Runs\anniston-pcbs anova-1through9catfish.sav' /COMPRESSED.

SAVE OUTFILE='E:\Anniston ANOVA Runs\anniston-pcbs anova-1through9catfish.sav' /COMPRESSED.

ONEWAY PCBconc BY Location /STATISTICS DESCRIPTIVES /MISSING ANALYSIS /POSTHOC=TUKEY ALPHA(0.05).

Oneway

[DataSet2] E:\Anniston ANOVA Runs\anniston-pcbs anova-1through9catfish.sav

Descriptives

PCB conc.

					95% Confidence Interval for Mean	
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound
1	14	2.855	1.4057	.3757	2.043	3.667
2	14	2.017	1.3124	.3507	1.259	2.775
3	14	2.797	2.8229	.7545	1.167	4.427
4	14	3.390	2.2499	.6013	2.091	4.689
5	14	7.793	8.2340	2.2006	3.039	12.547
6	14	5.424	3.3619	.8985	3.482	7.365
7	14	5.431	2.8859	.7713	3.765	7.098
8	14	3.810	2.9280	.7825	2.119	5.501
Total	112	4.190	4.0485	.3825	3.432	4.948

Descriptives

PCB conc.

	Minimum	Maximum
1	.4	5.4
2	.7	5.8
3	.2	10.8
4	1.4	9.7
5	.9	34.0
6	2.1	15.5
7	.2	11.8
8	.5	11.8
Total	.2	34.0

ANOVA

PCB conc.

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	353.818	7	50.545	3.587	.002
Within Groups	1465.517	104	14.092		
Total	1819.335	111			

Post Hoc Tests

(I) Location	(J) Location		rukey 110D		95% Confide	ence Interval
		Mean				
		Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
1	2	.8379	1.4188	.999	-3.551	5.227
·	3	.0581	1.4188	1.000	-4.331	4.447
	4	5350	1.4188	1.000	-4.924	3.854
	5	-4.9379 [*]	1.4188	.016	-9.327	549
	6	-2.5686	1.4188	.615	-6.958	1.821
	7	-2.5764	1.4188	.611	-6.966	1.813
	8	9550	1.4188	.998	-5.344	3.434
2	1	8379	1.4188	.999	-5.227	3.551
	3	7797	1.4188	.999	-5.169	3.609
	4	-1.3729	1.4188	.978	-5.762	3.016
	5	-5.7758 [*]	1.4188	.002	-10.165	-1.387
	6	-3.4064	1.4188	.252	-7.796	.983
	7	-3.4143	1.4188	.249	-7.803	.975
	8	-1.7929	1.4188	.910	-6.182	2.596
3	1	0581	1.4188	1.000	-4.447	4.331
	2	.7797	1.4188	.999	-3.609	5.169
	4	5931	1.4188	1.000	-4.982	3.796
	5	-4.9961 [*]	1.4188	.014	-9.385	607
	6	-2.6267	1.4188	.587	-7.016	1.762
	7	-2.6346	1.4188	.583	-7.024	1.755
	8	-1.0131	1.4188	.996	-5.402	3.376
4	1	.5350	1.4188	1.000	-3.854	4.924
	2	1.3729	1.4188	.978	-3.016	5.762
	3	.5931	1.4188	1.000	-3.796	4.982
	5	-4.4029 [*]	1.4188	.049	-8.792	014
	6	-2.0336	1.4188	.840	-6.423	2.356
	7	-2.0414	1.4188	.837	-6.431	2.348
	8	4200	1.4188	1.000	-4.809	3.969

^{*.} The mean difference is significant at the 0.05 level.

PCB conc. Tukey HSD

(i) Location (J) Location 1 2 3	Mean Difference (I- J) 4.9379 5.7758	Std. Error 1.4188	Sig.	95% Confide	Upper Bound
5	2	Difference (I- J) 4.9379			Lower Bound	Unner Bound
5	2	4.9379			Lower Bound	
J	2		1.4100	046		
		5.7750	1.4188	.016 .002	.549	9.327
	3	4.9961	1.4188		1.387	10.165
	4	4.4029*		.014	.607	9.385
	6		1.4188	.049	.014	8.792
		2.3694	1.4188	.706	-2.020	6.759
	7	2.3615	1.4188	.710	-2.028	6.751
	8	3.9829	1.4188	.104	406	8.372
6	1	2.5686	1.4188	.615	-1.821	6.958
	2	3.4064	1.4188	.252	983	7.796
	3	2.6267	1.4188	.587	-1.762	7.016
	4	2.0336	1.4188	.840	-2.356	6.423
	5	-2.3694	1.4188	.706	-6.759	2.020
	7	0079	1.4188	1.000	-4.397	4.381
	8	1.6136	1.4188	.947	-2.776	6.003
7	1	2.5764	1.4188	.611	-1.813	6.966
	2	3.4143	1.4188	.249	975	7.803
	3	2.6346	1.4188	.583	-1.755	7.024
	4	2.0414	1.4188	.837	-2.348	6.431
	5	-2.3615	1.4188	.710	-6.751	2.028
	6	.0079	1.4188	1.000	-4.381	4.397
	8	1.6214	1.4188	.946	-2.768	6.011
8	1	.9550	1.4188	.998	-3.434	5.344
	2	1.7929	1.4188	.910	-2.596	6.182
	3	1.0131	1.4188	.996	-3.376	5.402
	4	.4200	1.4188	1.000	-3.969	4.809
	5	-3.9829	1.4188	.104	-8.372	.406
	6	-1.6136	1.4188	.947	-6.003	2.776
	7	-1.6214	1.4188	.946	-6.011	2.768

^{*.} The mean difference is significant at the 0.05 level.

Homogeneous Subsets

PCB conc.

Tukey HSD^a

Location		Subset for alpha = 0.05		
	N	1	2	
2	14	2.017		
3	14	2.797		
1	14	2.855		
4	14	3.390		
8	14	3.810	3.810	
6	14	5.424	5.424	
7	14	5.431	5.431	
5	14		7.793	
Sig.		.249	.104	

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 14.000.

Panfish Locations 1 through 9

ONEWAY PCBconc BY Location /STATISTICS DESCRIPTIVES /MISSING ANALYSIS /POSTHOC=TUKEY ALPHA(0.05).

Oneway

[DataSet3] E:\Anniston ANOVA Runs\anniston-pcbs anova-1through9crsf.sav

Descriptives

PCB conc.

					95% Confiden Me	
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound
1	14	1.6986	1.11818	.29885	1.0530	2.3442
2	14	1.6793	1.11876	.29900	1.0333	2.3252
3	14	.9932	.36483	.09751	.7826	1.2039
4	15	2.0740	.93539	.24152	1.5560	2.5920
5	14	2.1536	.82421	.22028	1.6777	2.6295
6	14	2.4807	1.10252	.29466	1.8441	3.1173
7	14	4.2243	2.95409	.78951	2.5186	5.9299
8	14	3.0950	2.47049	.66027	1.6686	4.5214
9	14	2.7679	1.01136	.27030	2.1839	3.3518
Total	127	2.3496	1.72874	.15340	2.0461	2.6532

Descriptives

PCB conc.

	Minimum	Maximum
1	.27	3.89
2	.45	4.40
3	.24	1.69
4	1.03	4.35
5	1.20	4.20
6	.43	4.84
7	1.00	10.40
8	.97	10.30
9	.76	4.30
Total	.24	10.40

ANOVA

PCB conc.

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	99.329	8	12.416	5.285	.000
Within Groups	277.225	118	2.349		
Total	376.554	126			

Post Hoc Tests

Multiple Comparisons

(I) Location	(J) Location				95% Confide	ence Interval
		Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
1	2	.01929	.57933	1.000	-1.8115	1.8501
	3	.70536	.57933	.951	-1.1254	2.5361
	4	37543	.56959	.999	-2.1754	1.4246
	5	45500	.57933	.997	-2.2858	1.3758
	6	78214	.57933	.914	-2.6129	1.0486
	7	-2.52571 [*]	.57933	.001	-4.3565	6949
	8	-1.39643	.57933	.288	-3.2272	.4344
	9	-1.06929	.57933	.652	-2.9001	.7615
2	1	01929	.57933	1.000	-1.8501	1.8115
	3	.68607	.57933	.958	-1.1447	2.5169
	4	39471	.56959	.999	-2.1947	1.4053
	5	47429	.57933	.996	-2.3051	1.3565
	6	80143	.57933	.902	-2.6322	1.0294
	7	-2.54500 [*]	.57933	.001	-4.3758	7142
	8	-1.41571	.57933	.271	-3.2465	.4151

^{*.} The mean difference is significant at the 0.05 level.

			Tukey HSD			
(I) Location	(J) Location				95% Confide	ence Interval
		Mean Difference (I-				
		J)	Std. Error	Sig.	Lower Bound	Upper Bound
2	9	-1.08857	.57933	.629	-2.9194	.7422
3	1	70536	.57933	.951	-2.5361	1.1254
	2	68607	.57933	.958	-2.5169	1.1447
	4	-1.08079	.56959	.617	-2.8808	.7192
	5	-1.16036	.57933	.545	-2.9911	.6704
	6	-1.48750	.57933	.212	-3.3183	.3433
	7	-3.23107	.57933	.000	-5.0619	-1.4003
	8	-2.10179 [*]	.57933	.012	-3.9326	2710
	9	-1.77464	.57933	.065	-3.6054	.0561
4	1	.37543	.56959	.999	-1.4246	2.1754
	2	.39471	.56959	.999	-1.4053	2.1947
	3	1.08079	.56959	.617	7192	2.8808
	5	07957	.56959	1.000	-1.8796	1.7204
	6	40671	.56959	.999	-2.2067	1.3933
	7	-2.15029 [*]	.56959	.007	-3.9503	3503
	8	-1.02100	.56959	.687	-2.8210	.7790
	9	69386	.56959	.951	-2.4939	1.1062
5	1	.45500	.57933	.997	-1.3758	2.2858
	2	.47429	.57933	.996	-1.3565	2.3051
	3	1.16036	.57933	.545	6704	2.9911
	4	.07957	.56959	1.000	-1.7204	1.8796
	6	32714	.57933	1.000	-2.1579	1.5036
	7	-2.07071 [*]	.57933	.014	-3.9015	- 2399
	8	94143	.57933	.789	-2.7722	.8894

^{*.} The mean difference is significant at the 0.05 level.

(I) Location	(J) Location				95% Confidence Interval		
•		Mean					
		Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound	
5	9	61429	.57933	.979	-2.4451	1.2165	
6	1	.78214	.57933	.914	-1.0486	2.6129	
	2	.80143	.57933	.902	-1.0294	2.6322	
	3	1.48750	.57933	.212	3433	3.3183	
	4	.40671	.56959	.999	-1.3933	2.2067	
	5	.32714	.57933	1.000	-1.5036	2.1579	
	7	-1.74357	.57933	.075	-3.5744	.0872	
	8	61429	.57933	.979	-2.4451	1.2165	
	9	28714	.57933	1.000	-2.1179	1.5436	
7	1	2.52571	.57933	.001	.6949	4.3565	
	2	2.54500*	.57933	.001	.7142	4.3758	
	3	3.23107*	.57933	.000	1.4003	5.0619	
	4	2.15029 [*]	.56959	.007	.3503	3.9503	
	5	2.07071	.57933	.014	.2399	3.9015	
	6	1.74357	.57933	.075	0872	3.5744	
	8	1.12929	.57933	.581	7015	2.9601	
	9	1.45643	.57933	.236	3744	3.2872	
8	1	1.39643	.57933	.288	4344	3.2272	
	2	1.41571	.57933	.271	4151	3.2465	
	3	2.10179 [*]	.57933	.012	.2710	3.9326	
	4	1.02100	.56959	.687	7790	2.8210	
	5	.94143	.57933	.789	8894	2.7722	
	6	.61429	.57933	.979	-1.2165	2.4451	
	7	-1.12929	.57933	.581	-2.9601	.7015	
	9	.32714	.57933	1.000	-1.5036	2.1579	

^{*.} The mean difference is significant at the 0.05 level.

Multiple Comparisons

PCB conc. Tukey HSD

(I) Location	(J) Location				95% Confidence Interval	
		Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
9	1	1.06929	.57933	.652	7615	2.9001
	2	1.08857	.57933	.629	7422	2.9194
	3	1.77464	.57933	.065	0561	3.6054
	4	.69386	.56959	.951	-1.1062	2.4939
	5	.61429	.57933	.979	-1.2165	2.4451
	6	.28714	.57933	1.000	-1.5436	2.1179
	7	-1.45643	.57933	.236	-3.2872	.3744
	8	32714	.57933	1.000	-2.1579	1.5036

Homogeneous Subsets

PCB conc.

Tukey HSD^{a,b}

Location		Subset for alpha = 0.05		
	Ŋ	1	2	3
3	14	.9932		
2	14	1.6793	1.6793	
1	14	1.6986	1.6986	
4	15	2.0740	2.0740	
5	14	2.1536	2.1536	
6	14	2.4807	2.4807	2.4807
9	14	2.7679	2.7679	2.7679
8	14		3.0950	3.0950
7	14			4.2243
Sig.		.063	.266	.073

a. Uses Harmonic Mean Sample Size = 14.104.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Bass Location 5 Grouping Check

Oneway

[DataSet1] C:\Users\Kristina Early\Documents\anniston-pcbs anova-bassgroupingsl.sav

Descriptives

PCB conc 95% Confidence Interval for Mean Ν Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum 5 14 3.5607 1.24844 .33366 2.8399 4.2815 1.64 6.07 34 27 2.9362 2.18819 .42112 2.0706 3.8018 .33 11.80 69 5.0653 2.70178 53 .37112 4.3206 5.8100 1.63 14.90 Total 94 4.2297 2.56691 .26476 3.7039 4.7554 .33 14.90

ANOVA

PCB conc					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	88.443	2	44.222	7.675	.001
Within Groups	524.334	91	5.762		
Total	612.778	93			

Post Hoc Tests

Multiple Comparisons

PCB conc Tukev HSD

T UNCV		,			95% Confide	nce Interval
(i) Locat ion	(J) Locat ion	Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
5	34	.62449	.79055	.710	-1.2591	2.5081
	69	-1.50457	.72130	.098	-3.2232	.2141
34	5	62449	.79055	.710	-2.5081	1.2591
	69	-2.12906*·	.56756	.001	-3.4814	7768
69	5	1.50457	.72130	.098	2141	3.2232
	34	2.12906*	.56756	.001	.7768	3.4814

^{*.} The mean difference is significant at the 0.05 level.

Tukev HSD

UNCY (
Locat		Subset for alpha = 0.0		
ion	N	11	2	
34	27	2.9362		
5	14	3.5607	3.5607	
69	53		5.0653	
Sig.		.646	.085	

All Species Final Groupings Check

Oneway

[DataSet1] C:\Users\Kristina Early\Documents\anniston-pcbs anova-finalgroupingsall.sav

Descriptives

_pcb_concentration

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
12	84	2.1103	1.44819	.15801	1.7960	2.4246	.22	9.47
34	84	2.5108	2.08215	.22718	2.0590	2.9627	.24	11.80
59	193	4.3462	3.45413	.24863	3.8558	4.8366	.23	34.00
Total	361	3.3989	2.98310	.15701	3.0901	3.7076	.22	34.00

ANOVA

pcb concentration

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	378.938	2	189.469	24.014	.000
Within Groups	2824.658	358	7.890		
Total	3203.596	360			

Post Hoc Tests

Multiple Comparisons

pcb concentration Tukev HSD

					95% Confidence Interval	
(l) locati on	(J) locati on	Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
12	34	40055	.43343	.625	-1.4206	.6195
	59	-2.23595*	.36717	.000	-3.1001	-1.3718
34	12	.40055	.43343	.625	6195	1.4206
	59	-1.83540*	.36717	.000	-2.6995	9713
59	12	2.23595*	.36717	.000	1.3718	3.1001
	34	1.83540*	.36717	.000	.9713	2.6995

^{*.} The mean difference is significant at the 0.05 level.

Tukev HSD

	Subset for alpha = 0.05		
locati on	N	1	2
12	84	2.1103	
34	84	2.5108	
59	193		4.3462
Sig.		.561	1.000

Oneway

[DataSet1] C:\Users\Kristina Early\Documents\anniston-pcbs anova-finalgroupingsbass.sav

Descriptives

ocb concentration 95% Confidence Interval for Ν Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum 12 28 2.2058 1.72513 .32602 1.5369 2.8748 .22 9.47 34 27 2.9362 2.18819 .42112 2.0706 3.8018 .33 11.80 59 67 4.7509 2.53733 .30998 4.1320 5.3698 1.63 14.90 Total 122 3.7652 2.54139 .23009 3.3097 4.2207 .22 14.90

ANOVA

pcb concentration					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	151.738	2	75.869	14.336	.000
Within Groups	629.758	119	5.292		
Total	781.496	121			

Post Hoc Tests

Multiple Comparisons

pcb concentration

ukev	100				95% Confide	nce Interval
(l) locati on	(J) locati on	Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
12	34	- 73040	.62049	.469	-2.2031	.7423
	59	-2.54507*	.51768	.000	-3.7737	-1.3164
34	12	.73040	.62049	.469	7423	2.2031
	59	-1.81467*	.52439	.002	-3.0593	5701
59	12	2.54507*	.51768	.000	1.3164	3.7737
	34	1.81467*	.52439	.002	.5701	3.0593

^{*.} The mean difference is significant at the 0.05 level.

Tukev HSD

LUNGY	IUL.				
locati		Subset for alpha = 0.05			
on	N	1	2		
12	28	2.2058			
34	27	2.9362			
59	67		4.7509		
Sig.		.391	1.000		

Oneway

[DataSet1] C:\Users\Kristina Early\Documents\anniston-pcbs anova-finalgroupingscat.sav

Descriptives

pcb concentration

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
12	28	2.436	1.4010	.2648	1.893	2.979	.4	5.8
34	28	3.093	2.5230	.4768	2.115	4.072	.2	10.8
59	56	5.614	4.9746	.6648	4.282	6.947	.2	34.0
Total	112	4.190	4.0485	.3825	3.432	4.948	.2	34.0

ANOVA

pcb concentration

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	233.437	2	116.718	8.022	.001
Within Groups	1585.898	109	14.550		
Total	1819.335	. 111			

Post Hoc Tests

Multiple Comparisons

pcb concentration Tukev HSD

					95% Confidence Interval			
(i) locati on	(J) locati on	Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound		
12	34	6574	1.0194	.796	-3.080	1.765		
	59	-3.1784*	.8829	.001	-5.276	-1.081		
34	12	.6574	1.0194	.796	-1.765	3.080		
	59	-2.5211*	.8829	.014	-4.619	423		
59	12	3.1784*	.8829	.001	1.081	5.276		
	34	2.5211*	.8829	.014	.423	4.619		

^{*.} The mean difference is significant at the 0.05 level.

Tukev H	SD					
locati	,	Subset for alpha = 0.05				
on	N	11	2			
12	28	2.436				
34	28	3.093				
59	56		5.614			
Sig.		.760	1.000			

Panfish Final Groupings Check

Oneway

[DataSet1] C:\Users\Kristina Early\Documents\anniston-pcbs anova-finalgroupingssfcr.sav

Descriptives

pcb concentration

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound Upper Bound		Minimum	Maximum
12	28	1.6889	1.09760	.20743	1.2633	2.1145	.27	4.40
34	29	1.5522	.89519	.16623	1.2117	1.8928	.24	4.35
59	70	2.9443	1.96407	.23475	2.4760	3.4126	.43	10.40
Total	127	2.3496	1.72874	.15340	2.0461	2.6532	.24	10.40

ANOVA

pcb concentration

DOD CONDENIUMON	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	55.415	2	27.707	10.699	.000
Within Groups	321.139	124	2.590		
Tota!	376.554	126			

Post Hoc Tests

Multiple Comparisons

pcb concentration Tukey HSD

Tukev	IGD				95% Confidence Interval			
(I) locati on	(J) locati on	Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound		
12	34	.13669	.42638	.945	8748	1.1481		
	59	-1.25536 [*]	.35985	.002	-2.1090	4017		
34	12	13669	.42638	.945	-1.1481	.8748		
	59	-1.39204*	.35539	.000	-2.2351	5490		
59	12	1.25536*	.35985	.002	.4017	2.1090		
	34	1.39204*	.35539	.000	.5490	2.2351		

^{*.} The mean difference is significant at the 0.05 level.

Tuke	ĽΥ	ISD

locati		Subset for a	ipha = 0.05
on	Ŋ	11	2
34	29	1.5522	
12	28	1.6889	:
59	70		2.9443
Sig.		.932	1.000

APPENDIX D PCB DIOXIN-LIKE CONGENER REGRESSION ANALYSIS

APPENDIX D

DIOXIN LIKE PCB CONGENER REGRESSION ANALYSIS

1. PURPOSE

Regression models can be used to predict one variable from one or more other variables. Regression models, in this case, allow for a prediction of one contaminant concentration in soil based on a known concentration of another contaminant in soil at a particular location. As part of the overall evaluation of OU-4, floodplain soil was analyzed for total PCBs (represented as the sum of Aroclors). Approximately 10% of these samples were also analyzed for dioxin-like PCB congeners, but did not include any soil samples in the planned 10% sampling frequency that had tPCB concentrations greater than 5 mg/kg due to concerns about analytical interferences at higher tPCB concentrations. As a result of having only 10% of the soil samples available for dioxin-like PCB congeners EPC development, as well as having data in a limited concentration range, a robust PCB congener data set was not available to calculate EPCs and risks for all exposure units (EUs). Linear regression models were developed to predict dioxin-like PCB congener concentrations from tPCB concentrations to provide a more robust data base and to allow for an estimation of dioxin-like PCB congener concentrations at each EU.

2. REGRESSION APPROACH

This section describes the selection of congener data used in the regression models, the regression model used in the analysis, and the use of the predicted information in the human health risk assessment (HHRA).

2.1 DATA FOR REGRESSION MODELS

Regression models were developed using the subset of floodplain soil data from OU-4 that were analyzed for both tPCBs (sum of Aroclors) and dioxin-like PCB congeners. These data are presented on Table D-1. As shown on the table, most of the congeners had a large number of samples that were nondetect. The frequency of detection (FOD) for each of the congeners ranged from 0 (PCB-81, PCB-157, and PCB-169) to 88% or higher (PCB-105 at 92%, PCB-118

at 96%, and PCB-156 at 88%). The FOD for tPCBs in theses samples was 95%. A regression analysis performed on congeners with low FODs would result in very uncertain predicted congener values, and because of this, only data from the PCB-105, PCB-118, and PCB-156 were included in the analysis. Results for duplicate samples were averaged prior to conducting the analyses.

2.2 REGRESSION MODEL DEVELOPMENT

A simple regression model was used to perform all regression analyses. Figures D-1 through D-3 present the plots of the linear regression model for congeners PCB-105, PCB-118, and PCB-156. Each plot shows the 95% confidence intervals related to the slope of the regression line along with other relevant statistical parameters. For all three congeners, the r² values were approximately 0.9 and the p-values were < 0.05. Table D-2 presents the model and the results. This suggests that a strong correlation exists between total PCBs and these three congeners in this particular data set. This information was used to develop predicted concentrations for each of the three congeners in each EU.

2.3 USE OF DIOXIN-LIKE PCB CONGENER DATA IN HHRA

The regression models were used to predict the dioxin-like PCB congener concentrations for PCB-105, PCB-118, and PCB-156 based on the calculated tPCB exposure point concentration (EPC) at each EU. The estimated congener concentrations were multiplied by their respective toxic equivalency factor (TEF) to result in a TEQ for each congener. The TEQs from the three congeners were summed to calculate the total dioxin-like PCB congener TEQ for the EU, which represents the dioxin-like PCB congener EPC. The total TEQ concentrations were applied to the exposure scenarios evaluated for the EU and risks were calculated. It should be noted that evaluating only three of the congeners is likely to underestimate risk to some degree, however given the low FOD for the other congeners, this underestimate is unlikely to be significant.

Table D-1

Available Data for PCB Congener vs. Total PCB Regression Analyses for Floodplain Soil

Anniston PCB Site

OU-4

Sample ID	Total PCBs	PCB-77	PCB-81	PCB-105	PCB-114	PCB-118	PCB-123	PCB-126	PCB-156	PCB-157	PCB-167	PCB-169	PCB-189
Frequency of	TOTAL FORS	FCB-II	FCB-01	F CB-103	F CB-114	F C D-110	F GB-123	FGB-120	FCB-130	FCB-137	FCB-107	FCD-109	FCB-109
Detection Detection	129/136	12/136	0/136	125/136	1/136	130/136	3/136	11/136	119/136	0/136	7/136	0/136	1/136
C70516	0.1 Y	0.0015 N	0.0029 N	0.0031 Y	0.0015 N	0.0073 Y	0.0015 N	0.0015 N	0.0023 Y	0.0015 N	0.0029 N	0.0015 N	0.0015 N
C70517	0.037 N	0.0015 N	0.0029 N	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.0029 N	0.0015 N	0.0015 N
C70531	0.035 N	0.0014 N	0.0028 N	0.0014 N	0.0014 N	0.0014 N	0.0014 N	0.0014 N	0.0014 N	0.0014 N	0.0028 N	0.0014 N	0.0014 N
C70548	0.078 Y	0.0015 N	0.003 N	0.0029 Y	0.0015 N	0.0057 Y	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.003 N	0.0015 N	0.0015 N
C70549	0.119 Y	0.0015 N	0.0029 N	0.0028 Y	0.0015 N	0.0054 Y	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.0029 N	0.0015 N	0.0015 N
C70562	0.038 N	0.0015 N	0.003 N	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.003 N	0.0015 N	0.0015 N
C70579	0.332 Y	0.0014 N	0.0029 N	0.0068 Y	0.0014 N	0.014 Y	0.0014 N	0.0027 Y	0.0044 Y	0.0014 N	0.0029 N	0.0014 N	0.0014 N
C70580	0.188 Y	0.0026 Y	0.0029 N	0.0022 Y	0.0014 N	0.0049 Y	0.0014 N	0.0014 N	0.0016 Y	0.0014 N	0.0029 N	0.0014 N	0.0014 N
C70596	0.26 Y	0.0014 N	0.0029 N	0.0047 Y	0.0014 N	0.0095 Y	0.0014 N	0.002 Y	0.0019 Y	0.0014 N	0.0029 N	0.0014 N	0.0014 N
C70610	0.363 Y	0.0015 N	0.003 N	0.0047 Y	0.0015 N	0.0097 Y	0.0015 N	0.0025 Y	0.0027 Y	0.0015 N	0.003 N	0.0015 N	0.0015 N
C70611	0.087 Y	0.0015 N	0.003 N	0.0021 Y	0.0015 N	0.0043 Y	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.003 N	0.0015 N	0.0015 N
C70627	0.075 Y	0.0015 N	0.003 N	0.0023 Y	0.0015 N	0.0031 Y	0.0041 Y	0.0015 N	0.0015 N	0.0015 N	0.0031 Y	0.0015 N	0.0015 N
C70641	3.62 Y	0.015 N	0.029 N	0.12 Y	0.015 N	0.23 Y	0.015 N	0.044 Y	0.042 Y	0.015 N	0.029 N	0.015 N	0.015 N
C70642	2.01 Y	0.22 Y	0.015 N	0.065 Y	0.0073 N	0.14 Y	0.0073 N	0.022 Y	0.025 Y	0.0073 N	0.015 N	0.0073 N	0.0073 N
C70659	0.035 N	0.0014 N	0.0028 N	0.0014 N	0.0014 N	0.0014 N	0.0014 N	0.0014 N	0.0014 N	0.0014 N	0.0028 N	0.0014 N	0.0014 N
C70673	0.037 N	0.0015 N	0.0029 N	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.0029 N	0.0015 N	0.0015 N
C70674	0.036 N	0.0014 N	0.0029 N	0.0014 N	0.0014 N	0.0014 N	0.0014 N	0.0014 N	0.0014 N	0.0014 N	0.0029 N	0.0014 N	0.0014 N
C70692	3.2 Y	0.31 Y	0.03 N	0.077 Y	0.015 N	0.16 Y	0.023 Y	0.039 Y	0.029 Y	0.015 N	0.03 N	0.015 N	0.015 N
C70693	3.5 Y	0.32 Y	0.027 N	0.081 Y	0.014 N	0.17 Y	0.023 Y	0.041 Y	0.031 Y	0.014 N	0.027 N	0.014 N	0.014 N
C70703	1.21 Y	0.0029 N	0.0059 N	0.025 Y	0.0029 N	0.046 Y	0.0029 N	0.0093 Y	0.0079 Y	0.0029 N	0.0059 N	0.0029 N	0.0029 N
C70704	5 Y	0.015 N	0.03 N	0.078 Y	0.015 N	0.15 Y	0.015 N	0.039 Y	0.03 Y	0.015 N	0.03 N	0.015 N	0.015 N
C70724	0.166 Y	0.0086 Y	0.0031 N	0.0037 Y	0.0016 N	0.007 Y	0.0016 N	0.0016 N	0.0016 N	0.0016 N	0.0031 N	0.0016 N	0.0016 N
C70734	0.407 Y	0.018 Y	0.0031 N	0.0074 Y	0.0015 N	0.015 Y	0.0015 N	0.0015 N	0.0031 Y	0.0015 N	0.0031 N	0.0015 N	0.0015 N
C70735	0.35 Y	0.0015 N	0.0031 N	0.0062 Y	0.0015 N	0.013 Y	0.0015 N	0.0031 Y	0.0025 Y	0.0015 N	0.0031 N	0.0015 N	0.0015 N
C70736	0.038 N	0.003 Y	0.003 N	0.0015 N	0.0015 N	0.0024 Y	0.0015 N	0.0015 N	0.0015 N	0.0015 N	0.003 N	0.0015 N	0.0015 N
C70821	5.3 Y	0.017 N	0.034 N	0.1 Y	0.017 N	0.2 Y	0.017 N	0.017 N	0.035 Y	0.017 N	0.034 N	0.017 N	0.017 N
C70822	0.62 Y	0.0017 N	0.0034 N	0.01 Y	0.0017 N	0.021 Y	0.0017 N	0.0017 N	0.0038 Y	0.0017 N	0.0034 N	0.0017 N	0.0017 N
C70831	0.56 Y	0.0036 N	0.0073 N	0.0084 Y	0.0036 N	0.018 Y	0.0036 N	0.0036 N	0.004 Y	0.0036 N	0.0073 N	0.0036 N	0.0036 N
C70845	1.83 Y	0.0061 N	0.012 N	0.033 Y	0.0061 N	0.063 Y	0.0061 N	0.0061 N	0.011 Y	0.0061 N	0.012 N	0.0061 N	0.0061 N
C70846	1.05 Y	0.0031 N	0.0063 N	0.021 Y	0.0031 N	0.04 Y	0.0031 N	0.0031 N	0.0067 Y	0.0031 N	0.0063 N	0.0031 N	0.0031 N
C70902	1.76 Y	0.0056 N	0.011 N	0.049 Y	0.0056 N	0.081 Y	0.0056 N	0.0056 N	0.016 Y	0.0057 Y	0.011 N	0.0056 N	0.0056 N
C70903	3.6 Y	0.0092 N	0.018 N	0.12 Y	0.0092 N	0.17 Y	0.0092 N	0.0092 N	0.031 Y	0.01 Y	0.018 N	0.0092 N	0.0092 N
C70910	0.57 Y	0.0017 N	0.0033 N	0.012 Y	0.0017 N	0.024 Y	0.0017 N	0.0017 N	0.0045 Y	0.0017 N	0.0033 N	0.0017 N	0.0017 N
C70911	0.76 Y	0.0033 N	0.0067 N	0.015 Y	0.0033 N	0.029 Y	0.0033 N	0.0033 N	0.0055 Y	0.0033 N	0.0067 N	0.0033 N	0.0033 N
C70914	3.82 Y	0.0067 N	0.013 N	0.093 Y	0.0067 N	0.19 Y	0.0067 N	0.0067 N	0.029 Y	0.01 Y	0.014 Y	0.0067 N	0.0067 N
C70938	3.66 Y	0.0086 N	0.017 N	0.083 Y	0.0086 N	0.14 Y	0.0086 N	0.0086 N	0.027 Y	0.0086 Y	0.017 N	0.0086 N	0.0086 N
C70944	2.33 Y	0.007 N	0.014 N	0.053 Y	0.007 N	0.096 Y	0.007 N	0.007 N	0.021 Y	0.007 N	0.014 N	0.007 N	0.007 N

Table D-1

Available Data for PCB Congener vs. Total PCB Regression Analyses for Floodplain Soil

Anniston PCB Site

OU-4

Sample ID	Total PCBs	PCB-77	PCB-81	PCB-105	PCB-114	PCB-118	PCB-123	PCB-126	PCB-156	PCB-157	PCB-167	PCB-169	PCB-189
C70947	3.54 Y	0.0083 N	0.017 N	0.072 Y	0.0083 N	0.13 Y	0.0083 N	0.0083 N	0.026 Y	0.0089 Y	0.017 N	0.0083 N	0.0083 N
C70954	0.8 Y	0.06 Y	0.0069 N	0.016 Y	0.0035 N	0.028 Y	0.0035 N	0.0035 N	0.005 Y	0.0035 N	0.0069 N	0.0035 N	0.0035 N
C70957	1.08 Y	0.0034 N	0.0069 N	0.017 Y	0.0034 N	0.034 Y	0.0034 N	0.0034 N	0.0059 Y	0.0034 N	0.0069 N	0.0034 N	0.0034 N
C70972	0.856 Y	0.0018 N	0.0035 N	0.015 Y	0.0018 N	0.029 Y	0.0018 N	0.0018 N	0.005 Y	0.0018 N	0.0035 N	0.0018 N	0.0018 N
C70986	0.91 Y	0.0033 N	0.0066 N	0.013 Y	0.0033 N	0.027 Y	0.0033 N	0.0033 N	0.0053 Y	0.0033 N	0.0066 N	0.0033 N	0.0033 N
C71004	4.72 Y	0.012 N	0.024 N	0.14 Y	0.012 N	0.28 Y	0.012 N	0.012 N	0.048 Y	0.017 Y	0.024 N	0.012 N	0.012 N
C71016	2.26 Y	0.007 N	0.014 N	0.047 Y	0.007 N	0.089 Y	0.007 N	0.007 N	0.018 Y	0.007 N	0.014 N	0.007 N	0.007 N
C71034	1.42 Y	0.0016 N	0.0032 N	0.028 Y	0.0016 N	0.049 Y	0.0016 N	0.0016 N	0.0089 Y	0.003 Y	0.0041 Y	0.0016 N	0.0016 N
C71071	0.96 Y	0.0032 N	0.0064 N	0.017 Y	0.0032 N	0.035 Y	0.0032 N	0.0032 N	0.0066 Y	0.0032 N	0.0064 N	0.0032 N	0.0032 N
C71082	0.658 Y	0.0018 N	0.0037 N	0.015 Y	0.0018 N	0.027 Y	0.0018 N	0.0018 N	0.0058 Y	0.0022 Y	0.0037 N	0.0018 N	0.0018 N
C71088	0.62 Y	0.0034 N	0.0068 N	0.012 Y	0.0034 N	0.024 Y	0.0034 N	0.0034 N	0.0063 Y	0.0034 N	0.0068 N	0.0034 N	0.0034 N
C71096	1.24 Y	0.0033 N	0.0067 N	0.02 Y	0.0033 N	0.042 Y	0.0033 N	0.0033 N	0.008 Y	0.0033 N	0.0067 N	0.0033 N	0.0033 N
C71112	4.64 Y	0.017 N	0.033 N	0.13 Y	0.017 N	0.24 Y	0.017 N	0.017 N	0.042 Y	0.017 N	0.033 N	0.017 N	0.017 N
C71113	2.08 Y	0.0047 N	0.0094 N	0.061 Y	0.0047 N	0.12 Y	0.0047 N	0.0047 N	0.019 Y	0.0063 Y	0.01 Y	0.0047 N	0.0047 N
C71187	0.61 Y	0.0035 N	0.0069 N	0.015 Y	0.0035 N	0.03 Y	0.0035 N	0.0035 N	0.0044 Y	0.0035 N	0.0069 N	0.0035 N	0.0035 N
C71202	4.1 Y	0.019 N	0.038 N	0.085 Y	0.019 N	0.16 Y	0.019 N	0.019 N	0.031 Y	0.019 N	0.038 N	0.019 N	0.019 N
C71221	0.656 Y	0.0032 N	0.0064 N	0.013 Y	0.0032 N	0.025 Y	0.0032 N	0.0032 N	0.005 Y	0.0032 N	0.0064 N	0.0032 N	0.0032 N
C71233	3.14 Y	0.0082 N	0.016 N	0.063 Y	0.0082 N	0.12 Y	0.0082 N	0.024 Y	0.022 Y	0.0082 N	0.016 N	0.0082 N	0.0082 N
C71248	3.19 Y	0.0065 N	0.013 N	0.06 Y	0.0065 N	0.11 Y	0.0065 N	0.0065 N	0.02 Y	0.0068 Y	0.013 N	0.0065 N	0.0065 N
C71269	1.67 Y	0.0054 N	0.011 N	0.038 Y	0.0054 N	0.071 Y	0.0054 N	0.0054 N	0.012 Y	0.0054 N	0.011 N	0.0054 N	0.0054 N
C71281	3.36 Y	0.0078 N	0.016 N	0.069 Y	0.0078 N	0.13 Y	0.0078 N	0.0078 N	0.023 Y	0.0082 Y	0.016 N	0.0078 N	0.0078 N
C71287	4.9 Y	0.017 N	0.034 N	0.12 Y	0.017 N	0.23 Y	0.017 N	0.017 N	0.039 Y	0.017 N	0.034 N	0.017 N	0.017 N
C71300	1.62 Y	0.0051 N	0.01 N	0.022 Y	0.0051 N	0.048 Y	0.0051 N	0.0051 N	0.011 Y	0.0051 N	0.01 N	0.0051 N	0.0051 N
C71306	2.44 Y	0.005 N	0.01 N	0.043 Y	0.005 N	0.079 Y	0.005 N	0.005 N	0.013 Y	0.005 N	0.01 N	0.005 N	0.005 N
C71332	4.22 Y	0.0095 N	0.019 N	0.067 Y	0.0095 N	0.13 Y	0.0095 N	0.0095 N	0.024 Y	0.0095 N	0.019 N	0.0095 N	0.0095 N
C71335	4.84 Y	0.017 N	0.033 N	0.088 Y	0.017 N	0.17 Y	0.017 N	0.017 N	0.03 Y	0.017 N	0.033 N	0.017 N	0.017 N
C71351	0.71 Y	0.0031 N	0.0062 N	0.013 Y	0.0031 N	0.03 Y	0.0031 N	0.0031 N	0.0063 Y	0.0031 N	0.0062 N	0.0031 N	0.0031 N
C71388	1.11 Y	0.0034 N	0.0068 N	0.022 Y	0.0034 N	0.049 Y	0.0034 N	0.0034 N	0.0089 Y	0.0035 Y	0.0068 N	0.0034 N	0.0034 N
C71432	4.42 Y	0.011 N	0.022 N	0.089 Y	0.011 N	0.18 Y	0.011 N	0.011 N	0.033 Y	0.012 Y	0.022 N	0.011 N	0.011 N
C71446	0.904 Y	0.0034 N	0.0068 N	0.013 Y	0.0034 N	0.028 Y	0.0034 N	0.0034 N	0.0066 Y	0.0034 N	0.0068 N	0.0034 N	0.0034 N
C71460	4.4 Y	0.015 N	0.031 N	0.086 Y	0.015 N	0.16 Y	0.015 N	0.015 N	0.03 Y	0.015 N	0.031 N	0.015 N	0.015 N
C71468	1.75 Y	0.0066 N	0.013 N	0.03 Y	0.0066 N	0.06 Y	0.0066 N	0.0066 N	0.011 Y	0.0066 N	0.013 N	0.0066 N	0.0066 N
C71479	2.03 Y	0.0083 N	0.017 N	0.036 Y	0.0083 N	0.071 Y	0.0083 N	0.0083 N	0.012 Y	0.0083 N	0.017 N	0.0083 N	0.0083 N
C71485	0.53 Y	0.0018 N	0.0036 N	0.011 Y	0.0018 N	0.021 Y	0.0018 N	0.0018 N	0.0032 Y	0.0018 N	0.0036 N	0.0018 N	0.0018 N
C71512	4 Y	0.017 N	0.034 N	0.085 Y	0.017 N	0.16 Y	0.017 N	0.017 N	0.029 Y	0.017 N	0.034 N	0.017 N	0.017 N
C71517	2.32 Y	0.0071 N	0.014 N	0.039 Y	0.0071 N	0.076 Y	0.0071 N	0.0071 N	0.014 Y	0.0071 N	0.014 N	0.0071 N	0.0071 N
C71520	4.12 Y	0.0096 N	0.019 N	0.1 Y	0.0096 N	0.19 Y	0.0096 N	0.0096 N	0.032 Y	0.011 Y	0.019 N	0.0096 N	0.0096 N
C71527	2.99 Y	0.0051 N	0.01 N	0.052 Y	0.0051 N	0.096 Y	0.0051 N	0.0051 N	0.016 Y	0.0052 Y	0.01 N	0.0051 N	0.0051 N
C71535	4.33 Y	0.0094 N	0.019 N	0.11 Y	0.0094 N	0.2 Y	0.0094 N	0.0094 N	0.031 Y	0.011 Y	0.019 N	0.0094 N	0.0094 N

Table D-1

Available Data for PCB Congener vs. Total PCB Regression Analyses for Floodplain Soil

Anniston PCB Site

OU-4

Sample ID	Total PCBs	PCB-77	PCB-81	PCB-105	PCB-114	PCB-118	PCB-123	PCB-126	PCB-156	PCB-157	PCB-167	PCB-169	PCB-189
C71536	2.95 Y	0.0058 N	0.012 N	0.079 Y	0.0058 N	0.15 Y	0.0058 N	0.0058 N	0.023 Y	0.0081 Y	0.013 Y	0.0058 N	0.0058 N
C71550	3.55 Y	0.0074 N	0.015 N	0.095 Y	0.0074 N	0.16 Y	0.0074 N	0.0074 N	0.03 Y	0.0097 Y	0.015 Y	0.0074 N	0.0074 N
C71580	4.66 Y	0.0083 N	0.017 N	0.12 Y	0.0089 Y	0.19 Y	0.0083 N	0.0083 N	0.033 Y	0.011 Y	0.017 N	0.0083 N	0.0083 N
C71599	1.79 Y	0.0049 N	0.0098 N	0.031 Y	0.0049 N	0.062 Y	0.0049 N	0.0049 N	0.01 Y	0.0049 N	0.0098 N	0.0049 N	0.0049 N
C71605	3.04 Y	0.0067 N	0.013 N	0.073 Y	0.0067 N	0.13 Y	0.0067 N	0.0067 N	0.023 Y	0.008 Y	0.013 N	0.0067 N	0.0067 N
C71685	3.64 Y	0.0085 N	0.017 N	0.052 Y	0.0085 N	0.11 Y	0.0085 N	0.0085 N	0.023 Y	0.0085 N	0.017 N	0.0085 N	0.0085 N
C71703	3.57 Y	0.0095 N	0.019 N	0.095 Y	0.0095 N	0.17 Y	0.0095 N	0.0095 N	0.025 Y	0.0095 N	0.019 N	0.0095 N	0.0095 N
C71738	0.96 Y	0.071 Y	0.0066 N	0.013 Y	0.0033 N	0.026 Y	0.0033 N	0.0033 N	0.0052 Y	0.0033 N	0.0066 N	0.0033 N	0.0033 N
C71741	3.2 Y	0.0091 N	0.018 N	0.056 Y	0.0091 N	0.11 Y	0.0091 N	0.0091 N	0.021 Y	0.0091 N	0.018 N	0.0091 N	0.0091 N
C71744	2.42 Y	0.007 N	0.014 N	0.04 Y	0.007 N	0.08 Y	0.007 N	0.007 N	0.016 Y	0.007 N	0.014 N	0.007 N	0.007 N
C71747	1.17 Y	0.0047 N	0.0094 N	0.02 Y	0.0047 N	0.041 Y	0.0047 N	0.0047 N	0.0082 Y	0.0047 N	0.0094 N	0.0047 N	0.0047 N
C71750	1.51 Y	0.006 N	0.012 N	0.025 Y	0.006 N	0.049 Y	0.006 N	0.006 N	0.0095 Y	0.006 N	0.012 N	0.006 N	0.006 N
C71759	1.82 Y	0.0049 N	0.0099 N	0.045 Y	0.0049 N	0.082 Y	0.0049 N	0.0049 N	0.015 Y	0.0056 Y	0.0099 N	0.0049 N	0.0049 N
C71780	2.8 Y	0.0083 N	0.017 N	0.048 Y	0.0083 N	0.093 Y	0.0083 N	0.0083 N	0.018 Y	0.0083 N	0.017 N	0.0083 N	0.0083 N
C71893	1.99 Y	0.0054 N	0.011 N	0.039 Y	0.0054 N	0.081 Y	0.0054 N	0.0054 N	0.016 Y	0.0056 Y	0.011 N	0.0054 N	0.0054 N
C71905	0.89 Y	0.0018 N	0.0036 N	0.012 Y	0.0018 N	0.026 Y	0.0018 N	0.0018 N	0.0066 Y	0.0024 Y	0.0036 N	0.0018 N	0.0018 N
C71920	3.53 Y	0.0069 N	0.014 N	0.055 Y	0.0069 N	0.1 Y	0.0069 N	0.0069 N	0.022 Y	0.0072 Y	0.014 N	0.0069 N	0.0069 N
C71921	3.8 Y	0.0085 N	0.017 N	0.064 Y	0.0085 N	0.12 Y	0.0085 N	0.0085 N	0.025 Y	0.0085 N	0.017 N	0.0085 N	0.0085 N
C71938	2.15 Y	0.0047 N	0.0094 N	0.032 Y	0.0047 N	0.063 Y	0.0047 N	0.0047 N	0.012 Y	0.0047 N	0.0094 N	0.0047 N	0.0047 N
C71968	1.45 Y	0.0031 N	0.0062 N	0.031 Y	0.0031 N	0.058 Y	0.0031 N	0.0031 N	0.01 Y	0.0037 Y	0.0062 N	0.0031 N	0.0031 N
C71970	1.37 Y	0.0031 N	0.0062 N	0.028 Y	0.0031 N	0.054 Y	0.0031 N	0.0031 N	0.0097 Y	0.0035 Y	0.0062 N	0.0031 N	0.0031 N
C71992	3.91 Y	0.0086 N	0.017 N	0.067 Y	0.0086 N	0.13 Y	0.0086 N	0.0086 N	0.023 Y	0.0086 N	0.017 N	0.0086 N	0.0086 N
C72001	3.46 Y	0.0087 N	0.017 N	0.064 Y	0.0087 N	0.14 Y	0.0087 N	0.0087 N	0.028 Y	0.0096 Y	0.017 N	0.0087 N	0.0087 N
C72004	2.19 Y	0.0045 N	0.009 N	0.044 Y	0.0045 N	0.081 Y	0.0045 N	0.0045 N	0.015 Y	0.0052 Y	0.009 N	0.0045 N	0.0045 N
C72034	2.58 Y	0.0056 N	0.011 N	0.04 Y	0.0056 N	0.08 Y	0.0056 N	0.0056 N	0.016 Y	0.0056 N	0.011 N	0.0056 N	0.0056 N
C72097	2.17 Y	0.0037 N	0.0074 N	0.038 Y	0.0037 N	0.071 Y	0.0037 N	0.0037 N	0.014 Y	0.0051 Y	0.0074 N	0.0037 N	0.0037 N
C72098	4.8 Y	0.017 N	0.035 N	0.1 Y	0.017 N	0.19 Y	0.017 N	0.017 N	0.035 Y	0.017 N	0.035 N	0.017 N	0.017 N
C72103	0.92 Y	0.0036 N	0.0073 N	0.02 Y	0.0036 N	0.035 Y	0.0036 N	0.0036 N	0.0079 Y	0.0036 N	0.0073 N	0.0036 N	0.0036 N
C72109	1.93 Y	0.0048 N	0.0097 N	0.025 Y	0.0048 N	0.06 Y	0.0048 N	0.0048 N	0.013 Y	0.0048 N	0.0097 N	0.0048 N	0.0048 N
C72124	4.4 Y	0.016 N	0.032 N	0.13 Y	0.016 N	0.22 Y	0.016 N	0.016 N	0.04 Y	0.016 N	0.032 N	0.016 N	0.016 N
C72139	4.9 Y	0.0079 N	0.016 N	0.092 Y	0.0079 N	0.18 Y	0.0079 N	0.0079 N	0.03 Y	0.012 Y	0.016 N	0.0079 N	0.0079 N
C72142	2.19 Y	0.0051 N	0.01 N	0.028 Y	0.0051 N	0.069 Y	0.0051 N	0.0051 N	0.014 Y	0.0051 N	0.01 N	0.0051 N	0.0051 N
C72154	4.66 Y	0.018 N	0.037 N	0.095 Y	0.018 N	0.17 Y	0.018 N	0.018 N	0.034 Y	0.018 N	0.037 N	0.018 N	0.018 N
C72166	1.21 Y	0.0044 N	0.0089 N	0.022 Y	0.0044 N	0.041 Y	0.0044 N	0.0044 N	0.0087 Y	0.0044 N	0.0089 N	0.0044 N	0.0044 N
C72172	2.8 Y	0.0056 N	0.011 N	0.041 Y	0.0056 N	0.086 Y	0.0056 N	0.0056 N	0.016 Y	0.0056 Y	0.011 N	0.0056 N	0.0056 N
C72208	2.66 Y	0.0068 N	0.014 N	0.045 Y	0.0068 N	0.084 Y	0.0068 N	0.0068 N	0.017 Y	0.0068 N	0.014 N	0.0068 N	0.0068 N
C72209	1.36 Y	0.12 Y	0.0069 N	0.02 Y	0.0035 N	0.038 Y	0.0035 N	0.0035 N	0.0079 Y	0.0035 N	0.0069 N	0.0035 N	0.0035 N
C72215	0.052 Y	0.0017 N	0.0034 N	0.0017 N	0.0017 N	0.0019 Y	0.0017 N	0.0017 N	0.0017 N	0.0017 N	0.0034 N	0.0017 N	0.0017 N
C72237	0.67 Y	0.0033 N	0.0065 N	0.018 Y	0.0033 N	0.032 Y	0.0033 N	0.0033 N	0.0069 Y	0.0033 N	0.0065 N	0.0033 N	0.0033 N

Table D-1

Available Data for PCB Congener vs. Total PCB Regression Analyses for Floodplain Soil

Anniston PCB Site

OU-4

Sample ID	Total PCBs	PCB-77	PCB-81	PCB-105	PCB-114	PCB-118	PCB-123	PCB-126	PCB-156	PCB-157	PCB-167	PCB-169	PCB-189
C72243	1.12 Y	0.0034 N	0.0068 N	0.022 Y	0.0034 N	0.044 Y	0.0034 N	0.0034 N	0.0088 Y	0.0034 N	0.0068 N	0.0034 N	0.0034 N
C72249	0.11 Y	0.0019 Y	0.0036 N	0.0018 N	0.0018 N	0.0036 Y	0.0018 N	0.0018 N	0.0018 N	0.0018 N	0.0036 N	0.0018 N	0.0018 N
C72250	0.087 Y	0.0017 N	0.0033 N	0.0017 N	0.0017 N	0.0031 Y	0.0017 N	0.0017 N	0.0017 N	0.0017 N	0.0033 N	0.0017 N	0.0017 N
C72279	0.178 Y	0.012 Y	0.0033 N	0.0031 Y	0.0016 N	0.0059 Y	0.0016 N	0.0016 N	0.0016 N	0.0016 N	0.0033 N	0.0016 N	0.0016 N
C72283	0.068 Y	0.0016 N	0.0032 N	0.0016 N	0.0016 N	0.0026 Y	0.0016 N	0.0016 N	0.0016 N	0.0016 N	0.0032 N	0.0016 N	0.0016 N
C72295	1.01 Y	0.0015 N	0.003 N	0.022 Y	0.0015 N	0.038 Y	0.0015 N	0.0015 N	0.007 Y	0.0031 Y	0.0041 Y	0.0015 N	0.0015 Y
C72296	7.9 Y	0.015 N	0.031 N	0.12 Y	0.015 N	0.23 Y	0.015 N	0.015 N	0.04 Y	0.015 N	0.031 N	0.015 N	0.015 N
C72298	5.1 Y	0.016 N	0.033 N	0.077 Y	0.016 N	0.15 Y	0.016 N	0.016 N	0.034 Y	0.016 N	0.033 N	0.016 N	0.016 N
C72299	0.711 Y	0.0031 N	0.0061 N	0.011 Y	0.0031 N	0.022 Y	0.0031 N	0.0031 N	0.0048 Y	0.0031 N	0.0061 N	0.0031 N	0.0031 N
C72352	2.38 Y	0.0049 N	0.0098 N	0.029 Y	0.0049 N	0.064 Y	0.0049 N	0.0049 N	0.012 Y	0.0049 N	0.0098 N	0.0049 N	0.0049 N
C72353	1.06 Y	0.0031 N	0.0062 N	0.011 Y	0.0031 N	0.025 Y	0.0031 N	0.0031 N	0.005 Y	0.0031 N	0.0062 N	0.0031 N	0.0031 N
C72364	0.58 Y	0.0032 N	0.0064 N	0.015 Y	0.0032 N	0.028 Y	0.0032 N	0.0032 N	0.0056 Y	0.0032 N	0.0064 N	0.0032 N	0.0032 N
C72391	0.55 Y	0.0033 N	0.0066 N	0.012 Y	0.0033 N	0.022 Y	0.0033 N	0.0033 N	0.0047 Y	0.0033 N	0.0066 N	0.0033 N	0.0033 N
C72394	0.54 Y	0.0032 N	0.0063 N	0.0074 Y	0.0032 N	0.016 Y	0.0032 N	0.0032 N	0.0043 Y	0.0032 N	0.0063 N	0.0032 N	0.0032 N
C72515	5.3 Y	0.017 N	0.035 N	0.1 Y	0.017 N	0.19 Y	0.017 N	0.017 N	0.035 Y	0.017 N	0.035 N	0.017 N	0.017 N
C72524	0.374 Y	0.0016 N	0.0031 N	0.0047 Y	0.0016 N	0.0099 Y	0.0016 N	0.0016 N	0.0023 Y	0.0016 N	0.0031 N	0.0016 N	0.0016 N
C72535	1.32 Y	0.0065 N	0.013 N	0.024 Y	0.0065 N	0.047 Y	0.0065 N	0.0065 N	0.0094 Y	0.0065 N	0.013 N	0.0065 N	0.0065 N
C72536	1.56 Y	0.0033 N	0.0066 N	0.029 Y	0.0033 N	0.059 Y	0.0033 N	0.0033 N	0.011 Y	0.0038 Y	0.0066 N	0.0033 N	0.0033 N
C72547	2.57 Y	0.0074 N	0.015 N	0.05 Y	0.0074 N	0.094 Y	0.0074 N	0.0074 N	0.017 Y	0.0074 N	0.015 N	0.0074 N	0.0074 N
C72552	3.9 Y	0.016 N	0.033 N	0.1 Y	0.016 N	0.21 Y	0.016 N	0.016 N	0.034 Y	0.016 N	0.033 N	0.016 N	0.016 N
C72556	2.66 Y	0.0076 N	0.015 N	0.037 Y	0.0076 N	0.078 Y	0.0076 N	0.0076 N	0.016 Y	0.0076 N	0.015 N	0.0076 N	0.0076 N

Notes:

Y = indicates analyte was detected.

N = indicates analyte was not detected.

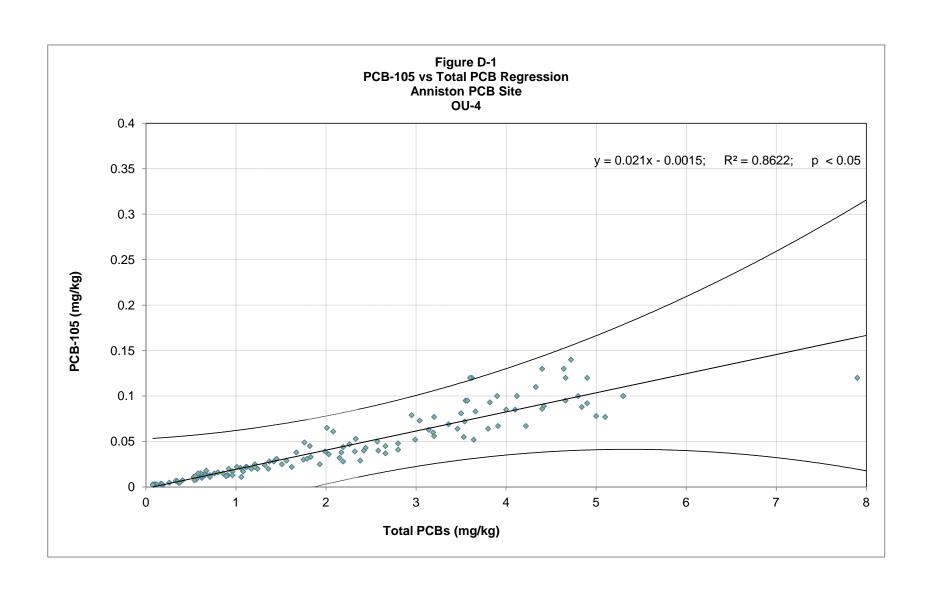
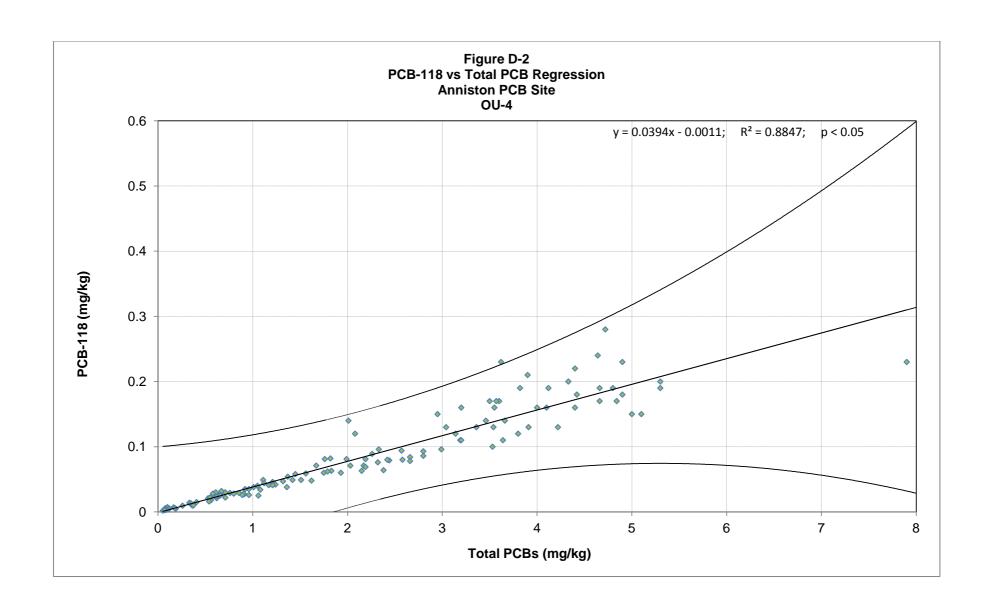
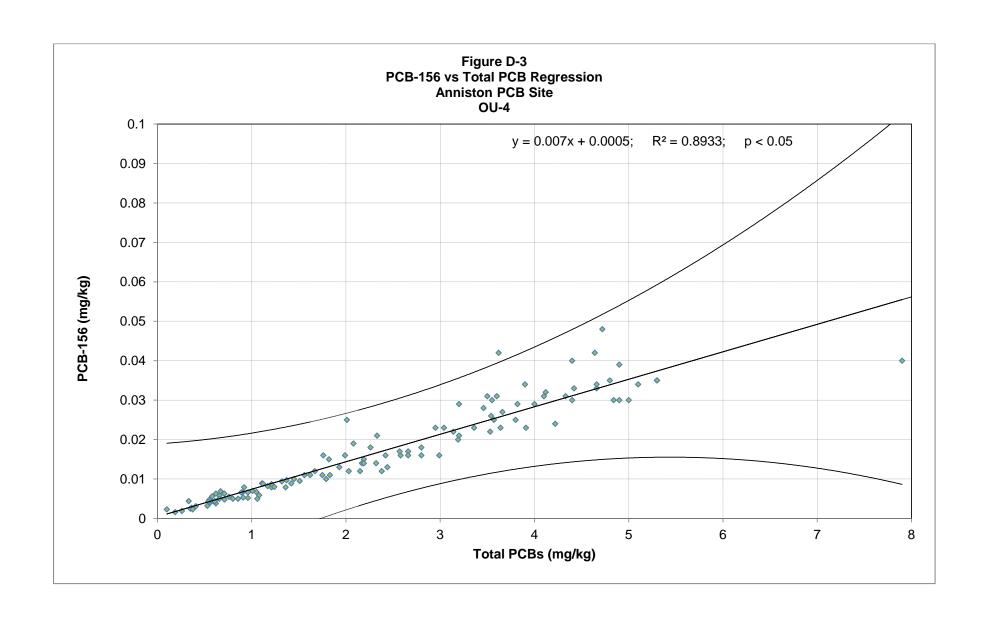




Table D-2
Regression Models for Floodplain Soil
Anniston PCB Site
OU-4

Congener	n	r ²	p-value	TEF	Regression Equation
PCB-105	125	0.86	p < 0.05	0.00003	PCB-105 = 0.021(tPCB) - 0.0015
PCB-118	129	0.88	p < 0.05	0.00003	PCB-118 = 0.0394(tPCB) - 0.0011
PCB-156	119	0.89	p < 0.05	0.00003	PCB-156 = 0.007(tPCB) + 0.0005

TEFs obtained from Van den Berg, et al. 2006.

APPENDIX E PROUCL OUTPUTS – FISH

	, , , , , , , , , , , , , , , , , , , ,	t	t	С	1	к	r
	General UCL St	atistics f	or Data Sets w	rith Non-Detects			
3	User Selected Options						
,	From File WorkSheet.wst						
	Full Precision OFF						
8	Confidence Coefficient 95%						
	Number of Bootstrap Operations 2000						
2							
,							
	2,3,7,8-TCDD TEQ						
1 1			General Sta	atistics			
1 3	Number of Valid Obse	rvations	12		Number of Distinct O	bservations	12
1 3							
	Raw Statistics			Log	-transformed Statistics	3	
1 2	, N	1inimum	5.114E-07	0		of Log Data	-14.49
			1.11E-05			of Log Data	
		Mean	2.937E-06			of log Data	
			2.012E-06			of log Data	
			3.059E-06		30	J. Joy Data	
-	Coefficient of V		N/A				
		ewness					
	J.	C***1033					
3 3			Relevant UCL	Statistics			
3 3	Normal Distribution Test		Nelevalit OCL		normal Distribution Tes	at .	
3 4	Shapiro Wilk Test	Statistic	n 791	Logi	Shapiro Wilk T		0 033
2 5	·				-		
2 6	Shapiro Wilk Critic		0.859	Doto opposit o	Shapiro Wilk C		
2 7	Data not Normal at 5% Significance I	.evei		Data appear Lo	ognormal at 5% Signific	cance Leve	
2 8	A a compine Alamand Distribution			A	in a Louis amount Distrike	.4!	
2 0	Assuming Normal Distribution		4 50 45 00	Assumi	ing Lognormal Distribu		7.0075.00
3 0	95% Student		4.524E-06			95% H-UCL	
3 1	95% UCLs (Adjusted for Skewner	-	4.045.00		95% Chebyshev (N	•	
3 3	95% Adjusted-CLT UCL (Che	,			97.5% Chebyshev (N	•	
3 3	95% Modified-t UCL (Johnso	n-1978)	4.605E-06		99% Chebyshev (M	MVUE) UCL	1.212E-05
2 4	Occurry Distribution To at				Data Distribution		
3 5	Gamma Distribution Test	. 1	0.070	D	Data Distribution		•
3 6	k star (bias co	,		Data appear Gamm	a Distributed at 5% Si	gnificance L	-evei
2 7			3.021E-06				
3 8			2.937E-06				
3 0	MLE of Standard D						
4 0	Annualizate Ohi One	nu star			nnovenciale Otestes		
* 1	Approximate Chi Square Val			No	nparametric Statistics	0/ OLT !!O'	4 205 00
4 3	Adjusted Chi Squa					% CLT UCL	
4 3	Adjusted Chi Squar	e value	12.21			ckknife UCL	
• •	Amelian D. P. T	C+~+:,	0.207		95% Standard Boo	•	
4 2	Anderson Darling Test					strap-t UCL	
4 4	Anderson-Darling 5% Critic				95% Hall's Boo	•	
4 7	Kolmogorov-Smirnov Test				95% Percentile Box	•	
• •	Kolmogorov-Smirnov 5% Critic				95% BCA Boo	•	
* *	Data appear Gamma Distributed at 5% Signif	icance L	.evei		95% Chebyshev(Mea	•	
5 0	A			(97.5% Chebyshev(Mea	•	
8 1	Assuming Gamma Distribution		E 400E 00		99% Chebyshev(Mea	an, Sd) UCL	1.1/3E-05
\$ 2	95% Approximate Gami						
5 3	95% Adjusted Gamı	na UCL	5.616E-06				
5 4							
5 5	Potential UCL to Use			Us	se 95% Approximate G	iamma UCL	5.136E-06
5 6							
5 2	Note: Suggestions regarding the selection of		_	-			
2 8	These recommendations are based upor	the resi	ults of the simu	lation studies summarize	ed in Singh, Singh, and	d laci (2002))
2 0	and Singh and Singh (2003). For a	additional insig	ht, the user may want to	consult a statistician.		
				_		-	-

	y s c o t		e	н	1	1	к	r		
		<u> </u>					<u>l</u>	<u> </u>		
6.2	Mercury									
6 3	•									
		General	Statistics							
	Number of Valid Observations				Numbe	r of Distinct (Observations	53		
	Trainibol of Valid Oboditations	0.			rambo	. or Biourior (35001 Valio110			
	Raw Statistics			ı	og-transfor	ned Statistic	es			
	Minimum	0.031		_			of Log Data	-3 474		
	Maximum						of Log Data			
	Mean						n of log Data			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Median						O of log Data			
		0.191				0.	- 0og = a.a	020		
	Coefficient of Variation									
	Skewness									
	Chemicas	1.120								
		Relevant UC	CI Statistics							
	Normal Distribution Test	Troio vanie		Le	ognormal Di	stribution Te	est			
	Lilliefors Test Statistic	0.108		_	-g		Test Statistic	0.073		
2 0	Lilliefors Critical Value						Critical Value			
	Data not Normal at 5% Significance Level			Data appeai	Lognormal					
								•		
8 3	Assuming Normal Distribution			Assı	umina Loand	ormal Distrib	ution			
8 3	95% Student's-t UCL	0.315	Assuming Lognormal Distribution 95% H-UCL 0.338							
	95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL 0.396							
	95% Adjusted-CLT UCL (Chen-1995)	0.318	97.5% Chebyshev (MVUE) UCL 0.444							
	95% Modified-t UCL (Johnson-1978)					Chebyshev (•			
8 7						(,			
	Gamma Distribution Test				Data Dis	stribution				
	k star (bias corrected)	2.175	Data	appear Gai	mma Distribi	uted at 5% S	ignificance	Level		
	Theta Star									
	MLE of Mean									
0 3	MLE of Standard Deviation	0.19								
0 3	nu star	365.4								
	Approximate Chi Square Value (.05)				Nonparame	tric Statistics	3			
0 2	Adjusted Level of Significance		95% CLT UCL 0.315							
	Adjusted Chi Square Value					95% Ja	ckknife UCL	0.315		
8 3					95%	Standard Bo				
	Anderson-Darling Test Statistic	0.294					tstrap-t UCL			
	Anderson-Darling 5% Critical Value				9	5% Hall's Bo	•			
1 0 0	Kolmogorov-Smirnov Test Statistic					Percentile Bo	-			
	Kolmogorov-Smirnov 5% Critical Value					95% BCA Bo	-			
1 0 3	Data appear Gamma Distributed at 5% Significance L					ebyshev(Me	-			
1 0 3	-					ebyshev(Me	•			
1 0 4	Assuming Gamma Distribution					ebyshev(Me	· ·			
1 0 2	95% Approximate Gamma UCL	0.318								
1 0 9	95% Adjusted Gamma UCL									
1 0 2										
	Potential UCL to Use				Use 95% A	pproximate (Gamma UCL	0.318		
	Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to hel	p the user to	select the	most approp	riate 95% U	CL.		
	These recommendations are based upon the res	=		-						
1 1 3	and Singh and Singh (2003). For				-	-	•	-		
			· · · · · · · · · · · · · · · · · · ·	,						

	y s c b t	е н і і т						
1 1 3								
1 1 4								
1 1 2	Total PCBs							
1 1 0								
1 1 2	General S	Statistics						
	Number of Valid Observations 84	Number of Distinct Observations 68						
1 1 0								
1 3 0	Raw Statistics	Log-transformed Statistics						
1 3 1	Minimum 0.223	Minimum of Log Data -1.501						
1 3 3	Maximum 9.47 Mean 2.11	Maximum of Log Data 2.248						
1 3 3	Median 1.77	Mean of log Data 0.533 SD of log Data 0.685						
1 3 4	SD 1.448	SD of log Data 0.065						
1 2 5	Coefficient of Variation 0.686							
	Skewness 2.04							
	CKOWIGGS 2.04							
	Relevant UC	CL Statistics						
1 3 0	Normal Distribution Test	Lognormal Distribution Test						
	Lilliefors Test Statistic 0.116	Lilliefors Test Statistic 0.0559						
1 3 3	Lilliefors Critical Value 0.0967	Lilliefors Critical Value 0.0967						
1 3 3	Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level						
1 3 4								
1 3 5	Assuming Normal Distribution	Assuming Lognormal Distribution						
1 3 4	95% Student's-t UCL 2.373	95% H-UCL 2.501						
1 3 7	95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL 2.915						
1 3 8	95% Adjusted-CLT UCL (Chen-1995) 2.408	97.5% Chebyshev (MVUE) UCL 3.248						
: 3 0	95% Modified-t UCL (Johnson-1978) 2.379	99% Chebyshev (MVUE) UCL 3.901						
1 4 0								
	Gamma Distribution Test	Data Distribution						
1 4 3	k star (bias corrected) 2.413	Data appear Gamma Distributed at 5% Significance Level						
1 4 3	Theta Star 0.875							
1 4 4	MLE of Mean 2.11							
1 4 2	MLE of Standard Deviation 1.359 nu star 405.4							
1 4 5	Approximate Chi Square Value (.05) 359.7	Nonparametric Statistics						
1 4 3	Adjusted Level of Significance 0.0471	95% CLT UCL 2.37						
	Adjusted Chi Square Value 358.9	95% Jackknife UCL 2.373						
	.,	95% Standard Bootstrap UCL 2.371						
	Anderson-Darling Test Statistic 0.259	95% Bootstrap-t UCL 2.42						
1 5 3	Anderson-Darling 5% Critical Value 0.761	95% Hall's Bootstrap UCL 2.446						
1 2 3	Kolmogorov-Smirnov Test Statistic 0.0643	95% Percentile Bootstrap UCL 2.373						
1 2 4	Kolmogorov-Smirnov 5% Critical Value 0.0985	95% BCA Bootstrap UCL 2.401						
	Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL 2.799						
1 2 9		97.5% Chebyshev(Mean, Sd) UCL 3.097						
1 5 2	Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL 3.682						
1 2 8	95% Approximate Gamma UCL 2.378							
	95% Adjusted Gamma UCL 2.383							
	Potential UCL to Use	Use 95% Approximate Gamma UCL 2.378						
1 6 2								
1 6 3	Note: Suggestions regarding the selection of a 95% UCL are pro							
1 4 4	These recommendations are based upon the results of the sin							
1 6 5	and Singh and Singh (2003). For additional ins	ignt, the user may want to consult a statistician.						

						,	,	,		
	Y , c 0 t	b.	e	н	1	1	к	r		
1 6 6										
1 6 7	DOD Disability Commencer TEO									
	PCB Dioxin-like Congener TEQ									
1 0 0										
1 2 0			Statistics							
1 3 1	Number of Valid Observations	12			Numbe	er of Distinct C	Observations	s 12		
1 2 3										
1 3 3	Raw Statistics			L	.og-transfor	med Statistic	s			
1 3 4	Minimum	1.963E-06		Minimum of Log Data -13.						
1 7 5	Maximum	3.175E-05				Maximum	of Log Data	-10.36		
1 2 6	Mean	1.158E-05				Mear	n of log Data	-11.71		
1 3 3	Median	8.193E-06				SE	of log Data	0.907		
1 7 8	SD	9.35E-06								
1 2 4	Coefficient of Variation	N/A								
	Skewness	0.975								
1 8 3		Relevant UC	CL Statistics							
	Normal Distribution Test			Le	ognormal D	istribution Te	st			
1 8 4	Shapiro Wilk Test Statistic	0.89				Shapiro Wilk	Test Statistic	0.956		
1 8 2	Shapiro Wilk Critical Value	0.859			S	Shapiro Wilk C	Critical Value	0.859		
	Data appear Normal at 5% Significance Level			Data appear	Lognormal	at 5% Signif	icance Leve	əl		
1 8 7										
	Assuming Normal Distribution			Assı	uming Logn	ormal Distrib	ution			
	95% Student's-t UCL	1.643E-05					95% H-UCL	2.637E-05		
	95% UCLs (Adjusted for Skewness)				95%	Chebyshev (MVUE) UCL	2.629E-05		
	95% Adjusted-CLT UCL (Chen-1995)	1.683E-05		97.5% Chebyshev (MVUE) UCL 3.252						
	95% Modified-t UCL (Johnson-1978)					Chebyshev (,			
,	(, (- ,			
1 0 4	Gamma Distribution Test				Data Di	stribution				
	k star (bias corrected)	1.268		Data appe	ar Normal a	t 5% Sianific	ance Level			
	Theta Star			Data appear Normal at 5% Significance Level						
	MLE of Mean									
	MLE of Standard Deviation									
	nu star									
	Approximate Chi Square Value (.05)				Nonnarame	tric Statistics				
	Adjusted Level of Significance						5% CLT UCL	1 602F-05		
	Adjusted Chi Square Value						ckknife UCL			
	, ajados om oqualo valuo				95%	Standard Bo				
,	Anderson-Darling Test Statistic	0.256			30 /0		tstrap-t UCL			
,	Anderson-Darling 5% Critical Value				C	95% Hall's Bo	•			
, , ,	Kolmogorov-Smirnov Test Statistic					Percentile Bo				
	Kolmogorov-Smirnov 5% Critical Value					95% BCA Bo	-			
2 0 7	Data appear Gamma Distributed at 5% Significance I					nebyshev(Me	-			
2 0 8	Data appear Gamma Distributed at 5% dignificance t	Levei				nebyshev(Me	•			
, , ,	Assuming Gamma Distribution					nebyshev(Me	•			
, , ,	95% Approximate Gamma UCL	1 8715.05			JJ /0 UI	.55,51164(1416	an, ou) och	. U.UTUL-UU		
3 1 1	95% Approximate Gamma UCL 95% Adjusted Gamma UCL									
2 1 2	95% Aujusted Gamma UCL	2.U 13E-U3								
2 1 3	Potential LICE to Line		Use 95% Student's-t UCL 1.643E-05					16/25 05		
3 1 4	Potential UCL to Use					use 95% Stu	uent's-t UCL	. 1.043E-U5		
2 1 5	Note: Comments and additional to the state of the Comments of	LIOL	a salaha ala sa ta da				-i-t- 050/ **	101		
2 1 6	Note: Suggestions regarding the selection of a 95%	-		=						
2 1 7	These recommendations are based upon the res					-	a ıacı (2002	2)		
2 1 8	and Singh and Singh (2003). For	additional ins	signt, the use	er may want	το consult a	statistician.				
3 1 0										
3 3 0										

Appendix E
ProUCL Output for Fish Tissue- Location A Bass
Anniston PCB Site
OU IV

	· · · · · · · · · · · · · · · · · · ·	
1		for Data Sets with Non-Detects
3	User Selected Options	
3	From File J:\Projects\JM Waller RA	AC Lite Region 4\Anniston OU IV\Data\ProUCL\LocationA_Bass ProUCL Input.xls.wst
*	Full Precision OFF	
*	Confidence Coefficient 95%	
4	Number of Bootstrap Operations 2000	
3		
٠	Mercury	
		General Statistics
1 3	Number of Valid Observations	S 28 Number of Distinct Observations 22
	Raw Statistics	Log-transformed Statistics
H	Minimum	
1 5	Maximum	
1 4		n 0.416 Mean of log Data -0.967
1 2		
1 8	Median	
1 0		0.0.191
3 0	Coefficient of Variation	
5 1	Skewness	5 1.111
3 3		
3 3		Relevant UCL Statistics
3 4	Normal Distribution Test	Lognormal Distribution Test
2 5	Shapiro Wilk Test Statistic	c 0.86 Shapiro Wilk Test Statistic 0.94
2 6	Shapiro Wilk Critical Value	e 0.924 Shapiro Wilk Critical Value 0.924
2 7	Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level
5 8		
3 0	Assuming Normal Distribution	Assuming Lognormal Distribution
3 0	95% Student's-t UCL	
, ,	95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL 0.562
	95% Adjusted-CLT UCL (Chen-1995)	
	95% Modified-t UCL (Johnson-1978)	
, ,	3070 Modified 1 001 (001113011 1070)	50.70 Chasyanov (MVOL) GGE 0.702
, ,	Gamma Distribution Test	Data Distribution
2 5		
3 6	k star (bias corrected) Theta Star	
3 7		
3 8	MLE of Mean	
3 0	MLE of Standard Deviation	
4 0	nu star	
* 1	Approximate Chi Square Value (.05)	•
+ 3	Adjusted Level of Significance	
+ 3	Adjusted Chi Square Value	
٠,		95% Standard Bootstrap UCL 0.475
+ 2	Anderson-Darling Test Statistic	c 0.846 95% Bootstrap-t UCL 0.488
	Anderson-Darling 5% Critical Value	e 0.748 95% Hall's Bootstrap UCL 0.485
4 7	Kolmogorov-Smirnov Test Statistic	c 0.184 95% Percentile Bootstrap UCL 0.478
* *	Kolmogorov-Smirnov 5% Critical Value	e 0.166 95% BCA Bootstrap UCL 0.486
	Data not Gamma Distributed at 5% Significance Le	evel 95% Chebyshev(Mean, Sd) UCL 0.574
s 0		97.5% Chebyshev(Mean, Sd) UCL 0.642
8 1	Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL 0.776
s 2	95% Approximate Gamma UCL	_ 0.48
5 3	95% Adjusted Gamma UCL	_ 0.484
E 4		
2 2	Potential UCL to Use	Use 95% Student's-t UCL 0.478
		or 95% Modified-t UCL 0.479
8 1		or 95% H-UCL 0.484
		3/ 30/0 11 33E 3.10T
	ProLICE computes and output	outs H-statistic based UCLs for historical reasons only.
2 0	·	•
6 0		and low) values of UCL95 as shown in examples in the Technical Guide.
٠.,		ded to avoid the use of H-statistic based 95% UCLs.
6 2	Use or nonparametric methods are preferred to con	mpute UCL95 for skewed data sets which do not follow a gamma distribution.

Appendix E
ProUCL Output for Fish Tissue- Location A Bass
Anniston PCB Site
OU IV

	Y	8	¢	D	ŧ	t	ę	н	ı	1	К	r
6 3												
	No	te: Suggesti	ons regardir	ng the select	ion of a 95%	UCL are pr	ovided to he	lp the user to	select the	most approp	riate 95% U	CL.
6 5		These recor	nmendations	s are based	upon the res	ults of the si	mulation stu	dies summa	rized in Sing	ıh, Singh, an	d laci (2002	2)
			and Singh	and Singh (2003). For	additional in	sight, the us	er may want	to consult a	statistician.		
6. 7												
* 1												

Appendix E
ProUCL Output for Fish Tissue- Location A Bass
Anniston PCB Site
OU IV

	Y	t	с н	1	1	К	r			
	Total PCBs						l			
2 0										
2 1		General	Statistics							
2 2	Number of Valid Observations	s 28		Numbe	er of Distinct C	bservations	: 25			
2 3										
3 4	Raw Statistics		L	.og-transfor	med Statistic	s				
3 8	Minimum	n 0.223		•		of Log Data	-1.501			
3 6	Maximum	n 9.47				of Log Data				
3 3	Mear	n 2.206				n of log Data				
2 8	Mediar	1.795				of log Data				
3 0	SE	1.725				3				
* 0	Coefficient of Variation	n 0.782								
* 1	Skewness	2.955								
		Relevant U	CL Statistics							
	Normal Distribution Test	r tolovalit o		ognormal D	istribution Te	st				
	Shapiro Wilk Test Statistic	. 0 718		_	Shapiro Wilk		0 948			
	Shapiro Wilk Critical Value				Shapiro Wilk (
	Data not Normal at 5% Significance Level	, 0.5 <u>2</u> 4	Data appear		•					
8 7	Data not Normal at 5% dignificance Level		Data appear	Logiloilliai	at 5 % Olgilli	icance Leve	7 1			
* *	Assuming Normal Distribution		Δεει	ımina Loan	ormal Distrib	ution				
* *	95% Student's-t UCL	2 761	Assu	illing Logir		95% H-UCL	2 944			
	95% UCLs (Adjusted for Skewness)	2.701		95%						
	95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 2 037		95% Chebyshev (MVUE) UCL 3.54 97.5% Chebyshev (MVUE) UCL 4.12						
9 3	95% Modified-t UCL (Johnson-1978		99% Chebyshev (MVUE) UCL 5.253							
8 3	95 % Modified-t OCE (Johnson-1976)) 2.791		99 /0	Chebyshev (WIVUE) UCL	. 5.255			
	Gamma Distribution Test			Data Di	ietribution					
0 2	k star (bias corrected)	\ 2 242	Data Distribution							
	Theta Sta		Data appear Gar	Data appear Gamma Distributed at 5% Significance Level						
9.7	MLE of Mear									
	MLE of Standard Deviation									
• •		r 125.6								
	Approximate Chi Square Value (.05			Nonnarame	etric Statistics					
	Adjusted Level of Significance			Nonparame		, % CLT UCL	2 7/12			
1 0 3	Adjusted Chi Square Value					ckknife UCL				
1 0 3	Aujusted Citi Oquare Value	5 55.52		95%	Standard Bo					
	Anderson-Darling Test Statistic	n 595		3370		tstrap-t UCL				
. 0 2	Anderson-Darling 7 est statistic			(95% Hall's Bo	-				
. 0 0	Kolmogorov-Smirnov Test Statistic				Percentile Bo	•				
1 0 2	Kolmogorov-Smirnov 1est statistic				95% BCA Bo	•				
	Data appear Gamma Distributed at 5% Significance				hebyshev(Me	•				
	Data appear Gamma Distributed at 3 % Significance	Levei				· ·				
	Assuming Gamma Distribution				hebyshev(Me hebyshev(Me	-				
	95% Approximate Gamma UCL	2 751		33 /0 CI	iobysnev(ivie	an, ou, oct	. 0.70			
1 1 3		95% Adjusted Gamma UCL 2.789								
1 1 3	35 % Aujusteu Ganinia OCL	/03								
1 1 4	Potential UCL to Use			Lico OE0/ A	\nnrovimata (Samma LICI	2 751			
1 1 2	Fotential OCL to ose			USC 33% F	Approximate (adiiiiid UCL	. 4./31			
1 1 4	Note: Cugactions regarding the colonies of a CCO	/ LICL	ovidad to bala the		most series	rioto OEO/ !!	ICI			
1 1 2	Note: Suggestions regarding the selection of a 959	-	-							
1 1 8	These recommendations are based upon the re-					u laci (2002	-)			
1 1 0	and Singh and Singh (2003). For	additional in	signt, the user may want	to consult a	a statistician.					

	O TO THE LIGHT Chestesian	1 2 4- 0-4	'' Nom D	8	1	1	К	r		
'	General UCL Statistics	for Data Set	s with Non-D	etects						
3	User Selected Options			************						
3	From File J:\Projects\JM Waller RA	C Lite Regio	n 4\Annıston	OU IV\Data\	ProUCL\Loc	ationA_Cattısn	ProUCL In	put.xls.wst		
•	Full Precision OFF									
3	Confidence Coefficient 95%									
٠	Number of Bootstrap Operations 2000									
3										
	Mercury									
1 0										
1 1		General	Statistics							
1 3	Number of Valid Observations	28			Numbe	r of Distinct Ob	servations	21		
1 3										
1 4	Raw Statistics			L	og-transforr	ned Statistics				
1 8	Minimum	0.031				Minimum of	f Log Data	-3.474		
1 4	Maximum	0.43				Maximum of	f Log Data	-0.844		
1 2	Mean	0.156				Mean o	of log Data	-2.03		
1 8	Median	0.115				SD o	of log Data	0.604		
1 0	SD	0.0944								
3 0	Coefficient of Variation	0.606								
3 1	Skewness	1.226								
3 3										
3 3		Relevant U	CL Statistics							
2 4	Normal Distribution Test			L	ognormal Di	stribution Test				
2 5	Shapiro Wilk Test Statistic	0.897			S	hapiro Wilk Te	st Statistic	0.984		
5 4	Shapiro Wilk Critical Value	0.924			S	hapiro Wilk Crit	tical Value	0.924		
2 7	Data not Normal at 5% Significance Level			Data appear	r Lognormal	at 5% Significa	ance Level			
5 1										
2 9	Assuming Normal Distribution			Ass	uming Logno	rmal Distributi	on			
3 0	95% Student's-t UCL	0.186				95	5% H-UCL	0.2		
3 1	95% UCLs (Adjusted for Skewness)			95% Chebyshev (MVUE) UCL 0.239						
3 3	95% Adjusted-CLT UCL (Chen-1995)	0.19	97.5% Chebyshev (MVUE) UCL 0.275							
3 3	95% Modified-t UCL (Johnson-1978)	0.187			99%	Chebyshev (M\	VUE) UCL	0.345		
3 4										
3 5	Gamma Distribution Test				Data Dis	tribution				
3 6	k star (bias corrected)	2.789	Data	appear Ga	mma Distribu	ited at 5% Sig	nificance L	.evel		
2 7	Theta Star	0.0559								
3 8	MLE of Mean	0.156								
3 6	MLE of Standard Deviation	0.0933								
4 0	nu star	156.2								
4 1	Approximate Chi Square Value (.05)	128.3			Nonparame	tric Statistics				
4 3	Adjusted Level of Significance	0.0404				95%	CLT UCL	0.185		
4 3	Adjusted Chi Square Value	126.7				95% Jack	knife UCL	0.186		
4 4					95%	Standard Boot	strap UCL	0.184		
4 2	Anderson-Darling Test Statistic	0.325	95% Bootstrap-t UCL 0.194							
+ +	Anderson-Darling 5% Critical Value	0.753			9	5% Hall's Boot	strap UCL	0.194		
4 7	Kolmogorov-Smirnov Test Statistic	0.149			95% F	Percentile Boot	strap UCL	0.186		
* *	Kolmogorov-Smirnov 5% Critical Value	0.167			9	95% BCA Boot	strap UCL	0.188		
4 8	Data appear Gamma Distributed at 5% Significance I	Level			95% Ch	ebyshev(Mean	, Sd) UCL	0.234		
5 0					97.5% Ch	ebyshev(Mean	, Sd) UCL	0.267		
s 1	Assuming Gamma Distribution				99% Ch	ebyshev(Mean	, Sd) UCL	0.333		
s 2	95% Approximate Gamma UCL	0.19								
5 3	95% Adjusted Gamma UCL	0.192								
2 4										
2 2	Potential UCL to Use				Use 95% A	pproximate Ga	mma UCL	0.19		
2 9										
5 7	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to he	lp the user to	select the i	nost appropria	ite 95% UC	CL.		
2 8	These recommendations are based upon the res	ults of the si	mulation stu	dies summa	rized in Sing	h, Singh, and	laci (2002))		
: +	and Singh and Singh (2003). For	additional in	sight, the use	er may want	to consult a	statistician.				
6 0										
6 1										

		,		*		,	×		
	Total PCBs			-		·	-		
	General Statistics								
	Number of Valid Observations		Otationos		Numbe	r of Distinct C)heenvatione	26	
6 5	Number of valid Observations	20			Numbe	i di Distilici C	observations	20	
	Raw Statistics			i	og tronoforr	mad Statistic	•		
6 7	nan olalisio	0.40		L	.og-transion	ned Statistic		0.000	
* *	Minimum						of Log Data		
	Maximum		Maximum of Log Data 1.758						
2 0		2.436	Mean of log Data 0.717						
7 1	Median		SD of log Data 0.631						
2 2		1.401							
3 3	Coefficient of Variation								
2 4	Skewness	0.855							
3 8									
2 6		Relevant U	CL Statistics						
7 7	Normal Distribution Test			L	-	stribution Te			
7 8	Shapiro Wilk Test Statistic					Shapiro Wilk			
2 4	Shapiro Wilk Critical Value	0.924				hapiro Wilk C			
* 0	Data not Normal at 5% Significance Level			Data appeai	Lognormal	at 5% Signif	icance Leve	e l	
* 1									
8 3	Assuming Normal Distribution			Assı	uming Logno	ormal Distrib	ution		
* *	95% Student's-t UCL	2.887					95% H-UCL	3.206	
* *	95% UCLs (Adjusted for Skewness)				95%	Chebyshev (MVUE) UCL	3.85	
8 2	95% Adjusted-CLT UCL (Chen-1995)	2.917			97.5%	Chebyshev (MVUE) UCL	4.443	
* *	95% Modified-t UCL (Johnson-1978)	2.894			99%	Chebyshev (MVUE) UCL	5.609	
8 7									
* *	Gamma Distribution Test				Data Dis	stribution			
* *	k star (bias corrected)	2.738	Data	appear Gai	mma Distribu	uted at 5% S	ignificance l	Level	
	Theta Star	0.89							
* 1	MLE of Mean	2.436							
0 3	MLE of Standard Deviation	1.472							
0 3	nu star	153.3							
	Approximate Chi Square Value (.05)	125.7			Nonparame	tric Statistics	;		
0 2	Adjusted Level of Significance	0.0404				95	% CLT UCL	2.872	
	Adjusted Chi Square Value	124.1				95% Ja	ckknife UCL	2.887	
9 7					95%	Standard Bo	otstrap UCL	2.864	
	Anderson-Darling Test Statistic	0.307				95% Boo	tstrap-t UCL	2.958	
	Anderson-Darling 5% Critical Value	0.754			9	5% Hall's Bo	otstrap UCL	2.962	
	Kolmogorov-Smirnov Test Statistic	0.119			95% F	Percentile Bo	otstrap UCL	2.868	
1 0 1	Kolmogorov-Smirnov 5% Critical Value	0.167			9	95% BCA Bo	otstrap UCL	2.945	
1 0 3	Data appear Gamma Distributed at 5% Significance I	Level			95% Ch	ebyshev(Me	an, Sd) UCL	3.59	
1 0 3					97.5% Ch	ebyshev(Me	an, Sd) UCL	4.089	
1 0 4	Assuming Gamma Distribution				99% Ch	ebyshev(Me	an, Sd) UCL	5.07	
1 0 2	95% Approximate Gamma UCL	2.971							
. 0 4	95% Adjusted Gamma UCL	3.008							
1 0 3									
1 0 8	Potential UCL to Use				Use 95% A	pproximate (Gamma UCL	2.971	
1 1 0	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help	the user to	select the i	most approp	riate 95% U	CL.	
1 1 1	These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002)								
1 1 3	and Singh and Singh (2003). For	additional in	sight, the use	r may want	to consult a	statistician.			
1 1 3									

	У в с			,	c	н	ı	1	К	г			
1		General UCL S	Statistics 1	for Data Set	s with Non-D	etects							
3	User Selected Options												
3	From File	J:\Projects\JM \	Waller RA	C Lite Region	n 4\Anniston	OU IV\Data\	ProUCL\Loc	ationA_Panfi	sh ProUCL I	nput.xls.wst			
*	Full Precision	OFF											
2	Confidence Coefficient	95%											
٠	Number of Bootstrap Operations	2000											
3													
	Mercury												
	•												
				General	Statistics								
	Num	ber of Valid Obs	ervations		otationio		Numhe	r of Distinct C)hservations	: 24			
	, Traini	ibel of Valia Obs	oi valiono	20			rtambo	or Distinct C		, <u>2</u> 1			
1 3	Pour S	tatiatias				ı	og tronoforr	nad Statistic	•				
1 4	Raw Statistics				Log-transformed Statistics								
1 2	Minimum 0				Minimum of Log Data -2.937								
1 4	Maximum (Maximum of Log Data -0.357								
1 2	Mean (0.27		Mean of log Data -1.533							
			Median	0.205				SE	of log Data	0.703			
1 0			SD	0.178									
3 0		Coefficient of	Variation	0.658									
3 1		S	kewness	0.831									
3 3													
3 3				Relevant U	CL Statistics								
3 4	Normal Dis	tribution Test				L	ognormal Di	stribution Te	st				
2 5	5	Shapiro Wilk Tes	t Statistic	0.908				hapiro Wilk		: 0.97			
		Shapiro Wilk Criti						hapiro Wilk C					
	Data not Normal at !	-		0.021		Data annea	r Lognormal	-					
2.7	Data not Normal at v	5 % Olgrinicance	Level			Data appear	Logilollilai	at 5 % Olyilli	icance Leve	ži			
2 8	Accuming No.	mal Diatribution				A	umina I sans	umaal Diateib	ution				
3 8	Assuming Nor	mal Distribution		0.007		ASS	uming Logno			0.000			
3 0		95% Studer		0.327					95% H-UCL				
9 1	95% UCLs (Adju		-		95% Chebyshev (MVUE) UCL 0.444								
3 3	95% Adjuste	ed-CLT UCL (Ch	en-1995)	0.331				Chebyshev (•				
3 3	95% Modifi	ed-t UCL (Johns	on-1978)	0.328			99%	Chebyshev (MVUE) UCL	0.664			
3 4													
3 5	Gamma Dis	tribution Test					Data Dis	stribution					
3 4		k star (bias c	corrected)	2.165	Data	appear Ga	mma Distribu	ited at 5% S	ignificance	Level			
3 7		Т	heta Star	0.125									
3 8		MLE	of Mean	0.27									
3 0	N	ILE of Standard	Deviation	0.183									
4 0			nu star	121.2									
* 1	Approxima	te Chi Square Va	alue (.05)	96.81			Nonparame	tric Statistics	}				
. ,		sted Level of Sig					•		% CLT UCL	0.325			
, ,		djusted Chi Squa							ckknife UCL				
\vdash		,					95%	Standard Bo					
H	Ando	rson-Darling Tes	t Statistic	0.333			33 /0		tstrap-t UCL				
, ,		-Darling 5% Criti					•	93 % воо 5% Hall's Во	-				
• •		_							-				
4 7		rov-Smirnov Tes						Percentile Bo	-				
* *	_	Smirnov 5% Criti						95% BCA Bo	-				
• •	Data appear Gamma Distrib	uted at 5% Sign	inticance L	Level				ebyshev(Me	•				
0 5								ebyshev(Me	· ·				
5 1	=	nma Distribution					99% Ch	ebyshev(Me	an, Sd) UCL	0.604			
5 3	95% <i>A</i>	Approximate Gan	nma UCL	0.338									
5 3	95	5% Adjusted Gan	nma UCL	0.343									
5 4													
2 2	Potential	UCL to Use					Use 95% A	pproximate (Gamma UCL	0.338			
2 9													
5 7	Note: Suggestions regardi	ng the selection	of a 95%	UCL are pr	ovided to hel	p the user to	o select the i	most approp	riate 95% U	CL.			
	These recommendation	•		-		•							
		and Singh (200					_	_	(•			
H	and onign	Jgii (200	, - 1 01 1		g, and add	y want							
6 1													

	T	D E	٤	e	н	1	1	к	r	
, ,	I I I I I I I I I I I I I I I I I I I									
			General	Statistics						
e :	Numbe	er of Valid Observat	tions 28			Numbei	r of Distinct C	Observations	26	
e 3	Raw Stat	tistics			L	.og-transforn	ned Statistic	s		
		Minir	num 0.27				Minimum	of Log Data	-1.309	
		Maxir	num 4.4				Maximum	of Log Data	1.482	
3 0		N	lean 1.689				Mea	n of log Data	0.306	
3 1		Me	dian 1.34				SI	of log Data	0.703	
2 3			SD 1.098							
2 3		Coefficient of Varia	ation 0.65							
7 4		Skewi	ness 0.909							
2 5										
2 6			Relevant U	CL Statistics						
2 2	Normal Distrib	oution Test			Lo	ognormal Dis	stribution Te	st		
7 8	Sha	apiro Wilk Test Sta	tistic 0.912			S	hapiro Wilk	Test Statistic	0.973	
3 0	Sha	apiro Wilk Critical V	alue 0.924			S	hapiro Wilk (Critical Value	0.924	
* 0	Data not Normal at 5%	Significance Leve	əl		Data appear	Lognormal	at 5% Signif	icance Leve	I	
* 1										
8 3	Assuming Norma	al Distribution			Assu	ıming Logno	rmal Distrib	ution		
* ;		95% Student's-t	UCL 2.042					95% H-UCL	2.318	
	95% UCLs (Adjust	ed for Skewness)						MVUE) UCL		
8 2	95% Adjusted-	CLT UCL (Chen-1	995) 2.068			97.5% (Chebyshev (MVUE) UCL	3.261	
* *	95% Modified	-t UCL (Johnson-1	978) 2.048			99% (Chebyshev (MVUE) UCL	4.176	
8 7										
* *	Gamma Distril						tribution			
* *		k star (bias correc		Data appear Gamma Distributed at 5% Significance Level						
			Star 0.765							
* 1	NAL F		lean 1.689							
8 3	WILE	of Standard Devia	star 123.6							
* 1	Annrovimate	Chi Square Value				Nonparamet	ric Statistics			
		ed Level of Significa				Nonparame		, 5% CLT UCL	2.03	
		isted Chi Square V						ckknife UCL		
	,.	olou olii oqualo i				95%		otstrap UCL		
	Anderso	on-Darling Test Sta	tistic 0.279					tstrap-t UCL		
		arling 5% Critical V				9		otstrap UCL		
		/-Smirnov Test Sta						otstrap UCL		
1 0 1	_	nirnov 5% Critical V						otstrap UCL		
1 0 3	Data appear Gamma Distribute	ed at 5% Significa	nce Level			95% Ch	ebyshev(Me	an, Sd) UCL	2.593	
1 0 3						97.5% Ch	ebyshev(Me	an, Sd) UCL	2.984	
1 0 4	Assuming Gamm	a Distribution				99% Ch	ebyshev(Me	an, Sd) UCL	3.753	
1 0 5	95% Арр	oroximate Gamma	UCL 2.11							
1 0 6	95%	Adjusted Gamma	UCL 2.14							
1 0 7										
1 0 8	Potential UC	CL to Use				Use 95% A	pproximate (Gamma UCL	2.11	
1 0 8										
1 1 0	Note: Suggestions regarding	the selection of a	95% UCL are pr	ovided to hel	p the user to	select the r	nost approp	riate 95% U	CL.	
1 1 1	These recommendations a	are based upon the	e results of the s	imulation stu	dies summaı	ized in Sing	h, Singh, an	d laci (2002)	
1 1 3	and Singh ar	nd Singh (2003).	For additional in	sight, the use	er may want	to consult a	statistician.			
1 1 3										

	у в с	0	ŧ	t	e	н	1	1	K	r
,		General UCL	. Statistics	for Data Set	s with Non-D	Detects				
3	User Selected Options									
3	From File	WorkSheet.w	st							
•	Full Precision	OFF								
2	Confidence Coefficient	95%								
ę	Number of Bootstrap Operations	2000								
3										
-										
	Mercury									
	Moroury									
1 0				Conoral	Statistics					
1 1	Ni				Statistics		Ni	f Distinct	01	- 40
1 3	Num	ber of Valid Ob	oservations	84			Numbe	r of Distinct (Observations	5 46
1 9						_	_			
1 4	Raw S	tatistics				l	_og-transforr			
1 8			Minimum	0.11				Minimum	of Log Data	a -2.207
1 6			Maximum	1.3				Maximum	of Log Data	a 0.262
1 2			Mean	0.426				Mea	n of log Data	a -1.054
1 8			Median	0.34				SI	D of log Data	a 0.644
1 0			SD	0.278						
3 0		Coefficient of	of Variation	0.652						
3 1			Skewness	1.202						
				Relevant I I	CL Statistics					
2 3	Normal Dis	tribution Test		rtelevant o	or oransucs		ognormal Di	etribution To	net	
3 4	Normal Dis		est Statistic	0.150		L	ognomiai Di		ร รเ Test Statistid	- 0.002
2 5										
2 6		Lilliefors Cr		0.0967		_			Critical Value	
2 7	Data not Normal at !	5% Significand	e Level			Data appea	r Lognormal	at 5% Signi	ficance Leve	el
3 8										
2 0	Assuming Nor	mal Distribution	n			Ass	uming Logno	rmal Distrib	oution	
3 0		95% Stud	ent's-t UCL	0.477					95% H-UCI	_ 0.492
3 1	95% UCLs (Adju	sted for Skew	ness)				95% (Chebyshev ((MVUE) UCI	_ 0.57
3 3	95% Adjuste	ed-CLT UCL (C	Chen-1995)	0.48			97.5%	Chebyshev ((MVUE) UCI	0.632
3 3	95% Modifi	ed-t UCL (Johr	nson-1978)	0.477			99% (Chebyshev ((MVUE) UCL	_ 0.753
3 4										
3 2	Gamma Dis	tribution Test					Data Dis	stribution		
3 6		k star (bias	corrected)	2.559	Data Fo	ollow Appr. (Gamma Distr	ibution at 5°	% Significan	ce Level
		•	Theta Star						, c e . g	
			E of Mean							
3 8		ILE of Standar								
3 0	ıv	ILL OI Stariuari								
* *	A	t- Obi O	nu star				NI	ula Oradaria	_	
4 1		te Chi Square					Nonparamet			0.470
4 3		sted Level of S	_						5% CLT UCI	
4 3	A	djusted Chi Sq	uare Value	382			_		ackknife UCL	
4 4							95%		ootstrap UCI	
4 2		rson-Darling Te						95% Boo	otstrap-t UCL	_ 0.48
4 9	Anderson	-Darling 5% Cr	itical Value	0.761			9	5% Hall's Bo	ootstrap UCI	_ 0.484
4 . 2	Kolmogo	rov-Smirnov Te	est Statistic	0.0954			95% F	Percentile Bo	ootstrap UCI	0.476
4 8	Kolmogorov-S	Smirnov 5% Cr	itical Value	0.0985			(95% BCA Bo	ootstrap UCI	_ 0.484
4 8	Data follow Appr. Gamma Distr	ibution at 5%	Significand	e Level			95% Ch	ebyshev(Me	an, Sd) UCl	0.558
5 0							97.5% Ch	ebyshev(Me	an, Sd) UCI	_ 0.616
2 1	Assuming Gan	nma Distributio	on						an, Sd) UCL	
5 2		pproximate Ga		0.479				- , -	•	
2 3		% Adjusted G								
Н	30									
5 4	Detential	UCL to Use					Lico OE0/ A	nnrovimete (Gamma IIO	0.470
5 5	Potential	JOL IO USE					05 8 95% A	pproximate (Gamma UCl	_ 0.4/9
5 6	Materion of "				andal - J · · ·	I Al				101
s 2	Note: Suggestions regarding	_		-		-				
2 8	These recommendation						_	_	=	2)
2 0	and Singh	and Singh (20	003). For	additional in	sight, the us	er may want	to consult a	statistician.		
0 9										
6 1										

	v		Ł	e	н		1	×		
6 2	Total PCBs									
6 3										
			General	Statistics						
e 2	Number of Vali	d Observations	84			Numbe	r of Distinct C	Observations	73	
6 7	Raw Statistics				L	.og-transforr	ned Statistic	s		
		Minimum	0.236			-	Minimum	of Log Data	-1.444	
		Maximum	11.8				Maximum	of Log Data	2.468	
3 0		Mean	2.511				Mea	n of log Data	0.641	
2 1		Median	2.055				SI	of log Data	0.771	
2 3		SD	2.082							
7 3	Coeffici	ent of Variation	0.829							
7 4		Skewness	2.381							
2 5										
2 4			Relevant U	CL Statistics						
2 2	Normal Distribution To	est			Lo	ognormal Di	stribution Te	st		
7 8	Lilliefo	s Test Statistic	0.14				Lilliefors	Test Statistic	0.0534	
3 0	Lilliefor	s Critical Value	0.0967				Lilliefors (Critical Value	0.0967	
* 0	Data not Normal at 5% Signific	ance Level			Data appear	Lognormal	at 5% Signif	icance Leve	el	
* 1										
8 3	Assuming Normal Distrib	oution			Assu	ıming Logno	rmal Distrib	ution		
. ,	95% S	Student's-t UCL	2.889					95% H-UCL	3.039	
	95% UCLs (Adjusted for S	kewness)						MVUE) UCL		
8 2	95% Adjusted-CLT UC	L (Chen-1995)	2.948			97.5%	Chebyshev (MVUE) UCL	4.044	
* *	95% Modified-t UCL (Johnson-1978)	2.899			99% (Chebyshev (MVUE) UCL	4.934	
8 7										
* *	Gamma Distribution T					Data Dis				
* *	k star (bias corrected)		Data appear Gamma Distributed at 5% Significance Level						
		Theta Star								
* 1	MI E of Chou	MLE of Mean								
8 3	MLE OI Stai	dard Deviation nu star								
* 1	Approximate Chi Squ					Nonparamet	ric Statistics			
	Adjusted Level					Nonparame		, 5% CLT UCL	2 885	
		i Square Value						ckknife UCL		
	, tajacica c	. oqua.o ra.ao	_,			95%		otstrap UCL		
	Anderson-Darlin	a Test Statistic	0.532					tstrap-t UCL		
	Anderson-Darling 59	_				9		otstrap UCL		
	Kolmogorov-Smirno							otstrap UCL		
	Kolmogorov-Smirnov 59							otstrap UCL		
1 0 2	Data appear Gamma Distributed at 5%	Significance	Level			95% Ch	ebyshev(Me	an, Sd) UCL	3.501	
1 0 3						97.5% Ch	ebyshev(Me	an, Sd) UCL	3.93	
1 0 4	Assuming Gamma Distril	oution				99% Ch	ebyshev(Me	an, Sd) UCL	4.771	
1 0 5	95% Approximat	e Gamma UCL	2.877							
1 0 6	95% Adjuste	d Gamma UCL	2.884							
1 0 2										
1 0 8	Potential UCL to Us	е				Use 95% A	pproximate (Gamma UCL	2.877	
1 0 8										
1 1 0	Note: Suggestions regarding the sele	ection of a 95%	UCL are pr	ovided to hel	p the user to	select the r	nost approp	riate 95% U	CL.	
1 1 1	These recommendations are base	d upon the res	ults of the si	mulation stu	dies summaı	ized in Sing	h, Singh, an	d laci (2002)	
1 1 3	and Singh and Singl	n (2003). For	additional in	sight, the use	er may want	to consult a	statistician.			
1 1 3										

	, , ,	t c	*	1	1	К	r
1	General UCL Statistics	for Data Sets with Non-	Detects				
3	User Selected Options						
3	From File J:\Projects\JM Waller RA	AC Lite Region 4\Annisto	n OU IV\Data\F	ProUCL\Loc	ationB_Bas	s ProUCL Inp	ut.xls.wst
•	Full Precision OFF						
	Confidence Coefficient 95%						
,	Number of Bootstrap Operations 2000						
	' '						
_	Manager						
٠	Mercury						
1 0							
1.1		General Statistics					
1 3	Number of Valid Observations	27		Numbe	r of Distinct	Observations	21
1 3							
1 4	Raw Statistics		L	og-transforr	ned Statisti	ics	
1 2	Minimum	0.12			Minimur	m of Log Data	-2.12
1 4	Maximum	1.3			Maximur	n of Log Data	0.262
1.3	Mean	0.684			Mea	an of log Data	-0.466
<u> </u>	Median	0.68				D of log Data	
		0.255				D of log Data	0.100
	Coefficient of Variation						
3 0							
3 1	Skewness	0.256					
3 3							
3 3		Relevant UCL Statistic	-				
3 4	Normal Distribution Test		Lo	gnormal Di	stribution T	est	
2 5	Shapiro Wilk Test Statistic	: 0.979		S	hapiro Wilk	Test Statistic	0.876
2 6	Shapiro Wilk Critical Value	0.923		S	hapiro Wilk	Critical Value	0.923
2 7	Data appear Normal at 5% Significance Level		Data not Lo	gnormal at	5% Signific	cance Level	
3 8							
3 0	Assuming Normal Distribution		Assu	ming Logno	rmal Distril	bution	
3 0	95% Student's-t UCL	. 0.767				95% H-UCL	0.837
3 1	95% UCLs (Adjusted for Skewness)			95%	Chebyshev	(MVUE) UCL	0.981
7 7	95% Adjusted-CLT UCL (Chen-1995)	0.767			-	(MVUE) UCL	
<u> </u>	95% Modified-t UCL (Johnson-1978)				-	(MVUE) UCL	
	5575 meamou 1 5 5 2 (651m6511 1 575)	0.700		0070	ooz, oo	(02) 002	
, ,	Gamma Distribution Test			Data Die	stribution		
, ,	k star (bias corrected)	5 354	Data annos			cance Level	
3 6	Theta Star		Data appea	ii Nomiai a	. 5 % Olgilli	Cance Level	
3 7							
3 8	MLE of Mean						
3 0	MLE of Standard Deviation						
4 0	nu star						
4 1	Approximate Chi Square Value (.05)	250.7	ı	lonparame	tric Statistic	S	
4 3	Adjusted Level of Significance	0.0401			9	5% CLT UCL	0.764
4 3	Adjusted Chi Square Value	248.4			95% J	ackknife UCL	0.767
				95%	Standard B	ootstrap UCL	0.764
4 2	Anderson-Darling Test Statistic	0.516			95% Bo	otstrap-t UCL	0.77
	Anderson-Darling 5% Critical Value			9		ootstrap UCL	
	Kolmogorov-Smirnov Test Statistic					ootstrap UCL	
	Kolmogorov-Smirnov 798 Critical Value					ootstrap UCL	
* *	Data appear Gamma Distributed at 5% Significance					•	
* *	Data appear Gamma Distributed at 5% Significance	Levei			-	ean, Sd) UCL	
2 0					-	ean, Sd) UCL	
2 1	Assuming Gamma Distribution			99% Ch	ebyshev(M	ean, Sd) UCL	1.1/2
5 3	95% Approximate Gamma UCL						
2 7	95% Adjusted Gamma UCL	. 0.796					
2 4							
2 2	Potential UCL to Use			l	Jse 95% St	udent's-t UCL	0.767
5 6							
5 2	Note: Suggestions regarding the selection of a 95%	UCL are provided to he	elp the user to	select the	nost appro	priate 95% U	CL.
2 8	These recommendations are based upon the res	sults of the simulation st	udies summar	zed in Sing	h, Singh, a	nd laci (2002))
	and Singh and Singh (2003). For			_	_	-	
		,	<u>,</u>				

Appendix E
ProUCL Output for Fish Tissue- Location B Bass
Anniston PCB Site
OU IV

		9	T c	T 0	T t	T t	e	н	1	1	T *	T r	
6 2	Total PCBs		<u> </u>	<u> </u>	<u>. </u>	<u> </u>					<u> </u>		
6 3													
e 4						General	Statistics						
6 5			Num	ber of Valid C	Observations	. 27			Numbe	r of Distinct (Observations	24	
e e													
6 7			Raw S	tatistics				L	.og-transforr	ned Statistic	es		
					Minimum	0.329			-		of Log Data	-1.112	
					Maximum	11.8				Maximum	of Log Data	2.468	
7 0					Mean	2.936				Mea	n of log Data	0.824	
7 1					Median	2.81				SI	D of log Data	0.783	
7 2					SD	2.188							
2 3				Coefficient	t of Variation	0.745							
2 4					Skewness	2.55							
2 5													
2 6						Relevant U	CL Statistics						
3 3			Normal Dist	tribution Test	t			Lo	ognormal Di	stribution Te	est		
7 8			5	Shapiro Wilk	Test Statistic	0.755			S	Shapiro Wilk	Test Statistic	0.905	
2 0			S	Shapiro Wilk C	Critical Value	0.923			S	hapiro Wilk (Critical Value	0.923	
* 0		Data not	t Normal at 5	5% Significar	nce Level			Data not L	ognormal at	5% Signific	ance Level		
8 3	j	As	suming Nor	mal Distribut	ion			Assı	uming Logno	rmal Distrib	ution		
8 3	j			95% Stu	dent's-t UCL	3.654					95% H-UCL	4.382	
8 4				sted for Ske	-			95% Chebyshev (MVUE) UCL 5.2					
8 2			-	ed-CLT UCL (-	(MVUE) UCL		
* *			95% Modifie	ed-t UCL (Jol	hnson-1978)	3.689			99%	Chebyshev ((MVUE) UCL	8.073	
8 7			- -										
			Gamma Dis	tribution Tes		4 047	-			stribution			
				k star (bia	as corrected)		L	Data do not follow a Discernable Distribution (0.05)					
					Theta Star								
• •			N	N LE of Standa	MLE of Mean								
	İ		lvi	LE 01 Stariua	nu star								
. ,	ł		Approvima	te Chi Square					Nonparame	rio Statistica	•		
	ł			sted Level of					Nuiparame		s 5% CLT UCL	3 630	
* *	ł			sted Level of djusted Chi S							ackknife UCL		
	ł		/ "	JJusieu Om C	quaic value	13.13			95%		ootstrap UCL		
	ł		Ander	rson-Darling	Test Statistic	1 002			00.0		otstrap-t UCL		
				Darling 5% C					9		ootstrap UCL		
	ĺ			rov-Smirnov							ootstrap UCL		
	ĺ	k	-	Smirnov 5% C							ootstrap UCL		
	Data		-	ed at 5% Sig							an, Sd) UCL		
1 0 3											an, Sd) UCL		
	ĺ	As	suming Gan	nma Distribut	tion					-	an, Sd) UCL		
1 0 2	ĺ		_	pproximate C		. 3.75					·- , ,		
				% Adjusted C									
1 0 7				-									
			Potential l	JCL to Use				ι	Jse 95% Che	ebyshev (Me	an, Sd) UCL	4.772	
										-			
1 1 0	Note:	Suggesti	ions regardir	ng the select	ion of a 95%	6 UCL are pro	ovided to he	lp the user to	select the	most approp	riate 95% U	CL.	
	The	ese recor	nmendations	s are based	upon the res	sults of the si	mulation stu	dies summa	rized in Sing	h, Singh, an	nd laci (2002	:)	
1 1 3			and Singh	and Singh (2003). For	additional ins	sight, the use	er may want	to consult a	statistician.			
1 1 3													

	Y 8 C 0 t		c	н	1	1	К	r
1	General UCL Statistics	for Data Set	s with Non-D	etects				
3	User Selected Options							
3	From File J:\Projects\JM Waller RA	C Lite Regio	n 4\Anniston	OU IV\Data\	ProUCL\Loc	ationB_Catfis	h ProUCL In	put.xls.wst
4	Full Precision OFF							
2	Confidence Coefficient 95%							
ę	Number of Bootstrap Operations 2000							
3								
	Mercury							
	•							
		General	Statistics					
	Number of Valid Observations				Numbe	r of Distinct O	hservations	23
						. 0. 2.00. 0	200.100	0
, ,	Raw Statistics			ı	og_transfor	ned Statistics		
1 1	Minimum	Λ 11		•	-og-transion		of Log Data	2 207
1 5							=	
1 4	Maximum						of Log Data	
1 2		0.362					of log Data	
1.8	Median					SD	of log Data	0.5/2
1 0		0.244						
3 0	Coefficient of Variation							
3 1	Skewness	2.301						
3 3								
3 3		Relevant U	CL Statistics					
3 4	Normal Distribution Test			L	ognormal Di	stribution Tes	st	
2 5	Shapiro Wilk Test Statistic	0.79			S	Shapiro Wilk T	est Statistic	0.981
5 4	Shapiro Wilk Critical Value	0.924			S	hapiro Wilk C	ritical Value	0.924
3 3	Data not Normal at 5% Significance Level			Data appear	r Lognormal	at 5% Signifi	cance Leve	I
, ,	_							
3 0	Assuming Normal Distribution			Ass	uming Logno	ormal Distribu	ıtion	
, ,	95% Student's-t UCL	0.44					95% H-UCL	0.449
7 1	95% UCLs (Adjusted for Skewness)				95%	Chebyshev (N		
-	95% Adjusted-CLT UCL (Chen-1995)	0 459				Chebyshev (N	•	
	95% Modified-t UCL (Johnson-1978)					Chebyshev (N	•	
-	3070 Modified 1 00E (0011113011 1070)	0.444			3370	Onebyonev (i		0.704
3 1	Gamma Distribution Test				Doto Dir	stribution		
2 5		2 022	Dete	onnoor Co		uted at 5% Si	anificance I	ovol
, ,	k star (bias corrected) Theta Star		Data	i appeai Gai	IIIIIa Distribi	ileu al 5% Si	grillicarice i	-evei
3 7								
7 7	MLE of Mean							
3 0	MLE of Standard Deviation							
+ 0	nu star							
* 1	Approximate Chi Square Value (.05)				Nonparame	tric Statistics		
4 3	Adjusted Level of Significance						% CLT UCL	
4 3	Adjusted Chi Square Value	128.5					ckknife UCL	
• •					95%	Standard Boo	•	
4 5	Anderson-Darling Test Statistic					95% Boot	strap-t UCL	0.48
* *	Anderson-Darling 5% Critical Value	0.753			9	5% Hall's Bo	otstrap UCL	0.567
4 2	Kolmogorov-Smirnov Test Statistic	0.115			95% I	Percentile Boo	otstrap UCL	0.446
4 8	Kolmogorov-Smirnov 5% Critical Value	0.167			!	95% BCA Boo	otstrap UCL	0.454
* *	Data appear Gamma Distributed at 5% Significance I	Level			95% Ch	ebyshev(Mea	n, Sd) UCL	0.563
8 0					97.5% Ch	ebyshev(Mea	n, Sd) UCL	0.65
2 1	Assuming Gamma Distribution				99% Ch	ebyshev(Mea	n, Sd) UCL	0.821
8 3	95% Approximate Gamma UCL	0.44						
S 3	95% Adjusted Gamma UCL	0.445						
5 4								
2 2	Potential UCL to Use				Use 95% A	pproximate G	amma UCL	0.44
2 9								
8 1	Note: Suggestions regarding the selection of a 95%	UCL are nr	ovided to he	p the user to	select the	most appropr	iate 95% U	CL.
, .	These recommendations are based upon the res	-						
. "	and Singh and Singh (2003). For				_	_	_ 1401 (2002)	,
	and onigh and onigh (2000). For	aaanuundi ili	ogni, ale usi	o. may want	Jonault a	Judguoidil.		
6 1								

	, ,	c o	t	t	e	н	1	1	к	r		
6.2	Total PCBs	l								<u> </u>		
e 3												
				General	Statistics							
e 2		Number of Valid C	bservations	28			Numbe	r of Distinct C	bservations	27		
6 7		Raw Statistics				L	.og-transforr	ned Statistic	s			
e 1			Minimum	0.236				Minimum	of Log Data	-1.444		
			Maximum	10.8					of Log Data			
2 0			Mean	3.093				Mear	of log Data	0.83		
2 1			Median	2.09					of log Data			
7 2			SD	2.523								
7 2		Coefficient	of Variation	0.816								
2 4			Skewness	1.725								
7 5												
2 6				Relevant U	CL Statistics							
3 3	N	lormal Distribution Test				L	ognormal Di	stribution Te	st			
7 8		Shapiro Wilk T	est Statistic	0.82			_	Shapiro Wilk T		0.971		
2 0		Shapiro Wilk C	ritical Value	0.924				hapiro Wilk C				
* 0	Data not N	Normal at 5% Significan				Data appeai		at 5% Signifi				
* 1		_					_	_				
* 3	Ass	uming Normal Distributi	on			Assı	uming Logno	ormal Distribi	ution			
8 3		95% Stud	dent's-t UCL	3.906					95% H-UCL	4.62		
* 4	95% L	JCLs (Adjusted for Skev	vness)				95%	Chebyshev (I	MVUE) UCL	5.569		
8 2	9:	5% Adjusted-CLT UCL (Chen-1995)	4.044		95% Chebyshev (MVUE) UCL 5.569 97.5% Chebyshev (MVUE) UCL 6.605						
	Ç	95% Modified-t UCL (Joh	ınson-1978)	3.931			99%	Chebyshev (I	MVUE) UCL	8.639		
8 7												
	G	amma Distribution Test	:				Data Dis	stribution				
. ,		k star (bia	s corrected)	1.647	Data	appear Gai	mma Distribu	uted at 5% S	ignificance	Level		
			Theta Star	1.878								
		M	ILE of Mean	3.093								
0 3		MLE of Standa	rd Deviation	2.41								
. ,			nu star	92.25								
	,	Approximate Chi Square	Value (.05)	71.1			Nonparame	tric Statistics	i			
* *		Adjusted Level of	Significance	0.0404				95	% CLT UCL	3.878		
		Adjusted Chi So	quare Value	69.95				95% Ja	ckknife UCL	3.906		
* 3							95%	Standard Bo	otstrap UCL	3.869		
		Anderson-Darling T	est Statistic	0.369				95% Boo	tstrap-t UCL	4.161		
		Anderson-Darling 5% C	ritical Value	0.76			9	5% Hall's Bo	otstrap UCL	4.472		
1 0 0		Kolmogorov-Smirnov T	est Statistic	0.139			95% F	Percentile Bo	otstrap UCL	3.933		
1 0 1	Ko	lmogorov-Smirnov 5% C	ritical Value	0.168			9	95% BCA Bo	otstrap UCL	4.085		
1 0 3	Data appear Gam	ma Distributed at 5% S	ignificance l	Level			95% Ch	ebyshev(Mea	an, Sd) UCL	5.172		
1 0 3							97.5% Ch	ebyshev(Mea	an, Sd) UCL	6.071		
1 0 4	Assı	uming Gamma Distribut	ion				99% Ch	ebyshev(Mea	an, Sd) UCL	7.838		
1 0 2		95% Approximate G	amma UCL	4.014								
1 0 6		95% Adjusted C	amma UCL	4.079								
1 0 7												
1 0 8		Potential UCL to Use					Use 95% A	pproximate C	amma UCL	4.014		
1 0 0												
1 1 0	Note: Suggestion	ns regarding the selecti	on of a 95%	UCL are pro	ovided to hel	p the user to	select the i	most approp	riate 95% U	CL.		
1 (1	These recomm	mendations are based ι	pon the res	sults of the si	mulation stu	dies summa	rized in Sing	h, Singh, an	d laci (2002	2)		
1 1 5		and Singh and Singh (2	2003). For	additional in:	sight, the use	er may want	to consult a	statistician.				
1 1 3												

	O TO THE LIGHT CONTROL OF THE	1 D 1 O 1 Mb Non	н	1	1 K	r
-	General UCL Statistics	for Data Sets with Non-	Detects			
3	User Selected Options					
3	From File J:\Projects\JM Waller RA	C Lite Region 4\Annisto	n OU IV\Data\F	ProUCL\Loc	ationB_Panfish ProUCL	Input.xls.wst
,	Full Precision OFF					
2	Confidence Coefficient 95%					
ę	Number of Bootstrap Operations 2000					
3						
	Mercury					
		General Statistics				
	Number of Valid Observations			Numbo	r of Distinct Observation	c 10
1 3	Number of Valid Observations	23		Number	or Distillet Observation	3 13
1 3	Raw Statistics		i.	a transform	mad Statistics	
		0.11	L	og-uansion	ned Statistics	- 0.007
1 2	Minimum				Minimum of Log Dat	
1 4	Maximum 				Maximum of Log Dat	
1 2		0.249			Mean of log Dat	
	Median	0.24			SD of log Dat	a 0.419
1 0	SD	0.102				
3 0	Coefficient of Variation	0.41				
3 1	Skewness	0.628				
3 3						
3 3		Relevant UCL Statistic	es			
5 4	Normal Distribution Test		Lo	gnormal Di	stribution Test	
2 5	Shapiro Wilk Test Statistic	0.944		S	Shapiro Wilk Test Statisti	c 0.964
3 4	Shapiro Wilk Critical Value				hapiro Wilk Critical Valu	
7 3	Data appear Normal at 5% Significance Level		Data appear		at 5% Significance Lev	
3.8				g		-
\mathbb{H}	Assuming Normal Distribution		Δοςιι	mina Loanc	ormal Distribution	
, ,	95% Student's-t UCL	0.281	Assu	illing Logic	95% H-UC	1 0 20
3 0		0.261		0E9/ /		
3 1	95% UCLs (Adjusted for Skewness)	0.000			Chebyshev (MVUE) UC	
3 3	95% Adjusted-CLT UCL (Chen-1995)				Chebyshev (MVUE) UC	
3 3	95% Modified-t UCL (Johnson-1978)	0.281		99% (Chebyshev (MVUE) UC	L 0.448
7 4						
2 5	Gamma Distribution Test				stribution	
3 6	k star (bias corrected)		Data appea	r Normal at	t 5% Significance Level	
3 3	Theta Star	0.0444				
2 8	MLE of Mean	0.249				
3 0	MLE of Standard Deviation	0.105				
4 0	nu star	324.7				
+ 1	Approximate Chi Square Value (.05)	283.9	ı	Nonparamet	tric Statistics	
4 3	Adjusted Level of Significance	0.0407			95% CLT UC	L 0.28
4 3	Adjusted Chi Square Value	281.7			95% Jackknife UC	L 0.281
				95%	Standard Bootstrap UC	L 0.279
+ 2	Anderson-Darling Test Statistic	0.35			95% Bootstrap-t UC	L 0.284
	Anderson-Darling 5% Critical Value	0.747		9	5% Hall's Bootstrap UC	L 0.283
4 7	Kolmogorov-Smirnov Test Statistic	0.11		95% F	Percentile Bootstrap UC	L 0.28
, ,	Kolmogorov-Smirnov 5% Critical Value				95% BCA Bootstrap UC	
	Data appear Gamma Distributed at 5% Significance L				ebyshev(Mean, Sd) UC	
\mathbb{H}	Jana appeal dallilla Jiounbalea at 676 oigililleanee I	-0.0.			ebyshev(Mean, Sd) UC	
	Assuming Gamma Distribution				ebyshev(Mean, Sd) UC	
5 1	95% Approximate Gamma UCL	0.294		33 /0 CII	ebysnev(ivican, ou) oc	L 0.437
5 3						
5 3	95% Adjusted Gamma UCL	0.287				
5 4						
2 2	Potential UCL to Use			(Jse 95% Student's-t UC	L 0.281
2 4						
s 2	Note: Suggestions regarding the selection of a 95%	UCL are provided to h	elp the user to	select the i	most appropriate 95% l	JCL.
5 8	These recommendations are based upon the res	ults of the simulation st	udies summar	zed in Sing	h, Singh, and laci (200	2)
8 8	and Singh and Singh (2003). For	additional insight, the u	ser may want t	o consult a	statistician.	
6 0						
e 1						

			c	*		1	×	,		
	Total PCBs			-		·				
	10011 050									
		General	Statistics							
	Number of Valid Observations		Otatiotics		Numbo	r of Distinct C)hearvatione	28		
6 5	Number of Valid Observations	23			Numbe	I OI DISHIICE C)DSGI VALIONS	20		
	Raw Statistics			ı	og tronoforr	nad Statistia	•			
6.7		0.244		L	.og-transion	ned Statistic		1 411		
6 8	Minimum						of Log Data			
	Maximum						of Log Data			
2 0		1.552					of log Data			
2 1	Median					SL	of log Data	0.58		
2 2		0.895								
7 3	Coefficient of Variation									
7 4	Skewness	1.452								
2 5		Dalamentill	01 04-41-41							
7 6	Name I Distribution Total	Relevant U	CL Statistics		I D:					
2 2	Normal Distribution Test	0.000		L	-	stribution Te		0.007		
7 8	Shapiro Wilk Test Statistic					Shapiro Wilk T				
2 8	Shapiro Wilk Critical Value	0.926	_			hapiro Wilk C				
* *	Data not Normal at 5% Significance Level		L	ota appeai	Lognormai	at 5% Signif	icance Leve)		
* 1	A LANGE TO STATE OF			_		151.11				
8 3	Assuming Normal Distribution	1.005		Assı	uming Logno	ormal Distrib		1.007		
* 3	95% Student's-t UCL	1.835			050/		95% H-UCL			
* *	95% UCLs (Adjusted for Skewness)	4.074			95% Chebyshev (MVUE) UCL 2.34 97.5% Chebyshev (MVUE) UCL 2.68					
* 2	95% Adjusted-CLT UCL (Chen-1995)						•			
8 9	95% Modified-t UCL (Johnson-1978)	1.842			99%	Chebyshev (I	MVUE) UCL	3.342		
8 7	Osmana Bishiibadaa Tash				Data Dia					
* *	Gamma Distribution Test	2 115	Data			stribution	ianifiaanaa l	Lavral		
* *	k star (bias corrected) Theta Star		Data appear Gamma Distributed at 5% Significance Level							
0 1	MLE of Mean									
9 3	MLE of Standard Deviation									
9 3	nu star				Mannanana	uia Okakiakiaa				
	Approximate Chi Square Value (.05)				Nonparame	tric Statistics		1.000		
0 2	Adjusted Level of Significance						% CLT UCL			
	Adjusted Chi Square Value	148.9			050/		ckknife UCL			
9 7	Andrews Dadies Tret Obstitute	0.200			95%	Standard Bo	-			
	Anderson-Darling Test Statistic				•		tstrap-t UCL			
	Anderson-Darling 5% Critical Value					5% Hall's Bo	•			
	Kolmogorov-Smirnov Test Statistic					Percentile Bo	-			
	Kolmogorov-Smirnov 5% Critical Value					95% BCA Bo	-			
1 0 3	Data appear Gamma Distributed at 5% Significance I	Level				ebyshev(Mea	•			
1 0 3	Accorded Common Printer III					ebyshev(Me	•			
1 0 4	Assuming Gamma Distribution	1.000			99% Ch	ebyshev(Mea	an, Sa) UCL	J.∠Ub		
1 0 5	95% Approximate Gamma UCL									
100	95% Adjusted Gamma UCL	1.883								
1 0 7	D-AAt-IIIO				Her OFO(*		Name = 1101	1.000		
1 0 8	Potential UCL to Use				Use 95% A	pproximate C	amma UCL	1.862		
	Notes Overseller and the U.S. Committee of the Committee			- 4b · · ·	· · · ·		-i 050/ !!	01		
1 1 0	Note: Suggestions regarding the selection of a 95%	-	-							
	These recommendations are based upon the res				_	=	a iaci (2002)		
1 1 3	and Singh and Singh (2003). For	additional in	signt, the use	r may want	to consult a	statistician.				
1 1 3										

	General UCL Statistic	o for Data Sate	a with Nan Detacta
,		5 IUI DAIA 5618	9 AIM IAOII-DGIGCI9
3	User Selected Options	MOLita Dania	and Albanistan Old IVAD stay Doct IOLV a sertion Old IVA continue Doct IOLV Income and Iolanda and Iol
3		RAC LITE REGIO	on 4\Anniston OU IV\Data\ProUCL\LocationC_All Species ProUCL Input.xls
1	Full Precision OFF		
8	Confidence Coefficient 95%		
ę	Number of Bootstrap Operations 2000		
2			
*			
٠	2,3,7,8-TCDD TEQ		
1 0			
		General	Statistics
1 3	Number of Valid Observation	ns 19	Number of Distinct Observations 19
1 3			
1 4	Raw Statistics		Log-transformed Statistics
1 2	Minimu	m 2.979E-07	Minimum of Log Data -15.03
1 4	Maximu	m 1.366E-06	Maximum of Log Data -13.5
1 2	Mea	n 6.834E-07	Mean of log Data -14.26
	Media	n 6.883E-07	SD of log Data 0.376
1 0	S	D 2.59E-07	
3 0	Coefficient of Variation	n N/A	
3 1	Skewnes	ss 0.959	
3 3			
3 3		Relevant UO	CL Statistics
3 4	Normal Distribution Test		Lognormal Distribution Test
2 5	Shapiro Wilk Test Statist	ic 0.933	Shapiro Wilk Test Statistic 0.975
2 6	Shapiro Wilk Critical Valu	ie 0.901	Shapiro Wilk Critical Value 0.901
2 7	Data appear Normal at 5% Significance Leve	I	Data appear Lognormal at 5% Significance Level
3 8			
2 0	Assuming Normal Distribution		Assuming Lognormal Distribution
3 0	95% Student's-t UC	L 7.864E-07	95% H-UCL 8.124E-07
3 1	95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL 9.461E-07
3 3	95% Adjusted-CLT UCL (Chen-199	5) 7.951E-07	97.5% Chebyshev (MVUE) UCL 1.06E-06
, ,	95% Modified-t UCL (Johnson-197	8) 7.886E-07	99% Chebyshev (MVUE) UCL 1.283E-06
y 4			
3 5	Gamma Distribution Test		Data Distribution
3 6	k star (bias correcte	d) 6.543	Data appear Normal at 5% Significance Level
3 7	Theta St	ar 1.045E-07	
3 8	MLE of Mea	n 6.834E-07	
3 0	MLE of Standard Deviation	on 2.672E-07	
1 0	nu st	ar 248.6	
• 1	Approximate Chi Square Value (.0.	5) 213.1	Nonparametric Statistics
1 3	Adjusted Level of Significance	·	95% CLT UCL 7.811E-07
4 3	Adjusted Chi Square Valu		95% Jackknife UCL 7.864E-07
			95% Standard Bootstrap UCL 7.797E-07
4 2	Anderson-Darling Test Statist	ic 0.306	95% Bootstrap-t UCL 8.098E-07
4 9	Anderson-Darling 5% Critical Valu		95% Hall's Bootstrap UCL 8.326E-07
4 7	Kolmogorov-Smirnov Test Statist		95% Percentile Bootstrap UCL 7.818E-07
. ,	Kolmogorov-Smirnov 5% Critical Valu		95% BCA Bootstrap UCL 7.875E-07
	Data appear Gamma Distributed at 5% Significance		95% Chebyshev(Mean, Sd) UCL 9.423E-07
2 0	,,		97.5% Chebyshev(Mean, Sd) UCL 1.054E-06
	Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL 1.275E-06
. ,	95% Approximate Gamma UC	L 7.972E-07	
. ,	95% Adjusted Gamma UC		
	3377 Aujusted Gainina OC	_ 5.5512 07	
, ,	Potential UCL to Use		Use 95% Student's-t UCL 7.864E-07
c 8	i Steritiar OOL to USE		036 33 // Olduents-t OCL 7.004E-07
2 9	Note: Suggestions regarding the collection of a CE	% IICI ara n	ovided to help the user to select the most appropriate 050/ 1101
5 7		_	ovided to help the user to select the most appropriate 95% UCL. imulation studies summarized in Singh, Singh, and laci (2002)
2 8	·		
2 0	and Singh and Singh (2003). Fo	n auullional ins	sight, the user may want to consult a statistician.
6 1			

	v i c b t	t		r
e 3	Mercury			
6 3				
		General St	atistics	
9 2	Number of Valid Data	194	Number of Detected Data	192
	Number of Distinct Detected Data	80	Number of Non-Detect Data	2
6. 2			Percent Non-Detects	1.03%
	Raw Statistics		Log-transformed Statistics	
2 0	Minimum Detected	0.026	Minimum Detected	-3.65
3 1	Maximum Detected	1.9	Maximum Detected	0.642
2 2	Mean of Detected	0.394	Mean of Detected	-1.199
2 3	SD of Detected	0.294	SD of Detected	0.762
3 4	Minimum Non-Detect	0.071	Minimum Non-Detect	-2.645
2 5	Maximum Non-Detect	0.073	Maximum Non-Detect	-2.617
2 6	Nata Data baya multiple Di a Libe of I/M Mathad is vaccumous del		Number treated as Non-Detect	0
	Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),	eu	Number treated as Non-Detect Number treated as Detected	8 186
, ,	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	4.12%
* •	essentations - Edigost NE die trouted de NES		onigio De Non Dotost i Groomago	270
* 1		UCL Sta	tistics	
8 3	Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Onl	у
, ,	Lilliefors Test Statistic	0.154	Lilliefors Test Statistic	0.0635
* *	5% Lilliefors Critical Value	0.0639	5% Lilliefors Critical Value	0.0639
* :	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
	Acquiring Normal Distribution		Assuming Lagrannel Distribution	
8 7	Assuming Normal Distribution DL/2 Substitution Method		Assuming Lognormal Distribution DL/2 Substitution Method	
	Mean	0.391	Mean	-1.221
	SD	0.295	SD	0.788
	95% DL/2 (t) UCL	0.426	95% H-Stat (DL/2) UCL	0.451
0 3	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
	Mean	0.385	Mean in Log Scale	-1.215
	SD	0.303	SD in Log Scale	0.776
	95% MLE (t) UCL	0.421	Mean in Original Scale	0.391
	95% MLE (Tiku) UCL	0.42	SD in Original Scale	0.295
			95% t UCL 95% Percentile Bootstrap UCL	0.426 0.429
			95% BCA Bootstrap UCL	0.431
1 0 3	Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
1 0 3	k star (bias corrected)	1.985	Data appear Lognormal at 5% Significance Level	
1 0 4	Theta Star	0.199		
1 0 2	nu star	762.1		
1 0 0	A-D Test Statistic	1 520	Nonnarametria Statistica	
10 1	5% A-D Critical Value	1.528 0.766	Nonparametric Statistics Kaplan-Meier (KM) Method	
	K-S Test Statistic	0.766	Mean	0.391
1 1 0	5% K-S Critical Value	0.0666	SD	0.294
	Data not Gamma Distributed at 5% Significance Level		SE of Mean	0.0212
1 1 3			95% KM (t) UCL	0.426
1 1 3	Assuming Gamma Distribution		95% KM (z) UCL	0.426
1 1 4	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.426
113	Minimum	1E-12	95% KM (bootstrap t) UCL	0.43
1 1 9	Maximum	1.9	95% KM (Boca) UCL	0.427
1 1 3	Mean Median	0.39 0.29	95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.427 0.483
111	sD	0.29	97.5% KM (Chebyshev) UCL	0.463
1 3 0	k star	1.065	99% KM (Chebyshev) UCL	0.602
1 3 1	Theta star	0.367	(=, ,	
1 3 3	Nu star	413.2	Potential UCLs to Use	
1 3 3	AppChi2	367.1	95% KM (BCA) UCL	0.427

Appendix E
ProUCL Output for Fish Tissue- Location C All Species
Anniston PCB Site
OU IV

	Y		c	0	ŧ	t	ć	н	1	1	к	r	
1 3 4		95% Gamma Approximate UCL 0.439											
1 2 5	1	95% Adjusted Gamma UCL 0.44											
1 2 4	Note: DL/2 i	lote: DL/2 is not a recommended method.											
1 3 3													
1 3 8	No	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.											
1 3 0] т	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).											
1 3 0	For additional insight, the user may want to consult a statistician.												

	, , , , , , , , , , , , , , , , , , , ,	E	e	*	'	1	к	,		
1 3 1										
1 3 3	DOD Diovis like Occurrence TEO									
1 3 3	PCB Dioxin-like Congener TEQ									
1 3 4			.							
1 3 5			Statistics							
1 2 6	Number of Valid Observations	20			Numbe	r of Distinct C	bservations	s 18		
1 3 7										
1 7 8	Raw Statistics			Log-transformed Statistics						
1 3 8	Minimum	1.955E-06		Minimum of Log Data -13.19						
1 4 0	Maximum	1.842E-05				Maximum	of Log Data	ı -10.9		
1 + 1	Mean	6.905E-06				Mear	of log Data	ı -11.99		
1 4 3	Median	0.0000065				SE	of log Data	0.466		
1 4 3	SD	3.494E-06								
1 4 4	Coefficient of Variation	N/A								
1 4 2	Skewness	1.96								
1 4 9										
1 4 7		Relevant U	CL Statistics							
	Normal Distribution Test			Lo	ognormal Di	stribution Te	st			
1 4 4	Shapiro Wilk Test Statistic	0.831			5	Shapiro Wilk T	est Statistic	0.958		
1 2 0	Shapiro Wilk Critical Value	0.905			S	hapiro Wilk C	ritical Value	0.905		
1 8 1	Data not Normal at 5% Significance Level			Data appear	Lognormal	at 5% Signifi	cance Leve	el		
1 5 3										
1 2 3	Assuming Normal Distribution			Assu	ıming Logno	ormal Distribu	ıtion			
1 2 4	95% Student's-t UCL	8.256E-06					95% H-UCL	8.586E-06		
1 5 5	95% UCLs (Adjusted for Skewness)				95%	Chebyshev (I	MVUE) UCL	1.014E-05		
1 2 2	95% Adjusted-CLT UCL (Chen-1995)	8.556E-06			97.5%	Chebyshev (I	MVUE) UCL	1.154E-05		
1 5 7	95% Modified-t UCL (Johnson-1978)	8.313E-06			99%	Chebyshev (I	MVUE) UCL	1.429E-05		
1 5 8										
1 2 0	Gamma Distribution Test				Data Di	stribution				
	k star (bias corrected)	4.272	Data	appear Gar	nma Distrib	uted at 5% S	ignificance	Level		
1 0 1	Theta Star	1.616E-06								
1 6 2	MLE of Mean	6.905E-06								
1 6 3	MLE of Standard Deviation	3.341E-06								
1 0 4	nu star	170.9								
1 6 5	Approximate Chi Square Value (.05)	141.6			Nonparame	tric Statistics				
1 0 0	Adjusted Level of Significance	0.038				95	% CLT UCL	8.19E-06		
1 6 7	Adjusted Chi Square Value	139.5				95% Ja	ckknife UCL	8.256E-06		
					95%	Standard Bo	otstrap UCL	8.126E-06		
1 0 0	Anderson-Darling Test Statistic	0.448					•	8.823E-06		
1 7 0	Anderson-Darling 5% Critical Value				g	95% Hall's Bo	-			
1 3 1	Kolmogorov-Smirnov Test Statistic					Percentile Bo				
1 7 2	Kolmogorov-Smirnov 5% Critical Value					95% BCA Bo	•			
1 7 3	Data appear Gamma Distributed at 5% Significance L					nebyshev(Mea	•			
1 3 4						nebyshev(Mea	-			
1 2 5	Assuming Gamma Distribution					nebyshev(Mea	•			
1 2 4	95% Approximate Gamma UCL	8.33E-06					,			
1 2 2	95% Adjusted Gamma UCL									
1 3 9	.,									
1 3 0	Potential UCL to Use				Use 95% A	pproximate G	amma UCL	8.33E-06		
	. 5.5 552 10 500				223 00 70 7					
	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to he	lp the user to	select the	most approp	riate 95% II	ICL.		
	These recommendations are based upon the res	-		-						
	and Singh and Singh (2003). For					_	,	-,		
	and onigh and onigh (2000). Tolk		g.i., aio ao	ay want	Jonioun a	Jacoboldiii				
1 8 2										

	v		c			t.	e	*		1	х .	r		
	Total PCBs		•					_	·					
						General	Statistics							
			Numl	ber of Valid (Observations				Numbe	er of Distinct	Observations	s 154		
			Raw St	tatistics				l	Log-transfor	med Statistic	cs			
1 8 3					Minimum	0.23					of Log Data	a -1.47		
1 8 3					Maximum	34	Maximum of Log Data 3.526							
					Mean	4.346					n of log Data			
1 8 2					Median	3.6					D of log Data			
					SD	3.454								
1 0 2				Coefficien	t of Variation	0.795								
					Skewness	4.018								
3 0 0						Relevant U	CL Statistics							
3 0 1		No	ormal Dist	ribution Tes	t			L	ognormal Di	istribution Te	est			
5 0 3				Lilliefors	Test Statistic	: 0.172			· ·		Test Statistic	0.0681		
3 0 3				Lilliefors (Critical Value	0.0638				Lilliefors (Critical Value	0.0638		
3 0 4		Data not N	ormal at 5	% Significa	nce Level			Data not L	ognormal a	t 5% Signific	ance Level			
3 0 5				J					J	Ū				
2 0 6		Assu	ming Norr	mal Distribut	ion			Ass	uming Logno	ormal Distrib	oution			
5 0 3			Ū		dent's-t UCL	4.757					95% H-UCL	4.824		
2 0 8		95% U	CLs (Adju	sted for Ske	wness)				95%	Chebyshev ((MVUE) UCL	5.416		
5 0 0					, (Chen-1995)	4.832				-	(MVUE) UCL			
2 1 0			=		` hnson-1978)					-	(MVUE) UCL			
5 1 1				,	,					,	,			
5 1 3		Ga	amma Dist	tribution Tes	t				Data Di	stribution				
5 1 3				k star (bia	as corrected)	2.364	D	ata do not f	ollow a Disc	ernable Dist	ribution (0.0	5)		
5 1 4				,	Theta Star						•	•		
5 1 2				N	/ILE of Mean	4.346								
5 1 4			M	LE of Standa	ard Deviation	2.827								
2 1 7					nu star	912.7								
2 1 8		А	pproximat	e Chi Squar	e Value (.05)	843.5			Nonparame	tric Statistic	S			
3 1 0			Adjus	sted Level of	Significance	0.0488			-	9!	5% CLT UCL	4.755		
5 5 0			Ac	djusted Chi S	quare Value	843				95% Ja	ackknife UCL	4.757		
5 5 1									95%	Standard Bo	ootstrap UCL	4.76		
, , ,			Ander	son-Darling	Test Statistic	: 1.277				95% Boo	otstrap-t UCL	4.86		
3 3 3			Anderson-	Darling 5% (Critical Value	0.764			g	95% Hall's Bo	ootstrap UCL	4.949		
5 5 4			Kolmogor	ov-Smirnov	Test Statistic	0.0779			95%	Percentile Bo	ootstrap UCL	4.785		
2 2 5		Kolr	mogorov-S	Smirnov 5% (Critical Value	0.0661				95% BCA B	ootstrap UCL	4.82		
3 3 6	Da	ta not Gamma	Distribute	ed at 5% Sig	nificance Le	vel			95% Ch	nebyshev(Me	an, Sd) UCL	5.43		
5 5 5									97.5% Cł	nebyshev(Me	an, Sd) UCL	5.899		
5 5 8		Assu	ming Gam	ıma Distribu	tion				99% Cł	nebyshev(Me	an, Sd) UCL	6.82		
3 3 8			95% A	pproximate (Gamma UCL	4.702								
3 3 0			959	% Adjusted (Gamma UCL	4.705								
3 3 1														
3 3 3		F	Potential L	JCL to Use				ι	Use 95% Ch	ebyshev (Me	an, Sd) UCL	5.43		
3 3 3														
3 3 4	Not	te: Suggestion	s regardin	ng the select	ion of a 95%	6 UCL are pr	ovided to hel	lp the user to	o select the	most approp	oriate 95% U	ICL.		
2 2 5	٦	These recomm	nendations	s are based	upon the res	sults of the si	imulation stud	dies summa	rized in Sing	gh, Singh, ar	nd laci (2002	2)		
3 3 6		а	and Singh	and Singh (2003). For	additional in	sight, the use	er may want	to consult a	statistician.				
2 3 7														

	y g c b t	t e	ж т т т т
1	General UCL Statistics	<u>I </u>	etects
3	User Selected Options		
3	·	C Lite Region 4\Anniston	OU IV\Data\ProUCL\LocationC_Bass ProUCL Input.xls.wst
	Full Precision OFF	J	
2	Confidence Coefficient 95%		
,	Number of Bootstrap Operations 2000		
3			
,			
	Mercury		
1 0	•		
1 1		General Statistics	
1 3	Number of Valid Observations	67	Number of Distinct Observations 47
1 3			
1 4	Raw Statistics		Log-transformed Statistics
1 2	Minimum	0.09	Minimum of Log Data -2.408
1 4	Maximum	1.9	Maximum of Log Data 0.642
1 3	Mean	0.638	Mean of log Data -0.622
	Median	0.68	SD of log Data 0.656
1 0	SD	0.334	
5 0	Coefficient of Variation	0.524	
3 1	Skewness	0.801	
3 3			
3 3		Relevant UCL Statistics	
3 4	Normal Distribution Test		Lognormal Distribution Test
3 5	Lilliefors Test Statistic	0.0988	Lilliefors Test Statistic 0.158
5 0	Lilliefors Critical Value	0.108	Lilliefors Critical Value 0.108
2 7	Data appear Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level
2 8			
5 0	Assuming Normal Distribution		Assuming Lognormal Distribution
3 0	95% Student's-t UCL	0.706	95% H-UCL 0.781
3 1	95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL 0.916
3 3	95% Adjusted-CLT UCL (Chen-1995)	0.709	97.5% Chebyshev (MVUE) UCL 1.025
, ,	95% Modified-t UCL (Johnson-1978)	0.707	99% Chebyshev (MVUE) UCL 1.239
3 4			
3 5	Gamma Distribution Test		Data Distribution
3 4	k star (bias corrected)	2.933	Data appear Normal at 5% Significance Level
2.7	Theta Star	0.217	
3 8	MLE of Mean	0.638	
3 0	MLE of Standard Deviation	0.372	
4 0	nu star	393.1	
+ 1	Approximate Chi Square Value (.05)	348.1	Nonparametric Statistics
+ 3	Adjusted Level of Significance	0.0464	95% CLT UCL 0.705
4 3	Adjusted Chi Square Value	347.2	95% Jackknife UCL 0.706
٠.			95% Standard Bootstrap UCL 0.703
4 2	Anderson-Darling Test Statistic		95% Bootstrap-t UCL 0.709
4 9	Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL 0.716
4 7	Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL 0.704
	Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL 0.711
* *	Data not Gamma Distributed at 5% Significance Le	vel	95% Chebyshev(Mean, Sd) UCL 0.816
2 0	Annual Company		97.5% Chebyshev(Mean, Sd) UCL 0.893
8 1	Assuming Gamma Distribution	0.70	99% Chebyshev(Mean, Sd) UCL 1.044
5 2	95% Approximate Gamma UCL		
5 3	95% Adjusted Gamma UCL	U./22	
5 4	Potential IIOL to Use		Use 95% Student's-t UCL 0.706
2 2	Potential UCL to Use		Use 95% Student's-t UCL 0.706
2 9	Note: Suggestions reserving the selection of a CEN	المالية المالية المالية المالية	n the upor to coloct the most conversions OFW LIGH
s 7	Note: Suggestions regarding the selection of a 95%	-	
5 8	These recommendations are based upon the res		
8 0	and Singh and Singh (2003). For	auuluunai msiyili, tile use	er may want to consult a statistician.
e 0			
* /			

	v , c	0 .	b	ę	н		1	T ×			
, ,	Total PCBs										
6 3											
			General	Statistics							
e 2	Numl	ber of Valid Observa	tions 67			Numbe	r of Distinct C	Observations	62		
6 7	Raw St	tatistics			L	.og-transforr	ned Statistic	s			
		Mini	mum 1.63	Minimum of Log Data 0.489							
		Maxi	mum 14.9				Maximum	of Log Data	2.701		
2 0		1	Mean 4.751	Mean of log Data 1.446							
3 1		Me	edian 4.3				SI	O of log Data	0.463		
2 2			SD 2.537								
7 3		Coefficient of Vari	ation 0.534								
7 4		Skew	ness 1.924								
2 5											
2 6			Relevant U	CL Statistics							
2 2	Normal Dist	ribution Test			Lo	ognormal Di	stribution Te	est			
7 8		Lilliefors Test Sta	atistic 0.172				Lilliefors	Test Statistic	0.0731		
2 0		Lilliefors Critical \	/alue 0.108				Lilliefors (Critical Value	0.108		
* 0	Data not Normal at 5	% Significance Lev	el		Data appear	Lognormal	at 5% Signif	icance Leve	l		
* 1											
8 3	Assuming Norr	nal Distribution			Assu	ıming Logno	rmal Distrib	ution			
* 3		95% Student's-t	UCL 5.268					95% H-UCL	5.252		
* *	95% UCLs (Adju	sted for Skewness)		95% Chebyshev (MVUE) UCL 5.937							
8 2	95% Adjuste	d-CLT UCL (Chen-1	995) 5.339		97.5% Chebyshev (MVUE) UCL 6.464						
* *	95% Modifie	ed-t UCL (Johnson-1	978) 5.28			99% (Chebyshev (MVUE) UCL	7.499		
8 7											
	Gamma Dist	tribution Test				Data Dis					
		k star (bias corre	•	Data Fo	ollow Appr. G	amma Distr	ibution at 5%	% Significand	ce Level		
			Star 1.074								
* 1	N. 1		Mean 4.751								
8 3	IVII	د LE of Standard Devi	ation 2.259 J star 592.8								
8 3	Approximat	יוו e Chi Square Value:				Nonparamet	rio Statiation				
8 4	• • • • • • • • • • • • • • • • • • • •	sted Level of Signific	•			Nonparame		• 5% CLT UCL	5 261		
0 2		djusted Chi Square \						ckknife UCL			
	,	ijustou om oquare v	dide ooo.1			95%		otstrap UCL			
	Ander	son-Darling Test Sta	atistic 0.914			0070		tstrap-t UCL			
		Darling 5% Critical \				9		otstrap UCL			
1 0 0		ov-Smirnov Test Sta						otstrap UCL			
	_	Smirnov 5% Critical \						otstrap UCL			
1 0 3	Data follow Appr. Gamma Distri							an, Sd) UCL			
1 0 3		_				97.5% Ch	ebyshev(Me	an, Sd) UCL	6.687		
1 0 4	Assuming Gam	ıma Distribution				99% Ch	ebyshev(Me	an, Sd) UCL	7.835		
1 0 2	95% A	pproximate Gamma	UCL 5.241								
1 0 4	959	% Adjusted Gamma	UCL 5.253								
1 0 7											
1 0 8	Potential U	JCL to Use				Use 95% A	pproximate (Gamma UCL	5.241		
1 0 0											
1 1 0	Note: Suggestions regarding	g the selection of a	95% UCL are pro	ovided to hel	p the user to	select the r	nost approp	riate 95% U	CL.		
1 1 1	These recommendations	are based upon th	e results of the si	mulation stud	dies summaı	rized in Sing	h, Singh, an	d laci (2002))		
1 1 3	and Singh	and Singh (2003).	For additional in	sight, the use	er may want	to consult a	statistician.				
1 1 3											

		 			
\dashv	v s	General UCL Statistics for	r Data Sets with	Non-Detects	r
'	User Selected Options		Data OGIS WILLI	Ton Delecte	
3	•		Lita Danian 4) An	wiston Old IV/Data/Drad IOLVI anation C. Cattinh Drad IOL Inner	4 la a 4
3	From File	-	Lite Region 4 An	niston OU IV\Data\ProUCL\LocationC_Catfish ProUCL Input	t.xis.wst
1	Full Precision	OFF			
2	Confidence Coefficient	95%			
ę	Number of Bootstrap Operations	2000			
7					
٠	Mercury				
			General Statist	ics	
1 3		Number of Valid Data	57	Number of Detected Data	5
1 3	Number	of Distinct Detected Data	35	Number of Non-Detect Data	
1 4				Percent Non-Detects	3.519
1 4	Raw S	Statistics		Log-transformed Statistics	
1 3		Minimum Detected	0.047	Minimum Detected	-3.05
		Maximum Detected	0.89	Maximum Detected	-0.11
		Mean of Detected	0.297	Mean of Detected	-1.41
, ,		SD of Detected	0.192	SD of Detected	0.65
, ,		Minimum Non-Detect	0.071	Minimum Non-Detect	-2.64
		Maximum Non-Detect	0.071	Maximum Non-Detect	-2.61
3 3		Maximum Non-Detect	0.073	Maximum Non-Detect	-2.01
,	Noto: Data have multiple DI e III	of KM Mothod is recommend	lod	Number treated as Non-Detect	
	Note: Data have multiple DLs - Use of		iea		_
	For all methods (except KM, DL/2, ar	·		Number treated as Detected	5
	Observations < Largest ND are treate	ed as NDs		Single DL Non-Detect Percentage	8.779
3 3					
5 8			UCL Statistic		
3 0	Normal Distribution Test	with Detected Values Only		Lognormal Distribution Test with Detected Values Only	
3 0		Lilliefors Test Statistic	0.19	Lilliefors Test Statistic	0.0786
3 1		5% Lilliefors Critical Value	0.119	5% Lilliefors Critical Value	0.119
3 3	Data not Normal at	5% Significance Level		Data appear Lognormal at 5% Significance Level	
, ,					
3 4	Assuming Nor	rmal Distribution		Assuming Lognormal Distribution	
3 5		DL/2 Substitution Method		DL/2 Substitution Method	
2 6		Mean	0.288	Mean	-1.48
2 7		SD	0.194	SD	0.73
3 8		95% DL/2 (t) UCL	0.331	95% H-Stat (DL/2) UCL	0.36
3 0					
* 0	Maximum Likelihoo	od Estimate(MLE) Method		Log ROS Method	
+ 1		Mean	0.281	Mean in Log Scale	-1.45
4 3		SD	0.205	SD in Log Scale	0.68
, ,		95% MLE (t) UCL	0.326	Mean in Original Scale	0.28
4 4		95% MLE (Tiku) UCL	0.325	SD in Original Scale	0.19
1 2		()		95% t UCL	0.33
4 2				95% Percentile Bootstrap UCL	0.33
4 2				95% BCA Bootstrap UCL	0.33
				33 % BON BOOKBIRD OOL	0.00
	Commo Distribution Tost	with Detected Values Only		Data Dietribution Toot with Detected Values Only	
• •	Gamma Distribution Test	with Detected Values Only		Data Distribution Test with Detected Values Only	ام
0 5		k star (bias corrected)	2.532	Data appear Gamma Distributed at 5% Significance Leve	GI
		Theta Star	0.117		
		nu star	278.5		
: 3					
\$ 2					
2 3		A-D Test Statistic	0.6	Nonparametric Statistics	
S 2		A-D Test Statistic 5% A-D Critical Value	0.6 0.759	Nonparametric Statistics Kaplan-Meier (KM) Method	
5 5				•	0.28
2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		5% A-D Critical Value	0.759	Kaplan-Meier (KM) Method	
5 5	Data appear Gamma Distrib	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.759 0.759 0.121	Kaplan-Meier (KM) Method Mean	0.19
5 5 5 4 5 5	Data appear Gamma Distrib	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.759 0.759 0.121	Kaplan-Meier (KM) Method Mean SD	0.19 0.025
2 3 2 4 2 2 2 4		5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.759 0.759 0.121	Kaplan-Meier (KM) Method Mean SD SE of Mean	0.286 0.192 0.0256 0.33 0.33
5 4 5 4 5 3	Assuming Gar	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value outed at 5% Significance Le	0.759 0.759 0.121	Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL	0.19 0.025 0.33

Appendix E
ProUCL Output for Fish Tissue- Location C Catfish
Anniston PCB Site
OU IV

										,				
-	<u> </u>	•	, ,		Maximum	0.89	,		, i	95% KN	I И (BCA) UCL	0.333		
. ,											` ,			
					Mean	0.286			95% KM (F	Percentile Bo	otstrap) UCL	0.33		
6 5					Median	0.22			95	5% KM (Che	byshev) UCL	0.4		
					SD	0.196			97.5	5% KM (Che	byshev) UCL	0.449		
6 7					k star	0.556			99	9% KM (Che	byshev) UCL	0.544		
6 8					Theta star	0.516								
					Nu star	63.33		Potential UCLs to Use						
3 0					AppChi2	46.03				95% KN	Л (BCA) UCL	0.333		
2 1			95% G	amma Appro	ximate UCL	0.394								
2 3			95	% Adjusted 0	Gamma UCL	0.398								
2 3	Note: DL/2	is not a reco	mmended m	nethod.										
7 4														
7 5	No	te: Suggesti	ons regardir	ng the select	ion of a 95%	UCL are pro	ovided to he	lp the user to	o select the	most approp	oriate 95% U	CL.		
2 4	Т	hese recom	mendations	are based u _l	oon the resu	lts of the sim	ulation studi	ies summari	zed in Singh	n, Maichle, a	nd Lee (2006	6).		
2 2				For add	itional insigh	it, the user n	nay want to o	consult a sta	tistician.					

2 8	<u> </u>	•	· ·		ē	·	e	·	'	'	,	<u>'</u>			
2 0															
* 0	Total PCBs														
* :															
* 3						General	Statistics								
			Numl	ber of Valid C	Observations	56	Number of Distinct Observations 48								
1 1															
8 2			Raw S	tatistics			Log-transformed Statistics								
					Minimum	0.23				Minimum	of Log Data	-1.47			
8 7					Maximum	34				Maximum	of Log Data	3.526			
					Mean	5.614				Mea	n of log Data	1.431			
					Median	4.755				SI	O of log Data	0.84			
					SD	4.975									
				Coefficient	t of Variation	0.886									
0 3					Skewness	3.648									
0 3															
						Relevant U	CL Statistics								
0 2	1	N	Normal Dist	ribution Test	t			L	ognormal Di	stribution Te	est				
				Lilliefors	Γest Statistic	0.202				Lilliefors	Test Statistic	0.129			
9 7				Lilliefors (Critical Value	0.118				Lilliefors (Critical Value	0.118			
		Data not I	Normal at 5	% Significar	nce Level			Data not L	ognormal at	5% Signific	ance Level				
1 0 0		Ass	uming Nori	mal Distribut	ion			Assı	uming Logno	rmal Distrib	ution				
1 0 1				95% Stu	dent's-t UCL	6.727		95% H-UCL 7.603							
1 0 3		95% l	JCLs (Adju	sted for Ske	wness)			95% Chebyshev (MVUE) UCL 9.178							
1 0 3		9	5% Adjuste	d-CLT UCL ((Chen-1995)	7.054		97.5% Chebyshev (MVUE) UCL 10.59							
1 0 4		(95% Modifie	ed-t UCL (Jol	nnson-1978)	6.781			99% (Chebyshev (MVUE) UCL	. 13.38			
1 0 2															
1 0 0		G	amma Dist	tribution Tes						stribution					
1 0 7				k star (bia	s corrected)		Data appear Gamma Distributed at 5% Significance Level								
: 0 8				_	Theta Star										
					ILE of Mean										
1 1 0			M	LE of Standa											
1 1 1			A	- Ol-: O	nu star				N		_				
1 1 3				te Chi Square					Nonparamet		s 5% CLT UCL	6 700			
1 1 3			=	sted Level of djusted Chi S	=						ckknife UCL				
			AC	ajusieu OIII S	quale value	107.0			Q5%		otstrap UCL				
			Ander	son-Darling ⁻	Test Statistic	0.719			33 /0		otstrap-t UCL				
				·Darling 5% (9		otstrap UCL				
				ov-Smirnov							otstrap UCL				
		Κn	_	Smirnov 5% C							otstrap UCL				
	Data	appear Gam	-								an, Sd) UCL				
1 3 1					<u>.</u>						an, Sd) UCL				
1 3 3		Ass	uming Gam	nma Distribut	tion						an, Sd) UCL				
1 3 3			-	pproximate (6.682				•	-				
1 3 4				% Adjusted 0											
1 2 5															
1 2 4			Potential U	JCL to Use					Use 95% A	pproximate (Gamma UCL	6.682			
1 2 2															
1 3 8	Not	e: Suggestio	ns regardir	ng the select	ion of a 95%	UCL are pr	ovided to he	lp the user to	select the i	most approp	riate 95% U	CL.			
1 3 0	т	These recom	mendations	s are based	upon the res	sults of the si	mulation stu	dies summa	rized in Sing	h, Singh, ar	ıd laci (2002	<u>'</u>)			
1 3 0			and Singh	and Singh (2003). For	additional in	sight, the use	er may want	to consult a	statistician.					

	y , c	۰	t	· ·	e	н	1	1		к	ſ	r
Ŀ		General UCL Sta	itistics f	or Data Set	s with Non-D	etects						
3	User Selected Options	;										
3	From File	WorkSheet.wst										
	Full Precision	OFF										
	Confidence Coefficient	95%										
•		2000										
,	Number of Bootstrap Operations	2000										
3												
*												
٠	2,3,7,8-TCDD TEQ											
1 0												
				General	Statistics							
1 3	Num	nber of Valid Obser	vations	9			Numb	er of Distin	ct Obser	rvations	. 9	
<u> </u>												
	Pow S	Statistics					Log-transfo	rmad Stati	etice			
1 4	naw S			0.0705.07			Log-ualisio			ъ.	45.0	0
1 2				2.979E-07					um of Lo	-		
1 8		Ma	ıximum	7.169E-07				Maxim	ium of Lo	og Data	-14.1	5
1 2			Mean	5.262E-07				N	lean of lo	og Data	-14.5	
		1	Median	4.696E-07					SD of lo	og Data	0.3	
			SD	1.5E-07								
, ,		Coefficient of Va	ariation	N/A								
			ewness									
		One	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0100								
3 3												
3 3			_									
3 4		Wai	rning: T	here are or	nly 9 Values	in this data						
2 5	Note: It sh	ould be noted that	even th	ough boots	trap method	s may be po	erformed on	this data	set,			
2 6		the resulting calcu	ulations	may not be	reliable end	ough to drav	v conclusion	ıs				
2 7												
3 8	The literature	e suggests to use b	bootstra	p methods	on data sets	having mor	e than 10-1	5 observa	tions.			
<u> </u>						······· y ······						
, ,				Dolovent III	CL Statistics							
3 0	N			Relevant O	CL Statistics				.			
3 1		tribution Test				L	ognormal D					
3 3		Shapiro Wilk Test S						Shapiro W				
3 3	S	Shapiro Wilk Critica	I Value	0.829			;	Shapiro W	lk Critica	al Value	0.829)
3 4	Data appear Normal a	t 5% Significance	Level			Data appea	ır Lognorma	l at 5% Si	ynificano	ce Leve	 	
3 5												
3 4	Assuming Nor	rmal Distribution				Ass	suming Logr	ormal Dis	tribution	1		
7.3	J	95% Student's	s-t UCL	6.192E-07						H-UCL	6.557	7E-07
	95% LICLs (Adio	usted for Skewnes					95%	Chebysh				
, ,			=	C 007E 07				-	-			
3 0		ed-CLT UCL (Chen	-					Chebysh	-			
* 0	95% Modifi	ied-t UCL (Johnson	ı-1978)	6.192E-07			99%	Chebysh	∍v (MVU	E) UCL	1.055	E-06
* 1												
4 3	Gamma Dis	stribution Test					Data D	istribution				
4 3		k star (bias cor	rected)	8.823		Data app	ear Normal	at 5% Sigr	ificance	Level		
		The	eta Star	5.964E-08								
4 2		MLE o	f Mean	5.262E-07								
	N/	ILE of Standard De										
	· ·											
			nu star				Na		.A!			
		te Chi Square Valu					Nonparam	etric Statis				
	Adju	sted Level of Signif	ficance	0.0231					95% CI			
2 0	Α	djusted Chi Square	• Value	125.3				95%	Jackkn	ife UCL	6.192	²E-07
8 1							95%	6 Standard	Bootstr	ap UCL	6.045	5E-07
: ,	Ande	rson-Darling Test S	Statistic	0.372				95%	Bootstra	p-t UCL	6.206	SE-07
5 3		-Darling 5% Critica						95% Hall's		•		
\vdash		prov-Smirnov Test S						Percentile				
2 4	_						30 /0			-		
3 3		Smirnov 5% Critica					6= 6: -	95% BCA				
2 9	Data appear Gamma Distrib	uted at 5% Signific	cance L	evel				hebyshev(
_							97.5% C	hebyshev(Mean, S	id) UCL	8.385	iΕ-07
5 2	Assuming Gar	mma Distribution					99% C	hebyshev(Mean, S	id) UCL	. 1.024	₽E-06
s a s 2	050/	Innrovimeta O-	na UCI	6.395E-07								
s a s 2	95% <i>F</i>	Approximate Gamm	IG OOL									
5 0 5 8		Approximate Gamm 5% Adjusted Gamm		6.67E-07								
2 3 2 8 2 0		• •		6.67E-07								
2 5 2 8 2 0 4 0	95	• •		6.67E-07				Use 95%	Studost	e_t I I CI	6 100)E. 07

Appendix E
ProUCL Output for Fish Tissue- Location C Panfish
Anniston PCB Site
OU IV

	¥	ŧ	c	0	ŧ	ŧ	ē	н	Í	1	К	г
6 3												
6 4	No	te: Suggesti	ions regardir	g the select	ion of a 95%	UCL are pr	ovided to he	lp the user to	select the	most approp	riate 95% U	CL.
6 5		These recon	nmendations	are based	upon the res	ults of the si	mulation stu	dies summa	rized in Sing	h, Singh, an	d laci (2002)
			and Singh	and Singh (2003). For	additional in	sight, the us	er may want	to consult a	statistician.		
6 7												

							1		,			
		,		,	-	·	,		<u> </u>			
2 0												
2 1	1		General	Statistics								
2 3	- Nu	ımber of Valid Observa	ations 70			Numbe	r of Distinct (Observations	37			
2 3	1											
2 4	- Raw	Statistics		Log-transformed Statistics								
2 5	1	Min	imum 0.026	Minimum of Log Data -3.65								
7 6		Max	imum 0.53				Maximum	of Log Data	-0.635			
3 3	1	1	Mean 0.238	Mean of log Data -1.582								
7 4	1	М	edian 0.205				SI	O of log Data	0.592			
2 4	1		SD 0.121									
8 0	1	Coefficient of Var	iation 0.507									
		Skev	ness 0.615									
8 3	1											
* 3	1		Relevant U	CL Statistics								
	Normal D	istribution Test			Lo	ognormal Di	stribution Te	est				
8 2	1	Lilliefors Test Sta	atistic 0.127				Lilliefors	Test Statistic	0.0934			
8 9		Lilliefors Critical \	Value 0.106				Lilliefors (Critical Value	0.106			
8 7	Data not Normal a	t 5% Significance Lev	/el	1	Data appear	Lognormal	at 5% Signif	ficance Leve	l			
	Assuming N	ormal Distribution			Assu	ıming Logno	rmal Distrib	ution				
		95% Student's-t	UCL 0.262					95% H-UCL	0.281			
	95% UCLs (Ad	djusted for Skewness)	1			95% (Chebyshev (MVUE) UCL	0.325			
* 3	95% Adjus	sted-CLT UCL (Chen-	1995) 0.263			97.5%	Chebyshev (MVUE) UCL	0.36			
. 1	95% Mod	lified-t UCL (Johnson-	1978) 0.262			99% (Chebyshev (MVUE) UCL	0.429			
0 2	Gamma D	istribution Test					stribution					
		k star (bias corre	•	Data appear Gamma Distributed at 5% Significance Level								
8 7		Theta	a Star 0.07									
			Mean 0.238									
		MLE of Standard Dev										
			u star 476.3									
1 0 1		nate Chi Square Value				Nonparamet			0.000			
1 0 3		ljusted Level of Signific						5% CLT UCL				
1 0 3		Adjusted Chi Square \	Value 425.7			050/		ckknife UCL				
1 0 4	<u></u>	Jamaan Dawliner Taat Ct	-+i-+i- 0 228			95%		ootstrap UCL				
1 0 5		derson-Darling Test St				0		otstrap-t UCL				
1 0 0	Anderso	on-Darling 5% Critical \	value 0.756			9		ootstrap UCL				
\vdash	Kalmas	varau Cmirnau Taat Ct	atiatia 0 0E00			OE0/ I			0.263			
1 0 2		gorov-Smirnov Test Sta						ootstrap UCL	0.262			
1 0 8	Kolmogorov	v-Smirnov 5% Critical \	Value 0.107			(95% BCA Bo	ootstrap UCL				
1 0 9		v-Smirnov 5% Critical \	Value 0.107			95% Ch	95% BCA Bo	ootstrap UCL an, Sd) UCL	0.301			
1 0 9 1 0 9 1 0 2	Kolmogorov Data appear Gamma Distr	v-Smirnov 5% Critical vibuted at 5% Significa	Value 0.107			95% Ch 97.5% Ch	95% BCA Bo ebyshev(Me ebyshev(Me	ootstrap UCL an, Sd) UCL an, Sd) UCL	0.301 0.328			
1 1 0 0	Kolmogorov Data appear Gamma Distr Assuming Ga	v-Smirnov 5% Critical vibuted at 5% Signification	Value 0.107 ance Level			95% Ch 97.5% Ch	95% BCA Bo ebyshev(Me ebyshev(Me	ootstrap UCL an, Sd) UCL	0.301 0.328			
1 0 3	Kolmogorov Data appear Gamma Distr Assuming Ga 95%	v-Smirnov 5% Critical v-Smirnov 5% Critical vibuted at 5% Signification amma Distribution Approximate Gamma	Value 0.107 Ance Level UCL 0.266			95% Ch 97.5% Ch	95% BCA Bo ebyshev(Me ebyshev(Me	ootstrap UCL an, Sd) UCL an, Sd) UCL	0.301 0.328			
1 0 3	Kolmogorov Data appear Gamma Distr Assuming Ga 95%	v-Smirnov 5% Critical vibuted at 5% Signification	Value 0.107 Ance Level UCL 0.266			95% Ch 97.5% Ch	95% BCA Bo ebyshev(Me ebyshev(Me	ootstrap UCL an, Sd) UCL an, Sd) UCL	0.301 0.328			
1 0 3	Kolmogorov Data appear Gamma Distr Assuming Ga 95%	v-Smirnov 5% Critical v-Smirnov 5% Critical v-Smirnov 5% Signification amma Distribution Approximate Gamma 95% Adjusted Gamma	Value 0.107 Ance Level UCL 0.266			95% Ch 97.5% Ch 99% Ch	95% BCA Bo ebyshev(Me ebyshev(Me ebyshev(Me	ootstrap UCL an, Sd) UCL an, Sd) UCL an, Sd) UCL	0.301 0.328 0.382			
1 0 0	Kolmogorov Data appear Gamma Distr Assuming Ga 95%	v-Smirnov 5% Critical v-Smirnov 5% Critical vibuted at 5% Signification amma Distribution Approximate Gamma	Value 0.107 Ance Level UCL 0.266			95% Ch 97.5% Ch 99% Ch	95% BCA Bo ebyshev(Me ebyshev(Me ebyshev(Me	ootstrap UCL an, Sd) UCL an, Sd) UCL	0.301 0.328 0.382			
1 0 3	Kolmogorov Data appear Gamma Distr Assuming Ga 95%	v-Smirnov 5% Critical v-Smirnov 5% Critical v-Smirnov 5% Signification of Approximate Gamma 95% Adjusted Gamma I UCL to Use	Value 0.107 Ance Level UCL 0.266 UCL 0.267	ovided to hel	p the user to	95% Ch 97.5% Ch 99% Ch Use 95% A	95% BCA Bo ebyshev(Me ebyshev(Me ebyshev(Me	ootstrap UCL an, Sd) UCL an, Sd) UCL an, Sd) UCL	0.301 0.328 0.382 0.266			
	Kolmogorov Data appear Gamma Distr Assuming Ga 95% Potentia Note: Suggestions regare	v-Smirnov 5% Critical v-Smirnov 5% Critical v-Smirnov 5% Significal amma Distribution of Approximate Gamma 95% Adjusted Gamma al UCL to Use	Value 0.107 Ince Level UCL 0.266 UCL 0.267			95% Ch 97.5% Ch 99% Ch Use 95% A	ebyshev(Me ebyshev(Me ebyshev(Me ebyshev(Me pproximate (ootstrap UCL an, Sd) UCL an, Sd) UCL an, Sd) UCL Gamma UCL	0.301 0.328 0.382 0.266			
	Kolmogorov Data appear Gamma Distr Assuming Ga 95% Potentia Note: Suggestions regard These recommendation	v-Smirnov 5% Critical v-Smirnov 5% Critical v-Smirnov 5% Signification of Approximate Gamma 95% Adjusted Gamma I UCL to Use ding the selection of a pors are based upon the	Value 0.107 Ince Level UCL 0.266 UCL 0.267 In 95% UCL are proper results of the second	imulation stud	dies summaı	95% Ch 97.5% Ch 99% Ch Use 95% A select the rized in Sing	ebyshev(Me ebyshev(Me ebyshev(Me pproximate (most approp h, Singh, an	ootstrap UCL an, Sd) UCL an, Sd) UCL an, Sd) UCL Gamma UCL	0.301 0.328 0.382 0.266			
	Kolmogorov Data appear Gamma Distr Assuming Ga 95% Potentia Note: Suggestions regard These recommendation	v-Smirnov 5% Critical v-Smirnov 5% Critical v-Smirnov 5% Significal amma Distribution of Approximate Gamma 95% Adjusted Gamma al UCL to Use	Value 0.107 Ince Level UCL 0.266 UCL 0.267 In 95% UCL are proper results of the second	imulation stud	dies summaı	95% Ch 97.5% Ch 99% Ch Use 95% A select the rized in Sing	ebyshev(Me ebyshev(Me ebyshev(Me pproximate (most approp h, Singh, an	ootstrap UCL an, Sd) UCL an, Sd) UCL an, Sd) UCL Gamma UCL	0.301 0.328 0.382 0.266			

	y s c o t t	е и і і к г							
1 3 3	PCB Dioxin-like Congener TEQ								
1 3 3									
1 3 4	General Sta	tistics							
1 3 2	Number of Valid Observations 10	Number of Distinct Observations 9							
1 5 6									
1 3 2	Raw Statistics	Log-transformed Statistics							
1 3 8	Minimum 1.955E-06	Minimum of Log Data -13.15							
1 3 0	Maximum 1.842E-05	Maximum of Log Data -10.9							
	Mean 6.446E-06	Mean of log Data -12.12							
1 3 1	Median 4.789E-06	SD of log Data 0.581							
1 3 3	SD 4.551E-06	G							
	Coefficient of Variation N/A								
1 3 4	Skewness 2.337								
1 3 2									
1 3 6									
1 3 3	Relevant UCL	Statistics							
	Normal Distribution Test	Lognormal Distribution Test							
. , ,	Shapiro Wilk Test Statistic 0.729	Shapiro Wilk Test Statistic 0.934							
	Shapiro Wilk Critical Value 0.842	Shapiro Wilk Critical Value 0.842							
	Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level							
1 4 3	·	•							
1 4 3	Assuming Normal Distribution	Assuming Lognormal Distribution							
	95% Student's-t UCL 9.084E-06	95% H-UCL 1.017E-05							
1 4 2	95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL 1.155E-05							
	95% Adjusted-CLT UCL (Chen-1995) 9.95E-06	97.5% Chebyshev (MVUE) UCL 1.38E-05							
1 4 3	95% Modified-t UCL (Johnson-1978) 9.262E-06	99% Chebyshev (MVUE) UCL 1.822E-(
	,	, ,							
	Gamma Distribution Test	Data Distribution							
1 2 0	k star (bias corrected) 2.298	Data appear Gamma Distributed at 5% Significance Level							
1 2 1	Theta Star 2.806E-06								
1 5 3	MLE of Mean 6.446E-06								
1 2 3	MLE of Standard Deviation 4.253E-06								
1 2 4	nu star 45.95								
	Approximate Chi Square Value (.05) 31.4	Nonparametric Statistics							
1 2 4	Adjusted Level of Significance 0.0267	95% CLT UCL 8.814E-06							
1 8 2	Adjusted Chi Square Value 29.32	95% Jackknife UCL 9.084E-06							
1 2 8		95% Standard Bootstrap UCL 8.679E-06							
	Anderson-Darling Test Statistic 0.574	95% Bootstrap-t UCL 1.184E-05							
	Anderson-Darling 5% Critical Value 0.732	95% Hall's Bootstrap UCL 1.927E-05							
	Kolmogorov-Smirnov Test Statistic 0.216	95% Percentile Bootstrap UCL 9.22E-06							
1 0 3	Kolmogorov-Smirnov 5% Critical Value 0.268	95% BCA Bootstrap UCL 1.032E-05							
1 6 3	Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL 1.272E-05							
		97.5% Chebyshev(Mean, Sd) UCL 1.543E-05							
1 6 2	Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL 2.077E-05							
	95% Approximate Gamma UCL 9.434E-06								
1 6 7	95% Adjusted Gamma UCL 1.01E-05								
	Potential UCL to Use	Use 95% Approximate Gamma UCL 9.434E-06							
1 2 0									
1 2 1	Note: Suggestions regarding the selection of a 95% UCL are provide	led to help the user to select the most appropriate 95% UCL.							
1 2 3	These recommendations are based upon the results of the simu								
	and Singh and Singh (2003). For additional insigl								
1 3 3									
1 7 4									

						1	×	,	
	Total PCBs		·	_	·	·	-	<u> </u>	
	Total 1 ODS								
1 7 2		General	Statistics						
1 7 8	Number of Valid Observations		Otatiotics		Numbo	r of Distinct C	heariations	65	
1 7 9	Number of Valid Observations	70			Numbe	I OI DISTILICE C	Doservations	600	
	Day Otatistica						_		
	Raw Statistics	0.40		L	.og-transtorr	ned Statistic		0.044	
1 8 3	Minimum						of Log Data		
1 8 3	Maximum		Maximum of Log Data 2.34						
1 8 4		2.944					n of log Data		
1 8 2	Median					SI	of log Data	0.585	
1 8 4		1.964							
1 8 7	Coefficient of Variation								
	Skewness	2.221							
		Relevant U	CL Statistics						
	Normal Distribution Test			Le	ognormal Di	stribution Te	st		
1 6 3	Lilliefors Test Statistic	0.172				Lilliefors	Γest Statistic	0.0749	
1 6 3	Lilliefors Critical Value	0.106				Lilliefors C	Critical Value	0.106	
1 0 4	Data not Normal at 5% Significance Level		D	ata appear	· Lognormal	at 5% Signif	icance Leve	H	
1 0 0	Assuming Normal Distribution			Assı	ıming Logno	ormal Distrib	ution		
1 9 7	95% Student's-t UCL	3.336					95% H-UCL	3.37	
	95% UCLs (Adjusted for Skewness)				95%	Chebyshev (MVUE) UCL	3.892	
	95% Adjusted-CLT UCL (Chen-1995)	3.397			97.5%	Chebyshev (MVUE) UCL	4.306	
2 0 0	95% Modified-t UCL (Johnson-1978)	3.346			99%	Chebyshev (MVUE) UCL	5.12	
2 0 1									
3 0 3	Gamma Distribution Test				Data Dis	stribution			
3 0 3	k star (bias corrected)	2.947	Data Follow Appr. Gamma Distribution at 5% Significance Leve						
3 0 4	Theta Star	0.999							
2 0 5	MLE of Mean	2.944							
2 0 6	MLE of Standard Deviation	1.715							
2 0 2	nu star	412.5							
3 0 8	Approximate Chi Square Value (.05)	366.5			Nonparame	tric Statistics	;		
3 0 0	Adjusted Level of Significance	0.0466				95	% CLT UCL	3.33	
2 1 0	Adjusted Chi Square Value	365.5				95% Ja	ckknife UCL	3.336	
5 1 1					95%	Standard Bo	otstrap UCL	3.333	
3 1 3	Anderson-Darling Test Statistic	0.876				95% Boo	tstrap-t UCL	3.406	
5 1 3	Anderson-Darling 5% Critical Value				9	5% Hall's Bo	•		
5 1 4	Kolmogorov-Smirnov Test Statistic					Percentile Bo	•		
2 1 5	Kolmogorov-Smirnov 5% Critical Value					95% BCA Bo	•		
2 1 6	Data follow Appr. Gamma Distribution at 5% Significance					ebyshev(Me	•		
5 1 3						ebyshev(Me	•		
, , ,	Assuming Gamma Distribution					ebyshev(Me	•		
2 1 9	95% Approximate Gamma UCL	3.315				, 1 (1110)	, -,	-	
, , ,	95% Adjusted Gamma UCL								
, , ,	ajasta aaiu 00L								
, , ,	Potential UCL to Use				Use 95% A	pproximate (Gamma UCI	3.315	
, , ,	i stantial ost to osc				303 00 /0 A	ppi oxiiiiato (3.510	
, , ,	Note: Suggestions regarding the selection of a 95%	UCI are pr	ovided to help	the user to	select the	most annron	riate 95% III	CI	
3 3 4	These recommendations are based upon the res	-	_						
2 2 5	and Singh and Singh (2003). For				_	=	a 1001 (2002	7	
2 2 6	and only in and only in (2005). For	addidonal III	agni, une usel	i may wall	io consuit d	stausuciāi i.			
2 2 7									

APPENDIX F FISH CONSUMPTION RATE DERIVATION

APPENDIX F

FISH CONSUMPTION RATE DERIVATION

F-1. INTRODUCTION

Many studies have estimated fish consumption in the United States. As noted by Moya (2004), data for the general population are often useful, but specific data on recreational fishing are needed to assess potential exposure to individuals at the higher end of the consumption range. Recreational fishermen, subsistence fishing populations, and some racial/ethnic minority groups have been shown to consume fish and shellfish at higher rates than the general population. Because interest in recreational angling varies with proximity to suitable water bodies, species of fish available, and economic factors, it is best to collect data specific for the recreational anglers residing near the study area.

Solutia has conducted a creel/angler survey for the portion of the Choccolocco Creek that constitutes OU-4 (Arcadis, 2009). However, the results of Solutia's survey are likely to be biased low as there has been a fish consumption advisory on the Creek, recommending no consumption, since 1994. The purpose of the OU-4 human health risk assessment is to determine the potential exposure to individuals consuming fish caught from the Choccolocco Creek assuming there are no advisories. Although the results of the Solutia survey are used in the derivation of the fish consumption rate, the fish consumption rate estimates resulting from that study are not used to calculate the reasonable maximum exposure (RME) scenario risks.

When suitable local data are not available, which is most often the case, surrogate data derived by state or local agencies or other interested parties must be used. Because sufficient information regarding fish consumption from the Choccolocco Creek unaffected by the longstanding fish consumption advisory with which to derive site-specific consumption rates are not available, regional data were considered. Through a web and reference search, three principal studies relevant to the patterns of recreational fish consumption in the Alabama region were identified:

 ADEM (1993) – Estimation of Daily Per Capita Freshwater Fish Consumption of Alabama Anglers

- ADCNR (Wright and DeVries, 2003) 2002 Alabama Freshwater Anglers Survey
- Burger et al. (1999) Factors in Exposure Assessment: Ethnic and Socioeconomic Differences in Fish and Consumption of Fish Caught along the Savannah River

The study design of each is summarized in Table F-1. Because studies have shown that ethnicity, age, education, and income play an important role in fishing behavior and consumption (Moya, 2004), basic demographics associated with Calhoun and Talladega Counties, Alabama, and each of the studies are also presented in Table F-1. This demographic information, along with the survey design and results of each of the key studies presented below, helped to determine the suitability of and potential uncertainties associated with the use of surrogate fishing data. Note that the demographics (based on 2000 census data and 2007 estimated values) are similar among Calhoun (Alabama [AL]), Talladega (AL), and the areas in Georgia/South Carolina represented in the Savannah River Study (Burger et al., 1999).

F-2. ESTIMATION OF DAILY PER CAPITA FRESHWATER FISH CONSUMPTION OF ALABAMA ANGLERS

The Estimation of Daily per Capita Freshwater Fish Consumption of Alabama Anglers (ADEM, 1993) was conducted by Auburn University Department of Fisheries and Allied Aquacultures for ADEM. The objective of this study was to estimate daily per capita consumption of freshwater fish harvested from Alabama rivers and reservoirs (by Alabama anglers). Angler interviews were conducted from August 1992 to July 1993, and fish consumption was quantified using both harvest and serving size methods (ADEM, 1993). The 'harvest method' entailed a survey of the actual number of fish caught and anglers identified the fish to be consumed at the next meal, typically that day. The 'serving method' involved an interview with each angler, the display of a typical serving size of 4 ounces (approximately the size of the palm of a hand) and an estimate by the angler of how many 4-ounce portions of fish caught in the specific water body would be consumed at a meal. Fishing advisories were in effect in Alabama when this survey was conducted; however, it is not known if advisories were in effect at the study locations.

Interviews were conducted at 29 locations – 23 tailwater sites and six impounded sites representing 11 river drainages. Three sampling locations on the Coosa River were sampled; however, the locations were associated with dam tailwaters or the more quiescent waters of a

reservoir (as opposed to a flowing stream). Sampling days were selected within seasonal blocks. The seasonal blocks were defined as fall (August 1st through November 30th), winter (December 1st through February 20th), spring (February 21st through May 8th), and summer (May 9th through July 30th). Each study site was surveyed once, from sunrise to sunset, for two-consecutive days (either Friday and Saturday or Sunday and Monday), within each seasonal block. Anglers were interviewed at the completion of their fishing trip to assure that all fish harvested were enumerated. After the interview was concluded, the species and number of harvested fish were noted, and total length and weight were measured (ADEM, 1993).

A fish consumption rate was quantified only for consumers of recreationally caught fish. Of the 1,586 anglers interviewed, 1,303 were consumers. The serving method was used to estimate a fish consumption rate for all 1,303 people. In addition, 563 had caught fish and the harvest method was also used to estimate fish consumption (ADEM, 1993). The estimated sample sizes required to produce 90% confidence intervals of \pm 15% around means were 456 for the serving method and 753 for harvest method, which consequently did not meet the criterion (Meredith and Malvestuto, 1996).

Fish consumption rates were calculated as follows (Meredith and Malvestuto, 1996):

Via Harvest Method (g/day) = dressed weight of fish divided by number of people eating fish times the number of fish meals/month divided by 30 days.

Via Serving Method (g/day) = assumed a 113 g serving (4 oz) times the number of servings/meal times the number of fish meals/month divided by 30 days.

Based on the serving method, the mean number of 4-ounce servings of fish consumed per meal was 3.7. The number of fish meals per month ranged from an average of 3.9 meals/month during spring to 4.8 meals/month during summer (ADEM, 1993).

Mean average daily rates were calculated on a seasonal basis and annualized by summing the weighted mean of the seasonal per capita consumption rates across the four seasonal time periods as follows:

$$C_{annual}(g/day) = \sum (Wt_{seasonal})(C_{seasonal})$$

Where:

 $Wt_{seasonal}$ = weighting factor for a particular season (unitless), where the summation is for all seasons:

$$\frac{(W1)(W2)}{\sum (W1)(W2)}$$

 $C_{seasonal}$ = mean of C_{daily} for a particular season (g/day)

and:

W1 = fraction of the total number of interviews taken each season (receptorexposure unit specific; unitless)

W2 = fraction of the total year represented by each season (0.25; unitless)

For the 29 study sites, average fish consumption rates were calculated as 33 g/day and 30 g/day using the harvest and serving methods, respectively. There was no significant difference in consumption rates between methods and no significant difference for an individual between methods using a paired t-test. In addition, there were no significant differences in ingestion rates calculated among the 11 river drainages (ADEM, 1993).

For meals eaten from the study sites plus other lakes and rivers in Alabama, consumption rates of 43.1 g/day and 45.8 g/day (harvest and serving methods, respectively) were calculated. There was a significant difference between annual fish consumption rates based on site meals and all meals with both estimation methods (ADEM, 1993).

When individual consumption rates were pooled and annualized not using seasonal weighting, the mean annual consumption rate was 44.8 g/day, with a median of 22.7 g/day and a 75th percentile of 56.7 g/day. (Note that other percentiles were not provided and the individual angler data are not available with which to calculate them.) It is not specified if these values were based on site-only or all fish ingestion (ADEM, 1993). Data for specific segments of the interviewed population are noted in Table F-2.

Most of the anglers interviewed were African Americans or Caucasians. There were no statistically significant differences in annual fish consumption between the two major ethnic groups for either estimation method. There were observable trends, i.e., decreases in fish consumption as income increased, decrease in annual fish consumption across income categories for both African Americans and Caucasians (although the downward trend in Caucasian

consumption rates was not as extreme). Data also indicated that 22% of the interviewed anglers could be classified as living in poverty (less than \$15,000 annually for a family of 4).

In addition to calculating fish consumption rates, this report also presented data on fish harvested by those interviewed. Channel catfish was the most common species taken (15%), followed by largemouth bass and bluegill sunfish (11% each), and blue catfish (10%). When similar species were grouped, the harvest was catfish (29%), black bass (includes largemouth, smallmouth, and spotted bass - 17%), sunfish (16%), crappie (15%), and Morone spp. (striped, hybrid, white, and yellow bass - 13%). The rest of the groups contributed to less than 10%.

F-3. 2002 ALABAMA FRESHWATER ANGLERS SURVEY

The 2002 Alabama Freshwater Anglers Survey (Wright and DeVries, 2003; Wright et al., 2003) was conducted by Auburn University Department of Fisheries and Allied Aquacultures for the Alabama Department of Conservation and Natural Resources (ADCNR) Wildlife and Freshwater Fisheries Division. The objectives of this survey were to evaluate the demographics, attitudes and practices of Alabama-licensed freshwater anglers. The survey instrument was a questionnaire of 36 questions addressing fishing practices, knowledge and opinion of management practices, knowledge and opinion of the Alabama Division of Wildlife and Freshwater Fisheries (ADWFF), and respondent demographics. The survey was mailed to anglers. In general, the survey questions paralleled those from a survey completed in 1987. Fishing advisories were in effect in Alabama when the 2002 survey was conducted. Estimation of fish consumption rates were not an objective of this study.

The survey was sent to 2,000 randomly-selected licensed freshwater Alabama anglers. The participant list was selected by generating a list of 2,000 random numbers, compiling the license records from all freshwater resident license sales from 1 May 2001 to 1 May 2002 (including all freshwater licenses, senior citizen fishing licenses, combination fishing and hunting, combination freshwater and saltwater fishing and handicapped fishing licenses) as well as all lifetime license holders and then counting to the randomly-selected anglers' licenses. Only anglers 19 years of age and older were included in the survey. Because this study used licensed fisherman as the target population, it is important to note that national studies estimate that only 65% of anglers purchase a resident fishing license. Although some anglers are exempt, an estimated 19% of all

anglers fish illegally without the required license (Hyde et al., 1998); therefore, selecting participants only from licensing information leaves a segment of the fishing public unrepresented. Although not specifically noted, it stands to reason that a significant portion of the population that fishes illegally (e.g., is not licensed because of financial or other issues) likely consumes more fish than licensed anglers out of need.

Of the 2,000 surveys sent out, 628 (31%) were returned before the deadline. It should be noted that there was a low rate of return for non-Caucasian respondents. The survey respondents were, among others, 84% Caucasian and 7% African American. According to 2005 U.S. Census Bureau information, Alabama's citizens are, among others, 69% non-Hispanic/Latino Caucasians and 26% African American. However, the ethnic breakout of licensed anglers is unknown.

The majority of anglers (72%) indicated that they fished entirely within Alabama. In response to a question regarding the type of water fished at least once in the past year, the most popular places to fish appear to be rivers (76%), private ponds (54%), small streams (51%), public lakes (43%), reservoirs (31%) and tailwaters (31%). The average number of fishing trips was highest for small streams (i.e., 21.9 trips per year). Between 1987 and 2002 data, there was an apparent shift away from the use of reservoirs towards rivers and creeks/small streams. However, most anglers responded that they fished from a boat (71%), making it unlikely that they were fishing in small streams. The data regarding where anglers fish most often (e.g., small streams) versus how they fish most often (e.g., from boats) is conflicting and this is acknowledged in the survey report.

The most sought after fish were largemouth bass, crappie, catfish, bream (sunfish) and striped bass (including hybrids). Water type affected these results, with largemouth bass being most sought after in all except tailwaters, where catfish were most sought. Nearly half (48%) of the 375 anglers targeting largemouth bass reported seldom keeping the fish they caught. Anglers were less reluctant to keep crappie, bream or catfish than largemouth bass. Catfish and crappie were indicated to be the favorite freshwater fish to eat. The minimum average size fish that an angler would keep was as follows:

Species Minimum Average Length Kept (inches)

Largemouth bass 13.3 Crappie 9.4 Bream 6.7

Catfish ~12.5 (estimated from graph)

Lastly, it is important to note that the survey did not take into consideration any effects fish advisories had on the responses.

F-4. SAVANNAH RIVER STUDY (BURGER ET AL., 1999)

Researchers examined the differences in fishing rates and fish consumption of individuals fishing along the Savannah River in South Carolina near the Department of Energy's (DOE's) Savannah River Site (SRS). The area examined in the Savannah River study is approximately 60 miles long and runs upriver from the site to the Augusta Lock and Dam and downriver from the site to Barton's Landing (Burger et al., 1999). The Savannah River is much larger than the Choccolocco Creek. The river is part of the boundary between South Carolina and Georgia and is an alluvial stream running 313 miles from its headwaters in Lake Hartwell, SC to the Atlantic Ocean 13 miles downstream from the city of Savannah, GA. The river provides water to numerous municipalities, including Augusta and Savannah, GA and Hilton Head, SC. It also supplies water for the SRS and for the two nuclear reactors at Plant Vogtle, Burke County, GA. The section of the Savannah River that flows by the SRS includes wide flood plains and wetlands. Note that the SRS once siphoned hundreds of millions of gallons each day from the Savannah to cool the five nuclear reactors, which are no longer in operation (GHC/UGP, 2009).

At the time of this survey, South Carolina had fish consumption advisories on the Savannah River for mercury and radionuclides; however, Georgia did not.

The target population was people who fished the 60 mi SRS segment of the Savannah River and was meant to be representative of anglers anywhere along the Savannah River or similar fish areas in the region. This area includes Richmond, Burke, and Screven Counties in Georgia and Aiken, Barnwell, and Allendale Counties in South Carolina.

A university-approved protocol was used to interview 258 people fishing on the Savannah River. Interviews were conducted on land and by boat from 3 April through 22 November, 1997. Interviews were conducted from dawn to dusk, almost weekly, for 54 fishing days (including weekdays and weekends). Each person was interviewed only once. The questionnaire contained questions regarding fishing behavior, consumption patterns, cooking patterns, warnings and safety of the fish, and personal demographics.

Preferred fish for consumption (in descending order of frequency noted) were bream (Lepomis spp.), catfish (Ictalurus punctatus), largemouth bass (Micropterus salmoides), crappie (Pomoxis nigromaculatus), and bowfin (Amia calva). These also accounted for most of the fish caught.

Fishing behavior and consumption rates for the study population indicated that the best models explained variations in serving size, fish meals per month, and total kg of fish consumed per year as a function of ethnicity and education. Age and income did not significantly affect the aforementioned consumption variables. Fish ingestion statistics for all respondents, based on ethnicity, and based on education are presented in Table F-3.

In general, African Americans ate larger portions of fish and ate fish more often than Caucasians. The higher number of meals per month resulted in significant differences in average fish consumption per year. In addition, a significantly higher proportion of African Americans than Caucasians ate whole fish as opposed to fillets. Anglers who had not graduated from high school ate fish more often, consumed more fish per month and year, deep fried fish more often, and had lower incomes than people with more education. However, those with a high school education fish for significantly longer periods than the groups with less than or more than a high school education.

The estimated mean consumption rates were 71 g/day for African Americans, 38 g/day for Caucasians, 84 g/day for those without a high school education, and 48 g/day for all respondents.

F-5. STUDY SELECTED FOR INGESTION RATE

The ADEM (1993) study estimated adult consumption rates of recreationally caught freshwater fish in Alabama based on data from angler interviews at 29 locations throughout the state. Of the studies available, the data generated from this 1993 study proved most suitable for determining

site-specific angler consumption rates for this exposure assessment. The 1993 ADEM study is specific to the State of Alabama while the Savannah River study was conducted in Georgia and South Carolina. The Savannah River is also a much larger waterbody than the Choccolocco Creek. The "families living below the poverty line" demographics of 2 of the 6 counties in the SRS area were outside the range of those observed in Calhoun and Talladega Counties, the State of Alabama, and the 1993 ADEM study that focused on Alabama Anglers. The ADEM study showed no significant differences in the annual ingestion rates between African Americans and Caucasians and noted downward trends in fish consumption as income increased; whereas, the Savannah River study showed significant differences in annual fish consumption between races and income did not significantly affect consumption rates.

The 1993 ADEM study was selected as the most appropriate basis for the RME fish consumption rate. Downstream of Jackson Shoals (i.e., river mile 0 to 10), the Choccolocco Creek widens out and slows down and has characteristics of a smaller dammed river, more similar to the waterbodies surveyed in the 1993 ADEM study than the Savannah River. Although neither the ADEM nor Savannah River study focused on waterbodies of similar characteristics to the Choccolocco Creek upstream of Jackson Shoals (i.e., river mile 10-37), based on the demographic data, the 1993 ADEM study is the best fit of the available studies.

The mean consumption rate calculated by the serving size method for all respondents was 30 g/day. This consumption rate was calculated based on data applicable to the interview site (i.e., not all lakes and rivers in Alabama). To provide conservative, yet realistic, consumption rates, site-specific demographics were considered in determining a consumption rate from the Alabama data. Several ethnic and one age and income category each appeared to be potential high-end populations.

Estimated statistics for 2007 indicate that African Americans are the largest ethnic minority group living in Calhoun and Talladega Counties (19.8 and 31.8% of the population, respectively; U.S. Census Bureau, 2007a, 2007b; Table F-4). The mean daily consumption rate calculated for African Americans was 33.4 g/day (n=232; site meals; serving size method), which was slightly higher than the mean for all respondents. The mean daily consumption rate calculated for Native Americans was lower (22.7 g/day) and for Asians was higher (44.1 g/day), than the mean daily

consumption rate for all respondents, but the sample sizes on which these estimates were based were small (n= 2 and 3, respectively; ADEM, 1993). In addition, these ethnic minority groups each account for 1% or less of the population in Calhoun and Talladega Counties (U.S. Census Bureau, 2007a and 2007b).

Age groups for which the calculated consumption rates were higher than the mean were 31-50 years old (39 g/day) and 51 years and over (76 g/day) (values calculated using serving method and for all meals).

Income demographics estimated for 2007 show that approximately 17.1 and 18.0% of households in the counties through which the Choccolocco Creek flows in OU-4 (Calhoun and Talladega Counties, respectively; U.S. Census Bureaus, 2007a, 2007b) are living below the poverty level, which is defined as a family of four with an annual income of less than \$15,000. From the ADEM (1993) survey, it was found that 22% of the respondents were living below the poverty level (USDA, 2004). In addition, 2007 Census Bureau estimates for the State of Alabama indicate that 16.6% of the population lives below the poverty level. Therefore, given the higher percentage of anglers that were living below the poverty level than are accounted for in the general population, individuals living below the poverty level are important to consider in this assessment.

The only consumption rate data reported for the ADEM study for those living below the poverty level was segregated by ethnicity. For African Americans with an annual income of less than \$15,000, the mean consumption rate was 63 g/day (n=42; average of serving and harvest methods; all meals), which is approximately twice that of the mean consumption rate based on all respondents. This value considers both the largest minority group in Calhoun and Talladega Counties and an income group that likely ingests fish at a higher rate than others. The mean consumption rate for Caucasians with an annual income of less than \$15,000 was 53 g/day (n=74; average of serving and harvest methods; all meals). When considering all income levels, there were no statistically significant differences between African American and Caucasian consumption rates.

The highest ingestion rates for a potential high-end receptor with a substantial population are based on those >50 years old. However, only ingestion rates calculated assuming "all meals" are

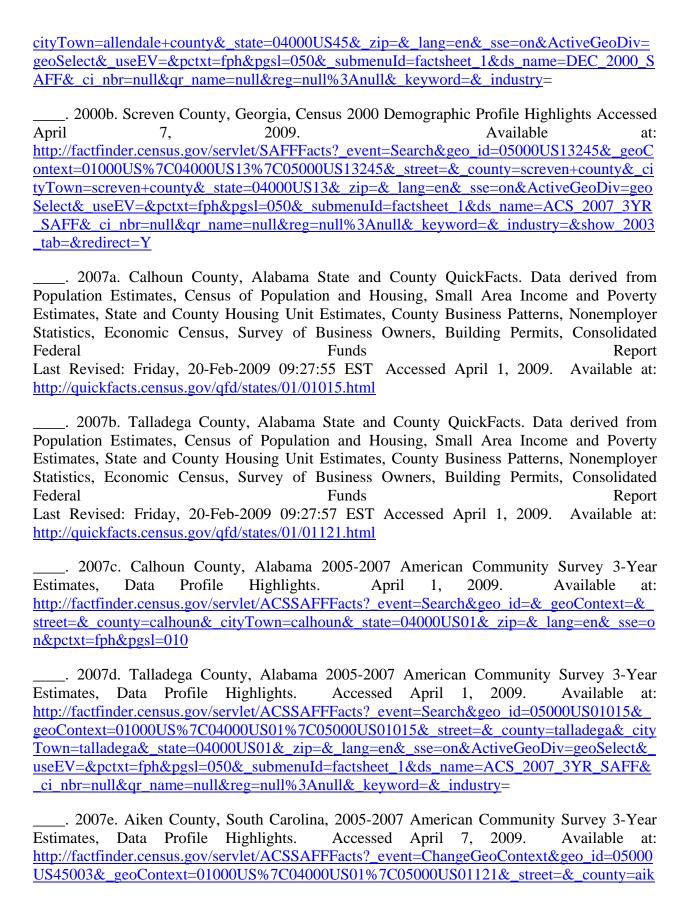
available. Because fish ingestion is being evaluated from only one water body, basing the consumption rate on site meals is more appropriate than basing it on all meals. The next most substantial population of potential high-end receptors is the African Americans with annual incomes <\$15,000. The mean value of 63 g/day was based on all meals. However, consumption rates for site and all meals are available for ethnic groups. Using the serving method, the fraction of site meals (33.4 g/day) to all meals (50.7 g/day) for African Americans was 0.66. Assuming this ratio is representative of the ratio of site to all meals for the <\$15,000/year annual salary subgroup, a site meal consumption rate would be approximately 42 g/day (i.e., 63 g/day multiplied by 0.66).

F-5.1 ADULT INGESTION RATE

Agricultural, forest, and scrublands make up approximately 88% of the land use/habitats along the Choccolocco Creek floodplain. Given the size of the tax parcels associated with these uses, it is unlikely that a significant portion of the population residing along the creek falls below the poverty line. Therefore, it is suggested that the mean consumption rate, calculated by the serving size method for all respondents based on site meals only of 30 g/day be used. Note that the fish consumption rate suggested herein is equal to the 30 g/day that ADEM uses to establish water quality criteria for the protection of human health associated with the consumption of fish and shellfish. As noted previously, there were advisories on some Alabama waterbodies when the ADEM study was conducted; however it is not known if the advisories were emplaced on the waters on which the interviews were conducted. Therefore, the 30 g/day, may be biased low.

F-5.2CHILD INGESTION RATE

Child consumption rates for recreationally caught freshwater fish were not available from the ADEM (1993) study. The child consumption rates were assumed to be a fraction of the adult rate. This approach assumes that the ratio of the amount of fish consumed by children and adults is similar between fish consumers in the United States and the population of Choccolocco Creek recreational anglers who consume recreationally caught fish.


Data regarding fish consumption in the U.S. general population for various age groups were available from EPA's *Estimated per Capita Fish Consumption in the United States* (2002). Because the Choccolocco Creek is a freshwater habitat, the use of consumption rates based on

freshwater finfish to develop child to adult ratios would have been preferable; however, these were not available. Therefore, the rates based on freshwater/estuarine finfish/shellfish were used. In addition, the consumption rates were based on consumers only and "uncooked" fish.

Consumption estimates for children and adults are presented in Table F-5. The ratios of the child and adult consumption rates are also presented, ranging from 0.48 to 0.49 depending on the consumption rate statistic (i.e., mean, median, 90th percentile) considered. Based on these ratios, one-half of the adult consumption rate of 30 g/day, that is 15 g/day, was selected as a reasonable estimate of the consumption rate for the dependent child of a recreational angler.

F-6. REFERENCES

- ADEM (Alabama Department of Environmental Management). 1993. Estimation of Daily Per Capita Freshwater Fish Consumption of Alabama Anglers.
- Arcadis. 2009. *Methodology and Results of the Choccolocco Creek Fish Consumption Survey*. November 2009.
- Burger, J., W.L. Stephens, Jr., C.S. Boring, M. Kuklinski, J.W. Gibbons, and M. Gochfeld. 1999. Factors in Exposure Assessment: Ethnic and Socioeconomic Differences in Fishing and Consumption of Fish Caught along the Savannah River. *Risk Analysis* 19(3):427-438.
- EPA (U.S. Environmental Protection Agency). 2002. Estimated per Capita Fish Consumption in the United States. August 2002.
- GHC/UGP (Georgia Humanities Council/University of Georgia Press). 2006. New Georgia Encyclopedia: Savannah River. http://www.georgiaencyclopedia.org/nge/Article.jsp?id=h-2638
- Hyde, C., R. Travnichek, and H. Clonts. 1998. Recreational Fishing on Alabama's Public Waters Netting Big Returns. *Highlights of Agricultural Research*. 45(2). Summer 1998.
- Meredith, E.K. and S.P. Malvestuto. 1996. Evaluation of two on-site survey methods for determining daily per capita freshwater fish consumption by anglers. *American Fisheries Society Symposium*. 16:271-276.
- Moya, J. 2004. Overview of fish consumption rates in the United States. *Human and Ecological Risk Assessment.* 10:1195-1211.
- U.S. Census Bureau. 2000a. Allendale County, South Carolina, Census 2000 Demographic Profile Highlights Accessed April 7, 2009. Available at: http://factfinder.census.gov/servlet/SAFFFacts?_event=Search&geo_id=05000US13251&_geoC ontext=01000US%7C04000US13%7C05000US13251&_street=&_county=allendale+county&_

en&_cityTown=aiken&_state=04000US45&_zip=&_lang=en&_sse=on&ActiveGeoDiv=geoSelect&_useEV=&pctxt=fph&pgsl=010&_submenuId=factsheet_1&ds_name=ACS_2007_3YR_SAFF&_ci_nbr=null&qr_name=null®=null%3Anull&_keyword=&_industry=

_____. 2007f. Barnwell County, South Carolina, 2005-2007 American Community Survey 3-Year Estimates, Data Profile Highlights. Accessed April 7, 2009. Available at: <a href="http://factfinder.census.gov/servlet/ACSSAFFFacts?_event=Search&geo_id=05000US13033&_geoContext=01000US%7C04000US13%7C05000US13033&_street=&_county=barnwell+county&cityTown=barnwell+county&state=04000US45&zip=&lang=en&sse=on&ActiveGeoDiv=geoSelect&useEV=&pctxt=fph&pgsl=050&submenuId=factsheet_1&ds_name=ACS_2007_3YR_SAFF&ci_nbr=null&qr_name=null®=null%3Anull&keyword=&industry=

______. 2007g. Burke County, Georgia, 2005-2007 American Community Survey 3-Year Estimates, Data Profile Highlights. Accessed April 7, 2009. Available at: http://factfinder.census.gov/servlet/ACSSAFFFacts? event=Search&geo id=05000US01121& geoContext=01000US%7C04000US01%7C05000US01121& street=& county=burke& cityTo wn=burke& state=04000US13& zip=& lang=en& sse=on&ActiveGeoDiv=geoSelect& useE V=&pctxt=fph&pgsl=050&_submenuId=factsheet_1&ds_name=ACS_2007_3YR_SAFF&_ci_n br=null&qr_name=null®=null%3Anull&_keyword=&_industry=

__. 2007h. Richmond County, Georgia, 2005-2007 American Community Survey 3-Year Profile Highlights. Accessed 7, Estimates, Data April 2009. Available http://factfinder.census.gov/servlet/ACSSAFFFacts?_event=ChangeGeoContext&geo_id=05000 US13245&_geoContext=01000US%7C04000US45%7C05000US45011&_street=&_county=ric hmond+county&_cityTown=richmond+county&_state=04000US13&_zip=&_lang=en&_sse=on &ActiveGeoDiv=geoSelect& useEV=&pctxt=fph&pgsl=010& submenuId=factsheet 1&ds na me=ACS 2007 3YR SAFF& ci nbr=null&qr name=null®=null%3Anull& keyword=& i ndustry=

USDA (United States Department of Agriculture). 2004. *National Report on Sustainable Forests* – 2003. USDA Forest Service FS 766, February 2004.

Wright, R.A. and D.R. DeVries. 2003. 2002 Alabama Freshwater Anglers Survey. Alabama Department of Conservation and Natural Resources, Wildlife and Freshwater Fisheries Division, Study 52. March 2003.

Wright, R.A., D.R. DeVries, S. Cook, and N. Nichols. 2003. 2002 Alabama freshwater anglers survey. *Proc. Annu. Conf. Southeast. Assoc. Fish and Wildl. Agencies.* 57:68-79.

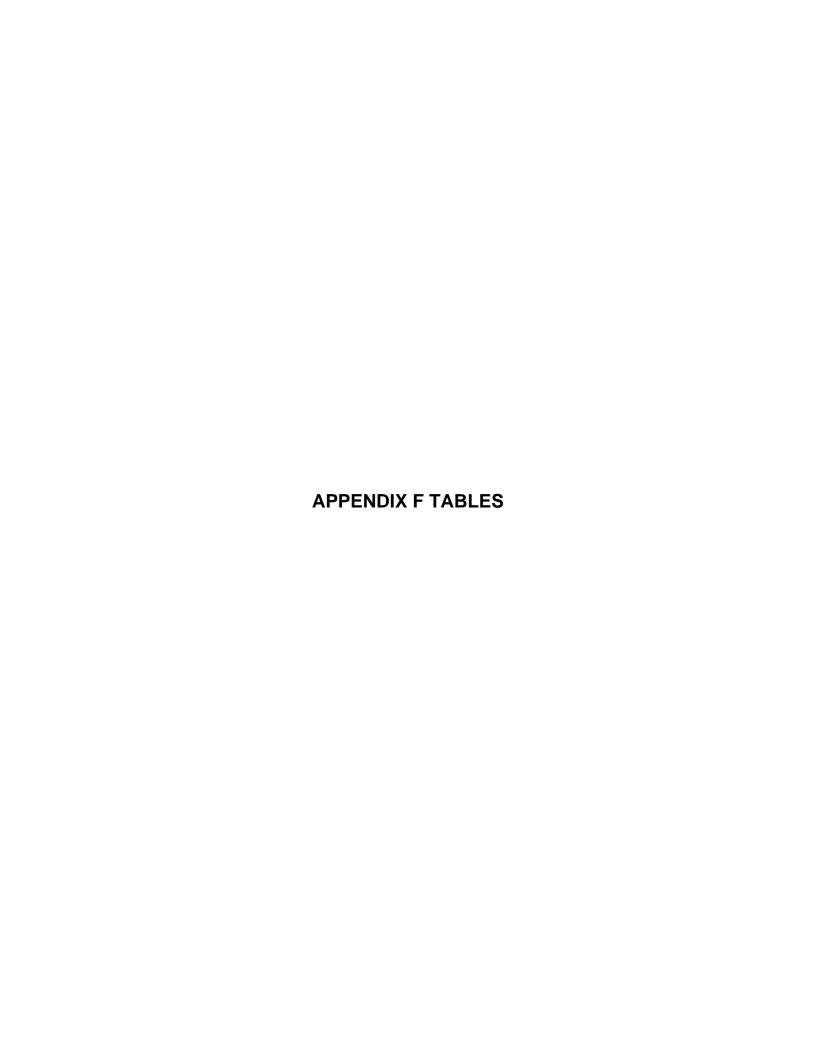


Table F-1
Fish Ingestion Rate Study Designs and Demographics

	С	ensus Statistic	s ^a	ADEM	l, 1993 ^b						
Demographic	Calhoun County	Talladega County	State of Alabama	Harvest- Based	Serving- Based	Wright and DeVries, 2003	Burger et al., 1999				
Survey Dates				August 1992	2 to July 1993	Recall for 1 July 2001 to 30 June 2002	April 1997 to November 1997				
Geographic Area				29 locations – 23 tailwater sites and six reservoir sites representing 11 river drainages in Alabama		sites and six reservoir sites		sites and six reservoir sites representing 11 river		State of Alabama	3 locations along the DOE's Savannah River Site (SRS), South Carolina and Georgia
Study Type				Angler I	nterviews	Household mail questionnaire	Angler Interviews				
Sample Selection				fishing for th consecutive Saturday Monday) in	nglers finished le day on two days (Friday- or Sunday- each of four al blocks.	Random selection of licensed anglers	Interviewed anglers from dawn to dusk weekdays and weekends most weeks during study period.				
Population	Calhoun County Residents	Talladega County Residents	State of Alabama Residents	Freshwater Alabama Resident Anglers		Freshwater Alabama Resident Anglers	SRS Anglers				
Sample Size	113,103	80,255	4,627,851			2,000					
Response Rates (%)						31					
Total Participants				563	1303	628	258				
Sex (%):				1	l						
Male	47.9	49.1	48.4	3	38	81	89				
Female	52.1	50.9	51.6	1	12	19	11				
Age in years (%, except	for average):										
<5	6.5°	6.4 ^c				NR	NR				
>18	76.8°	76.3 ^c			NR		NR				
>65	14.4 ^c	13.6 ^c				NR	NR				

		Census Statistic	s ^a	ADEM	, 1993 ^b		
Demographic	Calhoun County	Talladega County	State of Alabama	Harvest- Based	Serving- Based	Wright and DeVries, 2003	Burger et al., 1999
Average	38.2 ^c (median)	37.6 ^c (median)				43.6	43 (range 16-82)
Ethnicity (%, except for I	number respond	O,					
Number responding	NR	NR	NR	11	64	596	258
Caucasian (non Hispanic/Latino)	75.9	65.8	68.6	79	0.5 ^e	84	70
African American	19.8	31.8	26.5	19).9 ^e	7	28
Native American	0.4	0.3	0.5	0	.2 ^e	6	NR
Mixed Heritage	1.0	0.4	1.0	NR		2	NR
Asian/Pacific	0.8	0.8	1.0	0	.3 ^e	<1	NR
Hispanic/Latino	2.3	1.3	2.7	0	.2 ^e	<1	NR
Annual Household Incor	ne (%, except fo	or number respon	ding [individuals]	and median inc	ome [\$]):		
Number responding						557	
<\$10,000						<10	
\$10,000-\$19,900						<10	
\$20,000-\$24,900						<10	
\$25,000-\$29,900						<10	
\$30,000-\$34,900						<10	
\$35,000-\$39,900						<10	
\$40,000-\$49,900						14	
						26	
\$50,000-\$74,900					l		
\$50,000-\$74,900 \$75,000-\$100,000						11	
						11 <10	
\$75,000-\$100,000	\$37,478	\$38,644	\$40,596				Average = \$21,490 (range 0-\$60,000)

	C	Census Statistic	s ^a	ADEM	l, 1993 ^b		
Demographic	Calhoun County	Talladega County	State of Alabama	Harvest- Based	Serving- Based	Wright and DeVries, 2003	Burger et al., 1999
Number responding						610	
≤8 years or less						2	
9-11 years						10	
12 years	73.9 ^d	69.7 ^d	75.3 ^d			39	60
1-3 years of college						28	
≥4 years of college	15.2 ^d	11.2 ^d	19.0 ^d			21	11
Technical training							12

^aU.S. Census Bureau, 2007a and b (Calhoun and Talladega Quick Facts, respectively), except where otherwise noted.

NR = Not reported.

^bAs cited in Meredith and Malvestuto, 1996 unless otherwise noted.

^cU.S. Census Bureau, 2007c and d (2005-2007 American Community Survey).

^d2000 data. People aged 25+.

^eMoya, 2004.

^fUSDA, 2004.

⁹Range of 6 surrounding counties – 3 in Georgia (Richmond, Burke, and Screven) and 3 in South Carolina (Aiken, Barnwell, and Allendale). Minimum value is from Aiken County, SC and maximum is from Allendale County, SC (U.S. Census Bureau Fact Sheets, 2007e through h and 2000a and b).

Table F-2

Recreational Angler Fish Consumption Estimates from ADEM, 1993

Population/Age Group (yrs)	Sample Size	Mean (g/day)	Method	Area
All respondents	1303	30	Serving	Site
All respondents	1303	46	Serving	All
20-30	NR	16	Serving	All
31-50	NR	39	Serving	All
51 and over	NR	76	Serving	All
African American	232	33.4	Serving	Site
Asian	3	44.1	Serving	Site
Caucasian	925	29.4	Serving	Site
Hispanic	2	0	Serving	Site
Native American	2	22.7	Serving	Site
African American with	43	63	Average of	All
income <\$15,000			Serving and	
			Harvest	
Caucasian with income	74	53	Average of	All
<\$15,000			Serving and	
			Harvest	

NR = Not reported.

Table F-3

Recreational Angler Fish Consumption Estimates from Burger et al., 1999

Population	Sample Size	Meals/ Month	Serving Size (g)	Fish/ Month (kg)	Fish/Year (kg)	Ingestion Rate (g/day)
All respondents	258	3.61	376.1	1.46	17.60	48
Ethnicity						
African American	72	5.37	387	2.13	25.55	71
Caucasian	180	2.88	370.53	1.17	14.03	38
Education						
Not a High School	45	5.93	383.12	2.61	31.30	84
Graduate						
High School	154	3.02	366.1	1.15	13.79	38
Graduate						
College or Technical	59	3.36	397.73	1.52	18.20	49
Training						

Note: All values except for sample size are means. Mean ingestion rate is equal to the mean of ingestion rates calculated by the following three methods: 1) Meals per Month times Serving Size divided by 30 days/month; 2) Fish per Month divided 30 days/month; and 3) Fish per Year divided by 350 days/year.

Table F-4
2007 Population Distribution Estimates*

Cultural Classifications	Calhoun County	Talladega County
White (non-Hispanic)	75.9%	65.8%
Black	19.8%	31.8%
Hispanic (or Latino of any race)	2.3%	1.3%
Asian/Pacific	0.8%	0.4%
American Indian or Native Alaskan	0.4%	0.3%

^{*}Sources: U.S. Census Bureau, 2007a and b.

Table F-5

Freshwater/Estuarine Finfish and Shellfish Consumption Estimates for Children and Adults

	Consumption	Rate (g/day)*	
Statistic	Child (years 3 to 5)	Adult (>18 years old)	Child to Adult Ratio
Mean	40	81	0.49
Median	23	47	0.49
90th percentile	95	200	0.48

^{*} EPA, 2002. (Estimated per Capita Fish Consumption in the United States).

This table was used to derive the child fish ingestion rate for the SLHEA by determining the child to adult consumption rate ratio based on EPA documentation. As presented, the child fish consumption rate is approximately half of the adult rate. Using this information and extrapolating it to Talladega and Calhoun County, Alabama, the child ingestion rate for this SLHEA is approximately one-half of the adult rate.

APPENDIX G FISH CONSUMPTION RAGS 7 TABLES

TABLE G-1 CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS - FISH INGESTION - GROUP A - PRIMARY COPCS REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future

Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cance	er Risk Calculati	ions			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/Ur	nit Risk	Cancer Risk	Intake/Exposure Concentration		RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Fish	Fish Tissue	Group A Fish Tissue	Ingestion				All Species									
				Total PCBs	2.38E+00	mg/kg	5.3E-04	mg/kg-day	2.0E+00	mg/kg-day	1E-03	1.2E-03	mg/kg-day	2.0E-05	mg/kg-day	62
				Mercury	3.18E-01	mg/kg	7.1E-05	mg/kg-day	NA		NA	1.7E-04	mg/kg-day	1.0E-04	mg/kg-day	2
			All Species Total								1E-03					64
			All Species PCB Dioxin-like (Congener TEQ	ner TEQ 1.64E-05 mg/kg 3.7E-09 mg/kg-day			1.3E+05	mg/kg-day	5E-04	8.6E-09	mg/kg-day	7.0E-10	mg/kg-day	12	
			Ingestion						Е	Bass						
				Total PCBs	2.75E+00	mg/kg	6.1E-04	mg/kg-day	2.0E+00	mg/kg-day	1E-03	1.4E-03	mg/kg-day	2.0E-05	mg/kg-day	72
				Mercury	4.84E-01	mg/kg	1.1E-04	mg/kg-day	NA		NA	2.5E-04	mg/kg-day	1.0E-04	mg/kg-day	3
			Bass Total								1E-03					74
			Bass PCB Dioxin-like Conger	ner TEQ	2.06E-05	mg/kg	4.6E-09	mg/kg-day	1.3E+05	mg/kg-day	6E-04	1.1E-08	mg/kg-day	7.0E-10	mg/kg-day	15
			Ingestion				Catfish									
				Total PCBs	2.97E+00	mg/kg	6.6E-04	mg/kg-day	2.0E+00	mg/kg-day	1E-03	1.5E-03	mg/kg-day	2.0E-05	mg/kg-day	77
				Mercury	1.90E-01	mg/kg	4.2E-05	mg/kg-day	NA		NA	9.9E-05	mg/kg-day	1.0E-04	mg/kg-day	1
			Catfish Total								1E-03					78
			Catfish PCB Dioxin-like Cong	ener TEQ	5.78E-06	mg/kg	1.3E-09	mg/kg-day	1.3E+05	mg/kg-day	2E-04	3.0E-09	mg/kg-day	7.0E-10	mg/kg-day	4
			Ingestion						Pa	nfish						
				Total PCBs	2.11E+00	mg/kg	4.7E-04	mg/kg-day	2.0E+00	mg/kg-day	9E-04	1.1E-03	mg/kg-day	2.0E-05	mg/kg-day	55
				Mercury	3.38E-01	mg/kg	7.5E-05	mg/kg-day	NA		NA	1.8E-04	mg/kg-day	1.0E-04	mg/kg-day	2
			Panfish Total	·						· · · · · · · · · · · · · · · · · · ·	9E-04					57
			Panfish PCB Dioxin-like Con	gener TEQ	1.25E-05	mg/kg	2.8E-09	mg/kg-day	1.3E+05	mg/kg-day	4E-04	6.5E-09	mg/kg-day	7.0E-10	mg/kg-day	9

${\small \textbf{TABLE G-2}} \\ {\small \textbf{CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS - FISH INGESTION - GROUP A - TEQS}} \\ {\small \textbf{REASONABLE MAXIMUM EXPOSURE}} \\$

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future
Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC	;		Cance	r Risk Calculati	ons			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/Ur	it Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Fish	Fish Tissue	Group A Fish Tissue	Ingestion	All Species												
				PCB Dioxin-like Congener TEQ	1.64E-05	mg/kg	3.7E-09	mg/kg-day	1.3E+05	mg/kg-day	5E-04	8.6E-09	mg/kg-day	7.0E-10	mg/kg-day	12
				2,3,7,8-TCDD TEQ	5.14E-06	mg/kg	1.1E-09	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.7E-09	mg/kg-day	7.0E-10	mg/kg-day	4
			All Species Total TEQ								6E-04					16
			Ingestion						В	ass		1				
				PCB Dioxin-like Congener TEQ	2.06E-05	mg/kg	4.6E-09	mg/kg-day	1.3E+05	mg/kg-day	6E-04	1.1E-08	mg/kg-day	7.0E-10	mg/kg-day	15
				2,3,7,8-TCDD TEQ	3.92E-06	mg/kg	8.7E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.0E-09	mg/kg-day	7.0E-10	mg/kg-day	3
			Bass Total TEQ								7E-04					18
			Ingestion				Catfish									
				PCB Dioxin-like Congener TEQ	5.78E-06	mg/kg	1.3E-09	mg/kg-day	1.3E+05	mg/kg-day	2E-04	3.0E-09	mg/kg-day	7.0E-10	mg/kg-day	4
				2,3,7,8-TCDD TEQ	9.34E-07	mg/kg	2.1E-10	mg/kg-day	1.3E+05	mg/kg-day	3E-05	4.9E-10	mg/kg-day	7.0E-10	mg/kg-day	0.7
			Catfish Total TEQ								2E-04					5
			Ingestion						Pa	nfish						
				PCB Dioxin-like Congener TEQ	1.25E-05	mg/kg	2.8E-09	mg/kg-day	1.3E+05	mg/kg-day	4E-04	6.5E-09	mg/kg-day	7.0E-10	mg/kg-day	9
				2,3,7,8-TCDD TEQ	5.02E-06	mg/kg	1.1E-09	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.6E-09	mg/kg-day	7.0E-10	mg/kg-day	4
			Panfish Total TEQ								5E-04					13

TABLE G-3

CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS - FISH INGESTION - GROUP A - PRIMARY COPCS

CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future

Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point		Chemical of	EPC			Cance	r Risk Calculati	ons			Non-Cance	r Hazard Cald	culations	
			Exposure Route	Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/Ur	nit Risk	Cancer Risk	Intake/Exposure (Concentration	RfD)/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Fish	Fish Tissue	Group A Fish Tissue	Ingestion						All Spe	cies						
				Total PCBs	2.38E+00	mg/kg	5.0E-05	mg/kg-day	1.0E+00	mg/kg-day	5E-05	1.2E-04	mg/kg-day	2.0E-05	mg/kg-day	6
				Mercury	3.18E-01	mg/kg	6.7E-06	mg/kg-day	NA		NA	1.6E-05	mg/kg-day	1.0E-04	mg/kg-day	0.2
			All Species Total								5E-05					6
			All Species PCB Di	ioxin-like Congener TEQ	1.64E-05	mg/kg	3.5E-10	mg/kg-day	1.3E+05	mg/kg-day	4E-05	8.1E-10	mg/kg-day	7.0E-10	mg/kg-day	1
			Ingestion						Bass	3						
				Total PCBs	2.75E+00	mg/kg	5.8E-05	mg/kg-day	1.0E+00	mg/kg-day	6E-05	1.3E-04	mg/kg-day	2.0E-05	mg/kg-day	7
				Mercury	4.84E-01	mg/kg	1.0E-05	mg/kg-day	NA		NA	2.4E-05	mg/kg-day	1.0E-04	mg/kg-day	0.2
			Bass Total								6E-05					7
			Bass PCB Dioxin-li	ike Congener TEQ	2.06E-05	mg/kg	4.3E-10	mg/kg-day	1.3E+05	mg/kg-day	6E-05	1.0E-09	mg/kg-day	7.0E-10	mg/kg-day	1
			Ingestion						Catfis	sh						
				Total PCBs	2.97E+00	mg/kg	6.2E-05	mg/kg-day	1.0E+00	mg/kg-day	6E-05	1.5E-04	mg/kg-day	2.0E-05	mg/kg-day	7
				Mercury	1.90E-01	mg/kg	4.0E-06	mg/kg-day	NA		NA	9.3E-06	mg/kg-day	1.0E-04	mg/kg-day	0.09
			Catfish Total								6E-05					7
			Catfish PCB Dioxin	n-like Congener TEQ	5.78E-06	mg/kg	1.2E-10	mg/kg-day	1.3E+05	mg/kg-day	2E-05	2.8E-10	mg/kg-day	7.0E-10	mg/kg-day	0.4
			Ingestion						Panfis	sh						
				Total PCBs	2.11E+00	mg/kg	4.4E-05	mg/kg-day	1.0E+00	mg/kg-day	4E-05	1.0E-04	mg/kg-day	2.0E-05	mg/kg-day	5
				Mercury	3.38E-01	mg/kg	7.1E-06	mg/kg-day	NA		NA	1.7E-05	mg/kg-day	1.0E-04	mg/kg-day	0.2
			Panfish Total								4E-05					5
			Panfish PCB Dioxii	n-like Congener TEQ	1.25E-05	mg/kg	2.6E-10	mg/kg-day	1.3E+05	mg/kg-day	3E-05	6.2E-10	mg/kg-day	7.0E-10	mg/kg-day	0.9

TABLE G-4 CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS - FISH INGESTION - GROUP A - TEQS CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future Receptor Population: Recreational Fisherman Receptor Age: Age-Adjusted

Medium	Exposure Medium	Exposure Point		Chemical of	EPC			Cance	r Risk Calculati	ons			Non-Cance	r Hazard Cald	ulations	
			Exposure Route	Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/Ur	it Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Fish	Fish Tissue	Group A Fish Tissue	Ingestion						All Speci	es						
				PCB Dioxin-like Congener TEQ	1.64E-05	mg/kg	3.5E-10	mg/kg-day	1.3E+05	mg/kg-day	4E-05	8.1E-10	mg/kg-day	7.0E-10	mg/kg-day	1
				2,3,7,8-TCDD TEQ	5.14E-06	mg/kg	1.1E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-05	2.5E-10	mg/kg-day	7.0E-10	mg/kg-day	0.4
			All Species Total Te	≣Q							6E-05					2
			Ingestion						Bass			•				
				PCB Dioxin-like Congener TEQ	2.06E-05	mg/kg	4.3E-10	mg/kg-day	1.3E+05	mg/kg-day	6E-05	1.0E-09	mg/kg-day	7.0E-10	mg/kg-day	1
				2,3,7,8-TCDD TEQ	3.92E-06	mg/kg	8.2E-11	mg/kg-day	1.3E+05	mg/kg-day	1E-05	1.9E-10	mg/kg-day	7.0E-10	mg/kg-day	0.3
			Bass Total TEQ								7E-05					2
			Ingestion						Catfish	l	•				•	
				PCB Dioxin-like Congener TEQ	5.78E-06	mg/kg	1.2E-10	mg/kg-day	1.3E+05	mg/kg-day	2E-05	2.8E-10	mg/kg-day	7.0E-10	mg/kg-day	0.4
				2,3,7,8-TCDD TEQ	9.34E-07	mg/kg	2.0E-11	mg/kg-day	1.3E+05	mg/kg-day	3E-06	4.6E-11	mg/kg-day	7.0E-10	mg/kg-day	0.07
			Catfish Total TEQ								2E-05					0.5
			Ingestion						Panfish	1	•	•			<u> </u>	
				PCB Dioxin-like Congener TEQ	1.25E-05	mg/kg	2.6E-10	mg/kg-day	1.3E+05	mg/kg-day	3E-05	6.2E-10	mg/kg-day	7.0E-10	mg/kg-day	0.9
				2,3,7,8-TCDD TEQ	5.02E-06	mg/kg	1.1E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-05	2.5E-10	mg/kg-day	7.0E-10	mg/kg-day	0.4
			Panfish Total TEQ								5E-05					1

TABLE G-5

CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS - FISH INGESTION - GROUP B - PRIMARY COPCS REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future Receptor Population: Recreational Fisherman

			빌												
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC	:		Cance	er Risk Calculati	ons			Non-Cance	er Hazard Calc	ulations
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/Ur	nit Risk	Cancer Risk	Intake/Exposure (Concentration	RfD	/RfC
							Value	Units	Value	Units		Value	Units	Value	Units
Fish	Fish Tissue	Group B Fish Tissue	Ingestion						Α	II Species					
				Total PCBs	2.88E+00	mg/kg	3.2E-04	mg/kg-day	2.0E+00	mg/kg-day	6E-04	7.5E-04	mg/kg-day	2.0E-05	mg/kg-d
				Mercury	4.79E-01	mg/kg	5.3E-05	mg/kg-day	NA		NA	1.2E-04	mg/kg-day	1.0E-04	mg/kg-
			All Species Total								6E-04				
			All Species PCB Dioxin-like	Congener TEQ	7.39E-06	mg/kg	8.2E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-04	1.9E-09	mg/kg-day	7.0E-10	mg/kg-c
			Ingestion							Bass					
				Total PCBs	4.77E+00	mg/kg	5.3E-04	mg/kg-day	2.0E+00	mg/kg-day	1E-03	1.2E-03	mg/kg-day	2.0E-05	mg/kg-c
				Mercury	7 67F-01	ma/ka	8 6F-05	mg/kg-day	NA		NA	2 0F-04	ma/ka-dav	1.0E-04	ma/ka-d

																Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Fish	Fish Tissue	Group B Fish Tissue	Ingestion				-		A	I Species						
				Total PCBs	2.88E+00	mg/kg	3.2E-04	mg/kg-day	2.0E+00	mg/kg-day	6E-04	7.5E-04	mg/kg-day	2.0E-05	mg/kg-day	37
				Mercury	4.79E-01	mg/kg	5.3E-05	mg/kg-day	NA		NA	1.2E-04	mg/kg-day	1.0E-04	mg/kg-day	1
			All Species Total								6E-04					39
			All Species PCB Dioxin-like	Congener TEQ	7.39E-06	mg/kg	8.2E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-04	1.9E-09	mg/kg-day	7.0E-10	mg/kg-day	3
			Ingestion							Bass						
				Total PCBs	4.77E+00	mg/kg	5.3E-04	mg/kg-day	2.0E+00	mg/kg-day	1E-03	1.2E-03	mg/kg-day	2.0E-05	mg/kg-day	62
				Mercury	7.67E-01	mg/kg	8.6E-05	mg/kg-day	NA		NA	2.0E-04	mg/kg-day	1.0E-04	mg/kg-day	2
			Bass Total								1E-03					64
			Bass PCB Dioxin-like Cong	ener TEQ	1.03E-05	mg/kg	1.1E-09	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.7E-09	mg/kg-day	7.0E-10	mg/kg-day	4
			Ingestion							Catfish						
				Total PCBs	4.01E+00	mg/kg	4.5E-04	mg/kg-day	2.0E+00	mg/kg-day	9E-04	1.0E-03	mg/kg-day	2.0E-05	mg/kg-day	52
				Mercury	4.40E-01	mg/kg	4.9E-05	mg/kg-day	NA		NA	1.1E-04	mg/kg-day	1.0E-04	mg/kg-day	1
			Catfish Total								9E-04					53
			Catfish PCB Dioxin-like Cor	ngener TEQ	5.09E-06	mg/kg	5.7E-10	mg/kg-day	1.3E+05	mg/kg-day	7E-05	1.3E-09	mg/kg-day	7.0E-10	mg/kg-day	2
			Ingestion							Panfish						
				Total PCBs	1.86E+00	mg/kg	2.1E-04	mg/kg-day	2.0E+00	mg/kg-day	4E-04	4.8E-04	mg/kg-day	2.0E-05	mg/kg-day	24
				Mercury	2.81E-01	mg/kg	3.1E-05	mg/kg-day	NA		NA	7.3E-05	mg/kg-day	1.0E-04	mg/kg-day	0.7
			Panfish Total								4E-04					25
			Panfish PCB Dioxin-like Co	ngener TEQ	4.09E-06	mg/kg	4.6E-10	mg/kg-day	1.3E+05	mg/kg-day	6E-05	1.1E-09	mg/kg-day	7.0E-10	mg/kg-day	2

TABLE G-6 CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS - FISH INGESTION - GROUP ${\tt B}$ - TEQS REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future

Receptor Population: Recreational Fisherman Receptor Age: Age-Adjusted

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cance	er Risk Calculat	ions			Non-Cance	r Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/Ur	nit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Fish	Fish Tissue	Group B Fish Tissue	Ingestion						All Spe	ecies						
				PCB Dioxin-like Congener TEQ	7.39E-06	mg/kg	8.2E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-04	1.9E-09	mg/kg-day	7.0E-10	mg/kg-day	3
				2,3,7,8-TCDD TEQ	1.73E-06	mg/kg	1.9E-10	mg/kg-day	1.3E+05	mg/kg-day	3E-05	4.5E-10	mg/kg-day	7.0E-10	mg/kg-day	0.6
			All Species Total TEQ								1E-04					3
			Ingestion						Bas	SS						
				PCB Dioxin-like Congener TEQ	1.03E-05	mg/kg	1.1E-09	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.7E-09	mg/kg-day	7.0E-10	mg/kg-day	4
				2,3,7,8-TCDD TEQ	2.43E-06	mg/kg	2.7E-10	mg/kg-day	1.3E+05	mg/kg-day	4E-05	6.3E-10	mg/kg-day	7.0E-10	mg/kg-day	0.9
			Bass Total TEQ								2E-04					5
			Ingestion						Catf	ish						
				PCB Dioxin-like Congener TEQ	5.09E-06	mg/kg	5.7E-10	mg/kg-day	1.3E+05	mg/kg-day	7E-05	1.3E-09	mg/kg-day	7.0E-10	mg/kg-day	2
				2,3,7,8-TCDD TEQ	8.69E-07	mg/kg	9.7E-11	mg/kg-day	1.3E+05	mg/kg-day	1E-05	2.3E-10	mg/kg-day	7.0E-10	mg/kg-day	0.3
			Catfish Total TEQ								9E-05					2
			Ingestion						Panf	ish						
				PCB Dioxin-like Congener TEQ	4.09E-06	mg/kg	4.6E-10	mg/kg-day	1.3E+05	mg/kg-day	6E-05	1.1E-09	mg/kg-day	7.0E-10	mg/kg-day	2
				2,3,7,8-TCDD TEQ	1.49E-06	mg/kg	1.7E-10	mg/kg-day	1.3E+05	mg/kg-day	2E-05	3.9E-10	mg/kg-day	7.0E-10	mg/kg-day	0.6
			Panfish Total TEQ		•					•	8E-05		•		•	2

TABLE G-7

CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS - FISH INGESTION - GROUP B - PRIMARY COPCS

CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future
Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point		Chemical of	EPC			Cance	r Risk Calculati	ons			Non-Cance	r Hazard Calc	ulations	
			Exposure Route	Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/Ur	nit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Fish	Fish Tissue	Group B Fish Tissue	Ingestion						All S	pecies						
				Total PCBs	2.88E+00	mg/kg	6.0E-05	mg/kg-day	1.0E+00	mg/kg-day	6E-05	1.4E-04	mg/kg-day	2.0E-05	mg/kg-day	7
				Mercury	4.79E-01	mg/kg	1.0E-05	mg/kg-day	NA		NA	2.3E-05	mg/kg-day	1.0E-04	mg/kg-day	0.2
			All Species Total								6E-05					7
			All Species PCB Di	oxin-like Congener TEQ	7.39E-06	mg/kg	1.6E-10	mg/kg-day	1.3E+05	mg/kg-day	2E-05	3.6E-10	mg/kg-day	7.0E-10	mg/kg-day	0.5
			Ingestion						В	ass						
				Total PCBs	4.77E+00	mg/kg	1.0E-04	mg/kg-day	1.0E+00	mg/kg-day	1E-04	2.3E-04	mg/kg-day	2.0E-05	mg/kg-day	12
				Mercury	7.67E-01	mg/kg	1.6E-05	mg/kg-day	NA		NA	3.8E-05	mg/kg-day	1.0E-04	mg/kg-day	0.4
			Bass Total								1E-04					12
			Bass PCB Dioxin-lil	ke Congener TEQ	1.03E-05	mg/kg	2.2E-10	mg/kg-day	1.3E+05	mg/kg-day	3E-05	5.1E-10	mg/kg-day	7.0E-10	mg/kg-day	0.7
			Ingestion						Ca	tfish						
				Total PCBs	4.01E+00	mg/kg	8.4E-05	mg/kg-day	1.0E+00	mg/kg-day	8E-05	2.0E-04	mg/kg-day	2.0E-05	mg/kg-day	10
				Mercury	4.40E-01	mg/kg	9.2E-06	mg/kg-day	NA		NA	2.2E-05	mg/kg-day	1.0E-04	mg/kg-day	0.2
			Catfish Total								8E-05					10
			Catfish PCB Dioxin	-like Congener TEQ	5.09E-06	mg/kg	1.1E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-05	2.5E-10	mg/kg-day	7.0E-10	mg/kg-day	0.4
			Ingestion						Pai	nfish						
				Total PCBs	1.86E+00	mg/kg	3.9E-05	mg/kg-day	1.0E+00	mg/kg-day	4E-05	9.1E-05	mg/kg-day	2.0E-05	mg/kg-day	5
				Mercury	2.81E-01	mg/kg	5.9E-06	mg/kg-day	NA		NA	1.4E-05	mg/kg-day	1.0E-04	mg/kg-day	0.1
			Panfish Total								4E-05					5
			Panfish PCB Dioxir	n-like Congener TEQ	4.09E-06	mg/kg	8.6E-11	mg/kg-day	1.3E+05	mg/kg-day	1E-05	2.0E-10	mg/kg-day	7.0E-10	mg/kg-day	0.3

TABLE G-8 CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS - FISH INGESTION - GROUP B - TEQS CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future

Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point		Chemical of	EPC			Cance	r Risk Calculati	ons			Non-Cance	r Hazard Cald	ulations	
			Exposure Route	Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/Ur	it Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Fish	Fish Tissue	Group B Fish Tissue	Ingestion						All Spe	cies						
			l	PCB Dioxin-like Congener TEQ	7.39E-06	mg/kg	1.6E-10	mg/kg-day	1.3E+05	mg/kg-day	2E-05	3.6E-10	mg/kg-day	7.0E-10	mg/kg-day	0.5
				2,3,7,8-TCDD TEQ	1.73E-06	mg/kg	3.6E-11	mg/kg-day	1.3E+05	mg/kg-day	5E-06	8.5E-11	mg/kg-day	7.0E-10	mg/kg-day	0.1
			All Species Total Te	EQ.							2E-05					0.6
			Ingestion						Bass	6		•				
			l	PCB Dioxin-like Congener TEQ	1.03E-05	mg/kg	2.2E-10	mg/kg-day	1.3E+05	mg/kg-day	3E-05	5.1E-10	mg/kg-day	7.0E-10	mg/kg-day	0.7
				2,3,7,8-TCDD TEQ	2.43E-06	mg/kg	5.1E-11	mg/kg-day	1.3E+05	mg/kg-day	7E-06	1.2E-10	mg/kg-day	7.0E-10	mg/kg-day	0.2
			Bass Total TEQ								3E-05					0.9
			Ingestion						Catfis	sh		•				
			l	PCB Dioxin-like Congener TEQ	5.09E-06	mg/kg	1.1E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-05	2.5E-10	mg/kg-day	7.0E-10	mg/kg-day	0.4
				2,3,7,8-TCDD TEQ	8.69E-07	mg/kg	1.8E-11	mg/kg-day	1.3E+05	mg/kg-day	2E-06	4.3E-11	mg/kg-day	7.0E-10	mg/kg-day	0.06
			Catfish Total TEQ								2E-05					0.4
			Ingestion						Panfis	sh	·					
				PCB Dioxin-like Congener TEQ	4.09E-06	mg/kg	8.6E-11	mg/kg-day	1.3E+05	mg/kg-day	1E-05	2.0E-10	mg/kg-day	7.0E-10	mg/kg-day	0.3
				2,3,7,8-TCDD TEQ	1.49E-06	mg/kg	3.1E-11	mg/kg-day	1.3E+05	mg/kg-day	4E-06	7.3E-11	mg/kg-day	7.0E-10	mg/kg-day	0.1
			Panfish Total TEQ								2E-05					0.4

TABLE G-9

CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS - FISH INGESTION - GROUP C - PRIMARY COPCS REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future

Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cance	r Risk Calculati	ons			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/Ur	it Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Fish	Fish Tissue	Group C Fish Tissue	Ingestion						All Sp	ecies						
				Total PCBs	5.43E+00	mg/kg	6.1E-04	mg/kg-day	2.0E+00	mg/kg-day	1E-03	1.4E-03	mg/kg-day	2.0E-05	mg/kg-day	71
				Mercury	4.30E-01	mg/kg	4.8E-05	mg/kg-day	NA		NA	1.1E-04	mg/kg-day	1.0E-04	mg/kg-day	1
			All Species Total								1E-03					72
			All Species PCB Dioxin-lik	e Congener TEQ	8.33E-06	mg/kg	9.3E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.2E-09	mg/kg-day	7.0E-10	mg/kg-day	3
			Ingestion						Ва	ss						
				Total PCBs	5.24E+00	mg/kg	5.8E-04	mg/kg-day	2.0E+00	mg/kg-day	1E-03	1.4E-03	mg/kg-day	2.0E-05	mg/kg-day	68
				Mercury	7.06E-01	mg/kg	7.9E-05	mg/kg-day	NA		NA	1.8E-04	mg/kg-day	1.0E-04	mg/kg-day	2
			Bass Total								1E-03					70
			Bass PCB Dioxin-like Cor	gener TEQ	8.10E-06	mg/kg	9.0E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.1E-09	mg/kg-day	7.0E-10	mg/kg-day	3
			Ingestion						Cat	ish						
				Total PCBs	6.68E+00	mg/kg	7.5E-04	mg/kg-day	2.0E+00	mg/kg-day	1E-03	1.7E-03	mg/kg-day	2.0E-05	mg/kg-day	87
				Mercury	3.33E-01	mg/kg	3.7E-05	mg/kg-day	NA		NA	8.7E-05	mg/kg-day	1.0E-04	mg/kg-day	0.9
			Catfish Total								1E-03					88
			Catfish PCB Dioxin-like C	ongener TEQ	8.78E-06	mg/kg	9.8E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.3E-09	mg/kg-day	7.0E-10	mg/kg-day	3
			Ingestion						Pan	fish						
				Total PCBs	3.32E+00	mg/kg	3.7E-04	mg/kg-day	2.0E+00	mg/kg-day	7E-04	8.6E-04	mg/kg-day	2.0E-05	mg/kg-day	43
				Mercury	2.66E-01	mg/kg	3.0E-05	mg/kg-day	NA		NA	6.9E-05	mg/kg-day	1.0E-04	mg/kg-day	0.7
			Panfish Total	·							7E-04					44
			Panfish PCB Dioxin-like C	ongener TEQ	9.43E-06	mg/kg	1.1E-09	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.5E-09	mg/kg-day	7.0E-10	mg/kg-day	4

${\sf TABLE~G-10}$ CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS - FISH INGESTION - GROUP C - TEQS REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future
Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cance	r Risk Calculati	ons			Non-Cance	r Hazard Calc	culations	
				Potential Concern	Value	Units	Intake/Exposure 0	Concentration	CSF/Ur	it Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Fish	Fish Tissue	Group C Fish Tissue	Ingestion						All Sp	ecies		,				
				PCB Dioxin-like Congener TEQ	8.33E-06	mg/kg	9.3E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.2E-09	mg/kg-day	7.0E-10	mg/kg-day	3
				2,3,7,8-TCDD TEQ	7.86E-07	mg/kg	8.8E-11	mg/kg-day	1.3E+05	mg/kg-day	1E-05	2.0E-10	mg/kg-day	7.0E-10	mg/kg-day	0.3
			All Species Total TEQ								1E-04					3
			Ingestion						Ва	SS						
				PCB Dioxin-like Congener TEQ	8.10E-06	mg/kg	9.0E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.1E-09	mg/kg-day	7.0E-10	mg/kg-day	3
				2,3,7,8-TCDD TEQ	7.68E-07	mg/kg	8.6E-11	mg/kg-day	1.3E+05	mg/kg-day	1E-05	2.0E-10	mg/kg-day	7.0E-10	mg/kg-day	0.3
			Bass Total TEQ								1E-04					3
			Ingestion						Cat	fish		•				
				PCB Dioxin-like Congener TEQ	8.78E-06	mg/kg	9.8E-10	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.3E-09	mg/kg-day	7.0E-10	mg/kg-day	3
				2,3,7,8-TCDD TEQ	1.04E-06	mg/kg	1.2E-10	mg/kg-day	1.3E+05	mg/kg-day	2E-05	2.7E-10	mg/kg-day	7.0E-10	mg/kg-day	0.4
			Catfish Total TEQ								1E-04					4
			Ingestion			Panfish										
				PCB Dioxin-like Congener TEQ	9.43E-06	mg/kg	1.1E-09	mg/kg-day	1.3E+05	mg/kg-day	1E-04	2.5E-09	mg/kg-day	7.0E-10	mg/kg-day	4
				2,3,7,8-TCDD TEQ	6.19E-07	mg/kg	6.9E-11	mg/kg-day	1.3E+05	mg/kg-day	9E-06	1.6E-10	mg/kg-day	7.0E-10	mg/kg-day	0.2
			Panfish Total TEQ			1E-04					4					

TABLE G-11 CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS - FISH INGESTION - GROUP C - PRIMARY COPCS CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point		Chemical of	EPC			Cance	r Risk Calculati	ions			Non-Cance	r Hazard Cald	culations	
			Exposure Route	Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/Ur	nit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Fish	Fish Tissue	Group C Fish Tissue	Ingestion						All S	pecies						
			· ·	Total PCBs	5.43E+00	mg/kg	1.1E-04	mg/kg-day	1.0E+00	mg/kg-day	1E-04	2.7E-04	mg/kg-day	2.0E-05	mg/kg-day	13
				Mercury	4.30E-01	mg/kg	9.0E-06	mg/kg-day	NA		NA	2.1E-05	mg/kg-day	1.0E-04	mg/kg-day	0.2
			All Species Total								1E-04					14
			All Species PCB D	ioxin-like Congener TEQ	8.33E-06	mg/kg	1.8E-10	mg/kg-day	1.3E+05	mg/kg-day	2E-05	4.1E-10	mg/kg-day	7.0E-10	mg/kg-day	0.6
		'	Ingestion						В	ass						
			· ·	Total PCBs	5.24E+00	mg/kg	1.1E-04	mg/kg-day	1.0E+00	mg/kg-day	1E-04	2.6E-04	mg/kg-day	2.0E-05	mg/kg-day	13
				Mercury	7.06E-01	mg/kg	1.5E-05	mg/kg-day	NA		NA	3.5E-05	mg/kg-day	1.0E-04	mg/kg-day	0.3
			Bass Total								1E-04					13
			Bass PCB Dioxin-l	ike Congener TEQ	8.10E-06	mg/kg	1.7E-10	mg/kg-day	1.3E+05	mg/kg-day	2E-05	4.0E-10	mg/kg-day	7.0E-10	mg/kg-day	0.6
		,	Ingestion						Ca	tfish						
			· ·	Total PCBs	6.68E+00	mg/kg	1.4E-04	mg/kg-day	1.0E+00	mg/kg-day	1E-04	3.3E-04	mg/kg-day	2.0E-05	mg/kg-day	16
				Mercury	3.33E-01	mg/kg	7.0E-06	mg/kg-day	NA		NA	1.6E-05	mg/kg-day	1.0E-04	mg/kg-day	0.2
			Catfish Total								1E-04					17
			Catfish PCB Dioxir	n-like Congener TEQ	8.78E-06	mg/kg	1.8E-10	mg/kg-day	1.3E+05	mg/kg-day	2E-05	4.3E-10	mg/kg-day	7.0E-10	mg/kg-day	0.6
		,	Ingestion						Pa	nfish						
				Total PCBs	3.32E+00	mg/kg	7.0E-05	mg/kg-day	1.0E+00	mg/kg-day	7E-05	1.6E-04	mg/kg-day	2.0E-05	mg/kg-day	8
				Mercury	2.66E-01	mg/kg	5.6E-06	mg/kg-day	NA		NA	1.3E-05	mg/kg-day	1.0E-04	mg/kg-day	0.1
			Panfish Total								7E-05					8
			Panfish PCB Dioxi	n-like Congener TEQ	9.43E-06	mg/kg	2.0E-10	mg/kg-day	1.3E+05	mg/kg-day	3E-05	4.6E-10	mg/kg-day	7.0E-10	mg/kg-day	0.7

TABLE G-12 CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS - FISH INGESTION - GROUP C - TEQS CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point		Chemical of	EPC			Cance	r Risk Calculation	ons			Non-Cance	r Hazard Calc	ulations	
			Exposure Route	Potential Concern	Value	Units	Intake/Exposure C	Concentration	CSF/Un	it Risk	Cancer Risk	Intake/Exposure 0	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Fish	Fish Tissue	Group C Fish Tissue	Ingestion						All Spec	ies						
				PCB Dioxin-like Congener TEQ	8.33E-06	mg/kg	1.8E-10	mg/kg-day	1.3E+05	mg/kg-day	2E-05	4.1E-10	mg/kg-day	7.0E-10	mg/kg-day	0.6
		·		2,3,7,8-TCDD TEQ	7.86E-07	mg/kg	1.7E-11	mg/kg-day	1.3E+05	mg/kg-day	2E-06	3.9E-11	mg/kg-day	7.0E-10	mg/kg-day	0.06
			All Species Total T	EQ							2E-05					0.6
		'	Ingestion						Bass							
				PCB Dioxin-like Congener TEQ	8.10E-06	mg/kg	1.7E-10	mg/kg-day	1.3E+05	mg/kg-day	2E-05	4.0E-10	mg/kg-day	7.0E-10	mg/kg-day	0.6
		·		2,3,7,8-TCDD TEQ	7.68E-07	mg/kg	1.6E-11	mg/kg-day	1.3E+05	mg/kg-day	2E-06	3.8E-11	mg/kg-day	7.0E-10	mg/kg-day	0.05
			Bass Total TEQ								2E-05					0.6
		'	Ingestion						Catfis	h						
				PCB Dioxin-like Congener TEQ	8.78E-06	mg/kg	1.8E-10	mg/kg-day	1.3E+05	mg/kg-day	2E-05	4.3E-10	mg/kg-day	7.0E-10	mg/kg-day	0.6
				2,3,7,8-TCDD TEQ	1.04E-06	mg/kg	2.2E-11	mg/kg-day	1.3E+05	mg/kg-day	3E-06	5.1E-11	mg/kg-day	7.0E-10	mg/kg-day	0.07
			Catfish Total TEQ								3E-05					0.7
			Ingestion						Panfis	h	-11 - 1111					
				PCB Dioxin-like Congener TEQ	9.43E-06	mg/kg	2.0E-10	mg/kg-day	1.3E+05	mg/kg-day	3E-05	4.6E-10	mg/kg-day	7.0E-10	mg/kg-day	0.7
				2,3,7,8-TCDD TEQ	6.19E-07	mg/kg	1.3E-11	mg/kg-day	1.3E+05	mg/kg-day	2E-06	3.0E-11	mg/kg-day	7.0E-10	mg/kg-day	0.04
			Panfish Total TEQ								3E-05					0.7

APPENDIX H FISH CONSUMPTION RAGS 9 TABLES

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS - FISH INGESTION - GROUP A - PRIMARY COPCS REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

Scenario Timeframe: Current/Future

Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Chemical of Potential	Carcinogenic Risk Non-Carcinogenic Hazard Quotient						uotient					
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure			
							Routes Total	Target Organ(s)				Routes Total			
Fish	Fish Tissue	Group A Fish Tissue					All Species	•							
			Total PCBs	1E-03			1E-03	Eyes, Immune system	62			62			
			Mercury					Nervous system	2			2			
			All Species Total	1E-03			1E-03		64			64			
			All Species PCB Dioxin-like Congener TEQ	5E-04			5E-04	Developmental	12			12			
							Bass								
			Total PCBs	1E-03			1E-03	Eyes, Immune system	72			72			
			Mercury					Nervous system	3			3			
			Bass Total	1E-03			1E-03		74			74			
			Bass PCB Dioxin-like Congener TEQ	6E-04			6E-04	Developmental	15			15			
			Catfish												
			Total PCBs	1E-03		-	1E-03	Eyes, Immune system	77			77			
			Mercury					Nervous system	1			1			
			Catfish Total	1E-03			1E-03		78			78			
			Catfish PCB Dioxin-like Congener TEQ	2E-04			2E-04	Developmental	4			4			
	Panfis														
			Total PCBs	9E-04			9E-04	Eyes, Immune system	55			55			
]	Mercury					Nervous system	2			2			
			Panfish Total	9E-04			9E-04		57			57			
			Panfish PCB Dioxin-like Congener TEQ	4E-04			4E-04	Developmental	9			9			

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS - FISH INGESTION - GROUP A - TEQS REASONABLE MAXIMUM EXPOSURE ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future
Receptor Population: Recreational Fisherman
Receptor Age: Age-Adjusted

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk		Non-Carcinogenic Hazard Quotient					
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure	
							Routes Total	Target Organ(s)				Routes Total	
Fish	Fish Tissue	Group A Fish Tissue		All Species									
			PCB Dioxin-like Congener TEQ	5E-04			5E-04	Developmental	12			12	
			2,3,7,8-TCDD TEQ	1E-04			1E-04	Developmental	4			4	
			All Species Total TEQ	6E-04			6E-04		16			16	
	Bass												
			PCB Dioxin-like Congener TEQ	6E-04			6E-04	Developmental	15			15	
			2,3,7,8-TCDD TEQ	1E-04			1E-04	Developmental	3			3	
			Bass Total TEQ	7E-04			7E-04		18			18	
		'		•			Catfish						
			PCB Dioxin-like Congener TEQ	2E-04			2E-04	Developmental	4			4	
			2,3,7,8-TCDD TEQ	3E-05			3E-05	Developmental	0.7			0.7	
			Catfish Total TEQ	2E-04			2E-04		5			5	
							Panfish						
			PCB Dioxin-like Congener TEQ	4E-04			4E-04	Developmental	9			9	
			2,3,7,8-TCDD TEQ	1E-04			1E-04	Developmental	4			4	
			Panfish Total TEQ	5E-04			5E-04		13			13	

${\bf SUMMARY\,OF\,RECEPTOR\,RISKS\,AND\,HAZARDS\,FOR\,COPCS-FISH\,INGESTION-GROUP\,A-PRIMARY\,COPCS}$

CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE

Scenario Timeframe: Current/Future

Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcii	nogenic Risk		Non-Carcinogenic Hazard Quotient							
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure			
							Routes Total	Target Organ(s)				Routes Total			
Fish	Fish Tissue	Group A Fish Tissue		All Species											
			Total PCBs	5E-05			5E-05	Eyes, Immune system	6			6			
			Mercury					Nervous system	0.2			0.2			
			All Species Total	5E-05			5E-05		6			6			
			All Species PCB Dioxin-like Congener TEQ	4E-05			4E-05	Developmental	1			1			
								Bass							
			Total PCBs	6E-05			6E-05	Eyes, Immune system	7			7			
			Mercury					Nervous system	0.2			0.2			
			Bass Total	6E-05			6E-05		7			7			
			Bass PCB Dioxin-like Congener TEQ	6E-05			6E-05	Developmental	1			1			
			Catfish												
			Total PCBs	6E-05			6E-05	Eyes, Immune system	7			7			
			Mercury					Nervous system	0.09			0.09			
			Catfish Total	6E-05			6E-05		7			7			
			Catfish PCB Dioxin-like Congener TEQ	2E-05			2E-05	Developmental	0.4			0.4			
								Panfish							
			Total PCBs	4E-05			4E-05	Eyes, Immune system	5			5			
			Mercury					Nervous system	0.2			0.2			
			Panfish Total	4E-05			4E-05		5			5			
			Panfish PCB Dioxin-like Congener TEQ	3E-05			3E-05	Developmental	0.9			0.9			

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS - FISH INGESTION - GROUP A - TEQS CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcinogenic Risk Non-Carcinogenic Hazard Quotient								
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure	
							Routes Total	Target Organ(s)				Routes Total	
Fish	Fish Tissue	Group A Fish Tissue		•			All Species						
			PCB Dioxin-like Congener TEQ	4E-05			4E-05	Developmental	1			1	
			2,3,7,8-TCDD TEQ	1E-05			1E-05	Developmental	0.4			0.4	
			All Species Total TEQ	6E-05			6E-05		2			2	
				Bass									
			PCB Dioxin-like Congener TEQ	6E-05			6E-05	Developmental	1			1	
			2,3,7,8-TCDD TEQ	1E-05			1E-05	Developmental	0.3			0.3	
			Bass Total TEQ	7E-05			7E-05		2			2	
							Catfish						
			PCB Dioxin-like Congener TEQ	2E-05			2E-05	Developmental	0.4			0.4	
			2,3,7,8-TCDD TEQ	3E-06			3E-06	Developmental	0.07			0.07	
			Catfish Total TEQ	2E-05			2E-05		0.5			0.5	
				Panfish									
			PCB Dioxin-like Congener TEQ	3E-05			3E-05	Developmental	0.9			0.9	
			2,3,7,8-TCDD TEQ	1E-05			1E-05	Developmental	0.4			0.4	
			Panfish Total TEQ	5E-05			5E-05		1			1	

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS - FISH INGESTION - GROUP B - PRIMARY COPCS REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OII-4

Scenario Timeframe: Current/Future

Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcinogenic Risk				Non-Carcinogenic Hazard Quotient					
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary	Ingestion	Inhalation	Dermal	Exposure		
Fish	Fish Tissue	Group B Fish Tissue			<u> </u>		All Species	Target Organ(s)				Routes Total		
1 1311	11311 113340	Gloup B I isii Tissue	Total PCBs	6E-04			6E-04	Fire Immine sustan	37			37		
			Mercury	6E-04			6E-04 	Eyes, Immune system Nervous system	1			37		
			All Species Total	6E-04			6E-04	Neivous system	39			39		
			All Species PCB Dioxin-like Congener TEQ	1E-04			1E-04	Developmental	3			3		
							Bass			I.				
			Total PCBs	1E-03			1E-03	Eyes, Immune system	62			62		
			Mercury					Nervous system	2			2		
			Bass Total	1E-03			1E-03		64			64		
			Bass PCB Dioxin-like Congener TEQ	1E-04			1E-04	Developmental	4			4		
							Catfish							
			Total PCBs	9E-04			9E-04	Eyes, Immune system	52			52		
			Mercury					Nervous system	1			1		
			Catfish Total	9E-04			9E-04		53			53		
			Catfish PCB Dioxin-like Congener TEQ	7E-05			7E-05	Developmental	2			2		
							Panfish							
			Total PCBs	4E-04			4E-04	Eyes, Immune system	24			24		
			Mercury					Nervous system	0.7			0.7		
			Panfish Total	4E-04			4E-04		25			25		
			Panfish PCB Dioxin-like Congener TEQ	6E-05			6E-05	Developmental	2			2		

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS - FISH INGESTION - GROUP B - TEQS REASONABLE MAXIMUM EXPOSURE ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future

Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Chemical of Potential	Carcinogenic Risk Non-Carcinogenic Hazard Quotient								
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Fish	Fish Tissue	Group B Fish Tissue		All Species								
			PCB Dioxin-like Congener TEQ	1E-04			1E-04	Developmental	3			3
			2,3,7,8-TCDD TEQ	3E-05			3E-05	Developmental	0.6			0.6
			All Species Total TEQ	1E-04			1E-04		3			3
				Bass								
			PCB Dioxin-like Congener TEQ	1E-04			1E-04	Developmental	4			4
			2,3,7,8-TCDD TEQ	4E-05			4E-05	Developmental	0.9			0.9
			Bass Total TEQ	2E-04			2E-04		5			5
							Catfish					
			PCB Dioxin-like Congener TEQ	7E-05			7E-05	Developmental	2			2
			2,3,7,8-TCDD TEQ	1E-05			1E-05	Developmental	0.3			0.3
			Catfish Total TEQ	9E-05			9E-05		2			2
			Panfish									
			PCB Dioxin-like Congener TEQ	6E-05			6E-05	Developmental	2			2
			2,3,7,8-TCDD TEQ	2E-05			2E-05	Developmental	0.6			0.6
			Panfish Total TEQ	8E-05			8E-05	_	2			2

${\bf SUMMARY\ OF\ RECEPTOR\ RISKS\ AND\ HAZARDS\ FOR\ COPCS-FISH\ INGESTION-GROUP\ B-PRIMARY\ COPCS}$

CENTRAL TENDENCY EXPOSURE ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcii	nogenic Risk		Non-Carci	nogenic Hazar	d Quotient			
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure	
							Routes Total	Target Organ(s)				Routes Total	
Fish	Fish Tissue	Group B Fish Tissue					Α	III Species					
			Total PCBs	6E-05			6E-05	Eyes, Immune system	7			7	
			Mercury					Nervous system	0.2			0.2	
			All Species Total	6E-05			6E-05		7			7	
			All Species PCB Dioxin-like Congener TEQ	2E-05			2E-05	Developmental 0.5					
								Bass					
			Total PCBs	1E-04			1E-04	Eyes, Immune system	12			12	
			Mercury					Nervous system	0.4			0.4	
			Bass Total	1E-04			1E-04		12			12	
			Bass PCB Dioxin-like Congener TEQ	3E-05			3E-05	Developmental	0.7			0.7	
								Catfish					
			Total PCBs	8E-05			8E-05	Eyes, Immune system	10			10	
			Mercury					Nervous system	0.2			0.2	
			Catfish Total	8E-05			8E-05		10			10	
			Catfish PCB Dioxin-like Congener TEQ	1E-05			1E-05	Developmental	0.4			0.4	
								Panfish					
			Total PCBs	4E-05			4E-05	Eyes, Immune system	5			5	
			Mercury					Nervous system	0.1			0.1	
			Panfish Total	4E-05			4E-05		5			5	
			Panfish PCB Dioxin-like Congener TEQ	1E-05			1E-05	Developmental	0.3			0.3	

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS - FISH INGESTION - GROUP B - TEQS CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future
Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcin	ogenic Hazard C	Quotient	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Fish	Fish Tissue	Group B Fish Tissue					All Species					
			PCB Dioxin-like Congener TEQ	2E-05			2E-05	Developmental	0.5			0.5
			2,3,7,8-TCDD TEQ	5E-06			5E-06	Developmental	0.1			0.1
			All Species Total TEQ	2E-05			2E-05		0.6			0.6
		'					Bass					
			PCB Dioxin-like Congener TEQ	3E-05			3E-05	Developmental	0.7			0.7
			2,3,7,8-TCDD TEQ	7E-06			7E-06	Developmental	0.2			0.2
			Bass Total TEQ	3E-05			3E-05		0.9			0.9
		'		•			Catfish					
			PCB Dioxin-like Congener TEQ	1E-05			1E-05	Developmental	0.4			0.4
			2,3,7,8-TCDD TEQ	2E-06			2E-06	Developmental	0.06			0.06
			Catfish Total TEQ	2E-05			2E-05		0.4			0.4
		'		•			Panfish					
			PCB Dioxin-like Congener TEQ	1E-05			1E-05	Developmental	0.3			0.3
		1	2,3,7,8-TCDD TEQ	4E-06			4E-06	Developmental	0.1			0.1
			Panfish Total TEQ	2E-05			2E-05		0.4			0.4

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS - FISH INGESTION - GROUP C - PRIMARY COPCS REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OII-4

Scenario Timeframe: Current/Future Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcino	ogenic Hazard C	Quotient	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Fish	Fish Tissue	Group C Fish Tissue					All Species					
			Total PCBs	1E-03			1E-03	Eyes, Immune system	71			71
			Mercury					Nervous system	1			1
			All Species Total	1E-03			1E-03		72			72
			All Species PCB Dioxin-like Congener TEQ	1E-04			1E-04	Developmental	3			3
		'					Bass					
			Total PCBs	1E-03			1E-03	Eyes, Immune system	68			68
			Mercury					Nervous system	2			2
			Bass Total	1E-03			1E-03		70			70
			Bass PCB Dioxin-like Congener TEQ	1E-04			1E-04	Developmental	3			3
							Catfish					
			Total PCBs	1E-03			1E-03	Eyes, Immune system	87			87
			Mercury					Nervous system	0.9			0.9
			Catfish Total	1E-03			1E-03		88			88
			Catfish PCB Dioxin-like Congener TEQ	1E-04			1E-04	Developmental	3			3
		'					Panfish	-				
			Total PCBs	7E-04			7E-04	Eyes, Immune system	43			43
			Mercury					Nervous system	0.7			0.7
			Panfish Total	7E-04			7E-04		44			44
			Panfish PCB Dioxin-like Congener TEQ	1E-04			1E-04	Developmental	4			4

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS - FISH INGESTION - GROUP C - TEQS ${\sf REASONABLE\ MAXIMUM\ EXPOSURE}$

ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future

Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcin	ogenic Hazard C	Quotient	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Fish	Fish Tissue	Group C Fish Tissue					All Species					
			PCB Dioxin-like Congener TEQ	1E-04			1E-04	Developmental	3			3
			2,3,7,8-TCDD TEQ	1E-05			1E-05	Developmental	0.3			0.3
			All Species Total TEQ	1E-04			1E-04		3			3
							Bass					
			PCB Dioxin-like Congener TEQ	1E-04			1E-04	Developmental	3			3
			2,3,7,8-TCDD TEQ	1E-05			1E-05	Developmental	0.3			0.3
			Bass Total TEQ	1E-04			1E-04		3			3
							Catfish					
			PCB Dioxin-like Congener TEQ	1E-04			1E-04	Developmental	3			3
			2,3,7,8-TCDD TEQ	2E-05			2E-05	Developmental	0.4			0.4
			Catfish Total TEQ	1E-04			1E-04		4			4
							Panfish					
			PCB Dioxin-like Congener TEQ	1E-04			1E-04	Developmental	4			4
			2,3,7,8-TCDD TEQ	9E-06			9E-06	Developmental	0.2			0.2
			Panfish Total TEQ	1E-04			1E-04	_	4			4

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS - FISH INGESTION - GROUP C - PRIMARY COPCS

CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE OU-4

Scenario Timeframe: Current/Future

Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk		Non-Carci	nogenic Hazar	d Quotient		
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Fish	Fish Tissue	Group C Fish Tissue					А	II Species				
			Total PCBs	1E-04			1E-04	Eyes, Immune system	13			13
			Mercury					Nervous system	0.2			0.2
			All Species Total	1E-04			1E-04		14			14
			All Species PCB Dioxin-like Congener TEQ	2E-05			2E-05	Developmental	0.6			0.6
								Bass				
			Total PCBs	1E-04			1E-04	Eyes, Immune system	13			13
			Mercury					Nervous system	0.3			0.3
			Bass Total	1E-04			1E-04		13			13
			Bass PCB Dioxin-like Congener TEQ	2E-05			2E-05	Developmental	0.6			0.6
								Catfish				
			Total PCBs	1E-04			1E-04	Eyes, Immune system	16			16
			Mercury					Nervous system	0.2			0.2
			Catfish Total	1E-04			1E-04		17			17
			Catfish PCB Dioxin-like Congener TEQ	2E-05			2E-05	Developmental	0.6			0.6
								Panfish				
			Total PCBs	7E-05			7E-05	Eyes, Immune system	8			8
			Mercury					Nervous system	0.1			0.1
			Panfish Total	7E-05			7E-05		8			8
			Panfish PCB Dioxin-like Congener TEQ	3E-05			3E-05	Developmental	0.7			0.7

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS - FISH INGESTION - GROUP C - TEQS $\,$

CENTRAL TENDENCY EXPOSURE ANNISTON PCB SITE

OU-4

Scenario Timeframe: Current/Future
Receptor Population: Recreational Fisherman

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcin	ogenic Hazard C	Quotient	
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Fish	Fish Tissue	Group C Fish Tissue					All Species		•	•	•	•
			PCB Dioxin-like Congener TEQ	2E-05			2E-05	Developmental	0.6			0.6
			2,3,7,8-TCDD TEQ	2E-06			2E-06	Developmental	0.06			0.06
			All Species Total TEQ	2E-05			2E-05		0.6			0.6
		'					Bass					
			PCB Dioxin-like Congener TEQ	2E-05			2E-05	Developmental	0.6			0.6
			2,3,7,8-TCDD TEQ	2E-06			2E-06	Developmental	0.05			0.05
			Bass Total TEQ	2E-05			2E-05		0.6			0.6
		'					Catfish					
			PCB Dioxin-like Congener TEQ	2E-05			2E-05	Developmental	0.6			0.6
			2,3,7,8-TCDD TEQ	3E-06			3E-06	Developmental	0.07			0.07
			Catfish Total TEQ	3E-05			3E-05		0.7			0.7
							Panfish					
			PCB Dioxin-like Congener TEQ	3E-05			3E-05	Developmental	0.7			0.7
			2,3,7,8-TCDD TEQ	2E-06			2E-06	Developmental	0.04			0.04
			Panfish Total TEQ	3E-05			3E-05		0.7			0.7

APPENDIX I PROUCL OUTPUTS – DIRECT CONTACT

	A B C D E General UCL Statistics	F for Data Sat	G H I J K	L
2	User Selected Options	ioi Data Set	s with Non-Detects	
3	From File WorkSheet.wst			
4	Full Precision OFF			
5	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
6	Number of Bootshap Operations 2000			
7 8				
	c1_eu1_total pcbs			
10				
11	Number of Valid Data	General 67	Statistics Number of Detected Data	47
12	Number of Distinct Detected Data		Number of Non-Detect Data	20
13 14			Percent Non-Detects	29.85%
15				
16	Raw Statistics Minimum Detected	0.007	Log-transformed Statistics	2 202
17	Minimum Detected Maximum Detected		Minimum Detected Maximum Detected	-3.297 4
18 19	Mean of Detected		Mean of Detected	1.156
20	SD of Detected	9.774	SD of Detected	1.832
21	Minimum Non-Detec	t 0.04	Minimum Non-Detect	-3.219
22	Maximum Non-Detec	t 0.04	Maximum Non-Detect	-3.219
23				
24		UCL St	atistics	
25 26	Normal Distribution Test with Detected Values O		Lognormal Distribution Test with Detected Values O	nly
27	Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	0.871
28	5% Shapiro Wilk Critical Value	0.946	5% Shapiro Wilk Critical Value	0.946
29	Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
30	Assuming Normal Distribution		Assuming Lognormal Distribution	
32	DL/2 Substitution Method	i	DL/2 Substitution Method	
33	Meai		Mean	-0.357
34	SI 050/ DUD (2) VIO		SD SECULO (SD IO)	2.793
35	95% DL/2 (t) UCI	7.517	95% H-Stat (DL/2) UCL	112
36 37	Maximum Likelihood Estimate(MLE) Method	1	Log ROS Method	
38	Mear	3.091	Mean in Log Scale	0.0486
39	SI		SD in Log Scale	2.367
40	95% MLE (t) UCI 95% MLE (Tiku) UCI		Mean in Original Scale SD in Original Scale	5.718 8.951
41	95% WILE (TIKU) OCI	5.000	95% t UCL	7.542
42			95% Percentile Bootstrap UCL	7.622
44			95% BCA Bootstrap UCL	8.164
45		_		
46	Gamma Distribution Test with Detected Values C k star (bias corrected		Data Distribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance	
47 48	Theta Sta		Data I Ollow Appl. Gallilla Distribution at 576 Significance	e Level
49	nu sta	r 58.72		
50				
51	A-D Test Statistic		Nonparametric Statistics	
52	5% A-D Critical Value K-S Test Statistic		Kaplan-Meier (KM) Method Mean	5.693
53 54	5% K-S Critical Value		s SD	8.899
54 55	Data follow Appr. Gamma Distribution at 5% Significan		SE of Mean	1.099
56			95% KM (t) UCL	7.527
57	Assuming Gamma Distribution		95% KM (z) UCL	7.501
58	Gamma ROS Statistics using Extrapolated Data Minimun		95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	7.52 8.247
59	Maximun		95% KM (BCA) UCL	7.532
60 61	Mear		95% KM (Percentile Bootstrap) UCL	7.592
62	Media	3.57	95% KM (Chebyshev) UCL	10.48
63	SI		97.5% KM (Chebyshev) UCL	12.56
64	k sta Theta sta		99% KM (Chebyshev) UCL	16.63
65	Theta sta Nu sta		Potential UCLs to Use	
66 67	AppChi/		95% KM (Chebyshev) UCL	10.48
68	95% Gamma Approximate UCI			
69	95% Adjusted Gamma UCI	10.88		
70	Note: DL/2 is not a recommended method.			
71	Note: Suggestions regarding the selection of a 05°	6 UCL are pr	pvided to help the user to select the most appropriate 95% U	CL.
72 73			ulation studies summarized in Singh, Maichle, and Lee (2006	
73 74	<u> </u>		nay want to consult a statistician.	
, -т				

	Α	В	С	D	Е	F	G	Н	I	J	K	L	
75	4												
76	c1_eu2_tot	al pcbs											
77						0	04-41-41						
78			Nicoral	L f \ / - l! -l /	21		Statistics		NI la a	f Distinct (No	00	
79			Numi	ber of Valid (Observations	28			Numbe	r of Distinct C	bservations	28	
80			Dow C	*****						mad Ctatiotic			
81			raw 5	tatistics	Minimum	0.115		<u>L</u>	.og-transion	med Statistic	of Log Data	2 162	
82					Maximum						of Log Data		
83						31.63					n of log Data		
84					Median						O of log Data		
85						43.29					—————	1.070	
86				Coefficien	t of Variation								
87					Skewness								
88						0.710							
89						Relevant U	CL Statistics	<u> </u>					
90			Normal Dist	tribution Tes	st				ognormal Di	istribution Te	est		
91 92					Test Statistic	0.59				Shapiro Wilk		0.882	
				•	Critical Value					hapiro Wilk C			
93 94		Data not	Normal at 5			1		Data not L		t 5% Signific		L	
95									-				
96		As	suming Nori	mal Distribu	tion			Assı	ıming Logno	ormal Distrib	ution		
97				95% Stu	ident's-t UCL	45.56					95% H-UCL	93.02	
98		95%	UCLs (Adju	sted for Ske	ewness)				95%	Chebyshev (MVUE) UCL	95.95	
99			95% Adjuste	ed-CLT UCL	(Chen-1995)	51.23			97.5%	Chebyshev (MVUE) UCL	120.1	
100			95% Modifie	ed-t UCL (Jo	hnson-1978)	46.52		167.4					
101													
102			Gamma Dis	tribution Tes	st				Data Di	stribution			
103				k star (bia	as corrected)	0.835	Data appear Gamma Distributed at 5% Significance Lev						
104					Theta Star	37.86							
105				ı	MLE of Mean	31.63							
106			М	ILE of Standa	ard Deviation	34.6							
107					nu star								
108					e Value (.05)				Nonparame	tric Statistic			
109					Significance						5% CLT UCL		
110			Ac	djusted Chi S	Square Value	31.34					ckknife UCL		
111						0.45=			95%	Standard Bo	·		
112					Test Statistic						tstrap-t UCL		
113					Critical Value					95% Hall's Bo			
114		17			Test Statistic					Percentile Bo			
115	Dete				Critical Value					95% BCA Bonebyshev(Me			
116	Data	appear Gal	IIIIIa DISTIDI	uteu at 5% t	Significance	Level				nebyshev(Me nebyshev(Me			
117		۸۵۰	suming Gam	nma Dietribu	ıtion					nebysnev(Me nebyshev(Me			
118		AS			Gamma UCL	46 11			33 /0 CI	ionystiev(ivie		110	
119				• •	Gamma UCL								
120					Cannilla OOL								
121			Potential I	UCL to Use					Use 95% A	Approximate (Samma LICI	46 11	
122			. Juniual C						000 00 /0 /		Janina OOL		
123	Not	e: Suaaestir	ons regardin	a the select	ion of a 95%	UCL are nr	ovided to he	lp the user t	o select the	most appro	Driate 95% I	JCL.	
124					upon the res						•		
125					2003). For a							•	
126							J, 40						

	Α	В	С	D	Е	F	G	Н		J	K	L
127												
128	c2n_eu1_m	nercury										
129							O					
130							Statistics			(5)		140
131			Numi	per of Valid C	bservations	14			Numbe	r of Distinct C	bservations	13
132			Bow S	tatistics				1	og tronofor	med Statistic		
133			raw S	lausucs	Minimum	0.0104			Log-iransioi		of Log Data	3 042
134					Maximum						of Log Data	
135						0.374					n of log Data	
136					Median						O of log Data	
137						0.573						1121
138				Coefficient	of Variation							
139 140					Skewness	1.42						
141												
142						Relevant U	CL Statistics	3				
143			Normal Dist	ribution Tes	t			L	ognormal D	istribution Te	est	
144			S	hapiro Wilk 7	Test Statistic	0.655			5	Shapiro Wilk	Γest Statistic	0.783
145			SI	napiro Wilk C	critical Value	0.874			S	hapiro Wilk C	ritical Value	0.874
146		Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level								1		
147	Data not no management and a specific and a specifi											
148		Assuming Normal Distribution Assuming Lognormal Distribution										
149				95% Stu	dent's-t UCL	0.645					95% H-UCL	2.205
150				sted for Ske						Chebyshev (•	
151			•	d-CLT UCL (•					Chebyshev (•	
152			95% Modifie	ed-t UCL (Joh	nnson-1978)	0.655		MVUE) UCL	1.896			
153										stribution		
154		ı	Gamma Dist	tribution Tes		T	_					
155				k star (bia	s corrected)		D	ribution (0.0	5)			
156					Theta Star							
157			NA	LE of Standa	ILE of Mean							
158			IVI	LE 01 Stanua	nu star							
159			Approximat	e Chi Square					Nonnarame	tric Statistics		
160			• • • • • • • • • • • • • • • • • • • •	sted Level of	, ,				Nonparame		5% CLT UCL	0.626
161			•	djusted Chi S	Ū						ckknife UCL	
162				<u>, , , , , , , , , , , , , , , , , , , </u>					95%	Standard Bo		
163 164			Ander	son-Darling 1	Test Statistic	1.877					tstrap-t UCL	
165				Darling 5% C					9	95% Hall's Bo	·	
166			Kolmogor	ov-Smirnov 1	Test Statistic	0.393			95%	Percentile Bo	otstrap UCL	0.626
167		K	olmogorov-S	Smirnov 5% C	ritical Value	0.242				95% BCA Bo	otstrap UCL	0.67
168	Da	ita not Gamr	na Distribute	ed at 5% Sig	nificance Le	evel			95% CI	nebyshev(Me	an, Sd) UCL	1.042
169									97.5% Ch	nebyshev(Me	an, Sd) UCL	1.331
170		Ass	suming Gam	ıma Distribu	tion				99% CI	nebyshev(Me	an, Sd) UCL	1.898
171				pproximate C								
172			95	% Adjusted C	Gamma UCL	0.947						
173												
174			Potential U	JCL to Use						ebyshev (Me	an, Sd) UCL	1.898
175				Red	ommended	UCL exceed	the maxin	num observa	ation	1		
176												
177				_						most approp		
178	1	hese recom								gh, Singh, a	•	2)
179			and Singh a	and Singh (2	ເບບ3). For a	additional in	sight, the us	er may wan	t to consult	a statistician	<u>. </u>	

	A B C D E	F	G H I I J K	L
180	c2n_eu1_total pcbs	' 1		
181				
182		General S		
183	Number of Valid Data Number of Distinct Detected Data	7	Number of Detected Data Number of Non-Detect Data	7
184	Number of Distinct Detected Data	/	Percent Non-Detects	50.00%
185 186				
187	Raw Statistics		Log-transformed Statistics	
188	Minimum Detected	0.0435	Minimum Detected	-3.135
189	Maximum Detected	72.5	Maximum Detected	4.284
190	Mean of Detected SD of Detected	13.41 26.74	Mean of Detected SD of Detected	0.0672 2.88
191	Minimum Non-Detect	0.0375	Minimum Non-Detect	-3.283
192 193	Maximum Non-Detect	0.047	Maximum Non-Detect	-3.058
194				
195	Note: Data have multiple DLs - Use of KM Method is recommen	nded	Number treated as Non-Detect	8
196	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	6
197	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	57.14%
198	Warning: There	are only 7 D	Detected Values in this data	
199			potstrap may be performed on this data set	
200		_	reliable enough to draw conclusions	
202	,		-	
203	It is recommended to have 10-15 or m	ore distinct o	observations for accurate and meaningful results.	
204				
205				
206	Normal Distribution Test with Detected Values On	UCL Sta	atistics Lognormal Distribution Test with Detected Values On	lv
207	Shapiro Wilk Test Statistic	0.597	Shapiro Wilk Test Statistic	0.92
208 209	5% Shapiro Wilk Critical Value	0.803	5% Shapiro Wilk Critical Value	0.803
210	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
211				
212	Assuming Normal Distribution		Assuming Lognormal Distribution	
213	DL/2 Substitution Method	0.745	DL/2 Substitution Method	4.000
214	Mean SD	6.715 19.45	Mean SD	-1.922 2.845
215	95% DL/2 (t) UCL	15.43	95% H-Stat (DL/2) UCL	1322
216 217	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, , , , , , , , , , , , , , , , , , , ,	
218	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
219	MLE yields a negative mean		Mean in Log Scale	-3.959
220			SD in Log Scale	4.692
221			Mean in Original Scale	6.705
222			SD in Original Scale 95% t UCL	19.45 15.91
223			95% Percentile Bootstrap UCL	16.08
224 225			95% BCA Bootstrap UCL	22.45
226				
227	Gamma Distribution Test with Detected Values Or	-	Data Distribution Test with Detected Values Only	
228	k star (bias corrected)	0.253	Data appear Gamma Distributed at 5% Significance Le	vel
229	Theta Star	52.97 3.544		
230	nu star	5.544		
231	A-D Test Statistic	0.432	Nonparametric Statistics	
232	5% A-D Critical Value	0.793	Kaplan-Meier (KM) Method	
234	K-S Test Statistic	0.793	Mean	6.727
235	5% K-S Critical Value	0.337	SD	18.74
236	Data appear Gamma Distributed at 5% Significance I	_evel	SE of Mean	5.408
237	Assuming Gamma Distribution		95% KM (t) UCL 95% KM (z) UCL	16.3 15.62
238	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	15.62
239	Minimum	1E-12	95% KM (bootstrap t) UCL	157.9
240 241	Maximum	72.5	95% KM (BCA) UCL	17.11
242	Mean	8.781	95% KM (Percentile Bootstrap) UCL	16.9
243	Median	2.39	95% KM (Chebyshev) UCL	30.3
244	SD	18.99	97.5% KM (Chebyshev) UCL	40.5
245	k star Theta star	0.158 55.57	99% KM (Chebyshev) UCL	60.54
246	Theta star Nu star	4.425	Potential UCLs to Use	
247	AppChi2	0.896	95% KM (t) UCL	16.3
248 249	95% Gamma Approximate UCL	43.35	55% tun (y 562	
250	95% Adjusted Gamma UCL	54.78		
251	Note: DL/2 is not a recommended method.			
252				
. –	Note: Suggestions regarding the selection of a $\overline{95\%}$	UCL are pro	vided to help the user to select the most appropriate 95% UC	
253	These management destroys 1 1 11 11 11 11 11	la af 11 '	detion studios summadas da Obrah 14 1 1 1 (CCCC)	
253 254 255	•		llation studies summarized in Singh, Maichle, and Lee (2006) ay want to consult a statistician.	

	A	В	С	D	Е	F	G	Н		J	K	L		
256														
257	c2n_eu2_m	nercury												
258						0	04-41-41							
259			Niconal	h = = £ \ / = l; = l /	Ohaamatiama	TI.	Statistics		Niconala	u of Diotinot (10		
260			Numi	ber of Valid (Observations	19			Numbe	r of Distinct C	Diservations	19		
261			Daw C	tatiatiaa						mad Ctatiotic				
262			Raw S	tatistics	Minimum	0.02			.og-transion	med Statistic	of Log Data	2.012		
263					Maximum						of Log Data			
264						0.101					n of log Data			
265					Median						D of log Data			
266						0.174					—————	0.500		
267				Coefficien	nt of Variation									
268					Skewness									
269						2.000								
270						Relevant U	CL Statistics	<u> </u>						
271			Normal Dist	tribution Tes	st				ognormal Di	istribution Te	est			
272					Test Statistic	0.448				Shapiro Wilk		0.725		
273				•	Critical Value					hapiro Wilk C				
274 275		Data not	Normal at 5					Data not L		t 5% Signific				
276														
277		As	suming Nor	mal Distribu	ıtion			Assu	ıming Logno	ormal Distrib	ution			
278					udent's-t UCL	0.171					95% H-UCL	0.139		
279		95%	UCLs (Adju	sted for Ske	ewness)				95%	Chebyshev (MVUE) UCL	0.159		
280			95% Adjuste	ed-CLT UCL	(Chen-1995)	0.195			97.5%	Chebyshev (MVUE) UCL	0.193		
281			95% Modifie	ed-t UCL (Jo	hnson-1978)	0.175	99% Chebyshev (MVUE) UCL 0.26							
282						1						1		
283			Gamma Dis	tribution Te	st				Data Dis	stribution				
284				k star (bia	as corrected)	0.823	Data do not follow a Discernable Distribution (0.05)							
285					Theta Star	0.123								
286				ı	MLE of Mean	0.101								
287			М	LE of Standa	ard Deviation	0.112								
288					nu star	31.27								
289					e Value (.05)				Nonparame	tric Statistic				
290					Significance						5% CLT UCL			
291			Ad	djusted Chi S	Square Value	18.69					ckknife UCL			
292									95%	Standard Bo	·			
293					Test Statistic						otstrap-t UCL			
294					Critical Value					95% Hall's Bo	·			
295					Test Statistic					Percentile Bo	·			
296					Critical Value					95% BCA Bo	·			
297	Da	ta not Gamr	na טוstribute	ea at 5% Sig	gnificance Le	evel				nebyshev(Me	,			
298		A -	oumin a On	omo Distrik	ition					nebyshev(Me	,			
299		AS	suming Gam		Gamma UCL	0.162			99% Cr	nebyshev(Me	an, sa) UCL	0.5		
300				• •	Gamma UCL Gamma UCL									
301			95	no Aujusted	Jamina UCL	0.17								
302			Potential I	UCL to Use				ı	Isa 05% Ch	ebyshev (Me	an Sd) IICI	0.276		
303			i oteritial (10 USE					J3C 3J /0 UII	CDySHEV (IVIE	an, ou) UCL	0.270		
304	Not	e: Suggestic	ns renardin	n the select	tion of a 95%	UCI are no	ovided to be	In the user t	o select the	most appro	priate 95% I	JCI .		
305					upon the res			•						
306	<u>'</u>	1800111			2003). For a						-			
307			ana omgil (and onigh (additional III	olyni, ine us	o. may want	Jonisuit (_ ownouted	•			

	A B C D E	F	G H I J K	T T
308	c2n_eu2_total pcbs	·		
309				
310		General	Statistics	
311	Number of Valid Data	19	Number of Detected Data	4
312	Number of Distinct Detected Data	4	Number of Non-Detect Data	15
313			Percent Non-Detects	78.95%
314			1	
315	Raw Statistics		Log-transformed Statistics	
316	Minimum Detected	0.0455	Minimum Detected	-3.09
317	Maximum Detected	2.68	Maximum Detected	0.986
318	Mean of Detected	0.827	Mean of Detected	-1.406
319	SD of Detected	1.256	SD of Detected	1.94
320	Minimum Non-Detect	0.042	Minimum Non-Detect	-3.17
321	Maximum Non-Detect	0.0485	Maximum Non-Detect	-3.026
322				
323	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	16
324	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	3
325	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	84.21%
326			<u> </u>	
327	Warning: There are	only 4 Disti	nct Detected Values in this data	
328	Note: It should be noted that ev	en though b	pootstrap may be performed on this data set	
329	the resulting calculations	may not be	reliable enough to draw conclusions	
330				
331	It is recommended to have 10-15 or m	ore distinct	observations for accurate and meaningful results.	
332				
333				
334		UCL S	atistics	
335	Normal Distribution Test with Detected Values On	ly	Lognormal Distribution Test with Detected Values On	ly
336	Shapiro Wilk Test Statistic	0.754	Shapiro Wilk Test Statistic	0.893
337	5% Shapiro Wilk Critical Value	0.748	5% Shapiro Wilk Critical Value	0.748
338	Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
339				
340	Assuming Normal Distribution		Assuming Lognormal Distribution	
341	DL/2 Substitution Method		DL/2 Substitution Method	
342	Mean	0.192	Mean	-3.305
343	SD	0.613	SD	1.282
344	95% DL/2 (t) UCL	0.436	95% H-Stat (DL/2) UCL	0.209
345				
346	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
347	MLE yields a negative mean		Mean in Log Scale	-7.658
348			SD in Log Scale	3.735
349			Mean in Original Scale	0.174
350			SD in Original Scale	0.619
351			95% t UCL	0.42
352			95% Percentile Bootstrap UCL	0.454
353			95% BCA Bootstrap UCL	0.597
354				
355	Gamma Distribution Test with Detected Values On	ly	Data Distribution Test with Detected Values Only	
356	k star (bias corrected)	0.297	Data appear Normal at 5% Significance Level	
357	Theta Star	2.787		
358	nu star	2.372		
359				
360	A-D Test Statistic	0.394	Nonparametric Statistics	
361	5% A-D Critical Value	0.68	Kaplan-Meier (KM) Method	
361	K-S Test Statistic	0.68	Mean	0.21
362	5% K-S Critical Value	0.41	SD	0.592
364	Data appear Gamma Distributed at 5% Significance L	_evel	SE of Mean	0.157
365			95% KM (t) UCL	0.482
366	Assuming Gamma Distribution		95% KM (z) UCL	0.468
366	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.445
367	Minimum	0.0455	95% KM (bootstrap t) UCL	1.015
	Maximum	2.68	95% KM (BCA) UCL	2.68
369	Mean	0.832	95% KM (Percentile Bootstrap) UCL	0.865
370	Median	0.821	95% KM (Chebyshev) UCL	0.893
371	SD	0.514	97.5% KM (Chebyshev) UCL	1.189
372	k star	1.804	99% KM (Chebyshev) UCL	1.77
373	Theta star	0.461	(5.35)5.00.	
374	Nu star	68.56	Potential UCLs to Use	
375	AppChi2	50.5	95% KM (t) UCL	0.482
376	95% Gamma Approximate UCL	1.129	95% KM (Percentile Bootstrap) UCL	0.865
377	95% Adjusted Gamma UCL	N/A	(
378	Note: DL/2 is not a recommended method.			
	The state of the s			
379	•			
380	Note: Suggestions regarding the selection of a 95%	UCL are no	ovided to help the user to select the most appropriate 95% LIC	L.
380 381			ovided to help the user to select the most appropriate 95% UC	
380	These recommendations are based upon the result	s of the sim	povided to help the user to select the most appropriate 95% UC ulation studies summarized in Singh, Maichle, and Lee (2006) hay want to consult a statistician.	

	A B C D E	F	G	Н	I	J	K	L
384								
385	c2s_eu1_mercury							
386			<u> </u>					
387			Statistics			(D) -1 -		
388	Number of Valid Observations	16			Numbe	er of Distinct	Observations	14
389	Raw Statistics			اما	a transfo	rmed Statist	tion	
390	Minimum	0.0125		LC	y-uansioi		m of Log Data	1 383
391	Maximum						m of Log Data	
392		0.0537					an of log Data	
393	Median						SD of log Data	
394		0.0348						0.000
395	Coefficient of Variation							
396	Skewness							
397								
398 399		Relevant U	CL Statistics					
400	Normal Distribution Test			Log	gnormal D	Distribution -		
401	Shapiro Wilk Test Statistic	0.768			;	Shapiro Will	Test Statistic	0.91
402	Shapiro Wilk Critical Value	0.887			5	Shapiro Wilk	Critical Value	0.887
403	Data not Normal at 5% Significance Level	1	D	ata appear l	Lognorma	l at 5% Sigr	nificance Leve)
404								
405	Assuming Normal Distribution			Assur	ning Logn	ormal Distr	ibution	
406	95% Student's-t UCL	0.0689					95% H-UCL	0.0751
407	95% UCLs (Adjusted for Skewness)				95%	Chebyshev	(MVUE) UCL	0.0893
408	95% Adjusted-CLT UCL (Chen-1995)					•	(MVUE) UCL	
409	95% Modified-t UCL (Johnson-1978)	0.0694			99%	Chebyshev	(MVUE) UCL	0.135
410								
411	Gamma Distribution Test					istribution		
412	k star (bias corrected)		D	ata appear l	Lognorma	I at 5% Sigr	nificance Leve	el
413	Theta Star							
414	MLE of Mean							
415	MLE of Standard Deviation							
416	nu star Approximate Chi Square Value (.05)			N.	lonnoroma	etric Statisti		
417	Adjusted Level of Significance			IN.	onparame		95% CLT UCL	0.068
418	Adjusted Chi Square Value						Jackknife UCL	
419	Adjusted offi oquare value	00.41			95%		Bootstrap UCL	
420	Anderson-Darling Test Statistic	0.952					ootstrap-t UCL	
421	Anderson-Darling 5% Critical Value						Bootstrap UCL	
422 423	Kolmogorov-Smirnov Test Statistic						Bootstrap UCL	
423	Kolmogorov-Smirnov 5% Critical Value						Bootstrap UCL	
425	Data not Gamma Distributed at 5% Significance Le	evel			95% C	hebyshev(M	lean, Sd) UCL	0.0916
426					97.5% C	hebyshev(N	lean, Sd) UCL	0.108
427	Assuming Gamma Distribution	1			99% C	hebyshev(N	lean, Sd) UCL	0.14
428	95% Approximate Gamma UCL	0.0708						
429	95% Adjusted Gamma UCL	0.0731						
430								
431	Potential UCL to Use					Us	e 95% H-UCL	0.0751
432								
433	ProUCL computes and output					•		
434	H-statistic often results in unstable (both high a				•		hnical Guide.	
435	It is therefore recommende							
436	Use of nonparametric methods are preferred to com	npute UCL9	for skewed o	data sets wh	ich do not	t follow a ga	ımma distribu	tion.
437								
438	Note: Suggestions regarding the selection of a 95%						<u> </u>	
439	These recommendations are based upon the resu						•	2)
440	and Singh and Singh (2003). For a	additional in	signt, the use	r may want t	o consult	a statisticia	n.	

	ABCDE	F	G H I J K	ı
441	c2s_eu1_total pcbs	·		
442				
443		General	Statistics	
444	Number of Valid Data	16	Number of Detected Data	4
445	Number of Distinct Detected Data	4	Number of Non-Detect Data	12
446			Percent Non-Detects	75.00%
447				
448	Raw Statistics		Log-transformed Statistics	
449	Minimum Detected	0.0515	Minimum Detected	-2.966
	Maximum Detected	0.505	Maximum Detected	-0.683
450	Mean of Detected	0.237	Mean of Detected	-1.764
451	SD of Detected	0.2	SD of Detected	0.986
452	Minimum Non-Detect	0.04	Minimum Non-Detect	-3.219
453	Maximum Non-Detect	0.0455	Maximum Non-Detect	-3.09
454	maxima ii rton Botot	0.0100	maximan ron botost	0.00
455	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	12
456	For all methods (except KM, DL/2, and ROS Methods),	lucu	Number treated as Detected	12
457	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	75.00%
458	Observations > Largest ND are treated as NDS		Single DE Non-Delect Percentage	75.00 %
459	Manufact There are		le et Data eta d'Alabara la dista	
460			inct Detected Values in this data	
461			pootstrap may be performed on this data set	
462	the resulting calculations	may not be	reliable enough to draw conclusions	
463				
464	It is recommended to have 10-15 or m	ore distinct	observations for accurate and meaningful results.	
465				
466				
467		UCL S	atistics	
468	Normal Distribution Test with Detected Values On	ly	Lognormal Distribution Test with Detected Values On	ly
469	Shapiro Wilk Test Statistic	0.94	Shapiro Wilk Test Statistic	0.988
470	5% Shapiro Wilk Critical Value	0.748	5% Shapiro Wilk Critical Value	0.748
471	Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
472				
473	Assuming Normal Distribution		Assuming Lognormal Distribution	
474	DL/2 Substitution Method		DL/2 Substitution Method	
475	Mean	0.0753	Mean	-3.324
476	SD	0.131	SD	1.03
477	95% DL/2 (t) UCL	0.133	95% H-Stat (DL/2) UCL	0.127
	· · · · · · · · · · · · · · · · · · ·		, ,	
478	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
479	MLE yields a negative mean		Mean in Log Scale	-4.961
480	WEE Flores a negative mean		SD in Log Scale	2.073
481			Mean in Original Scale	0.0616
482			SD in Original Scale	0.138
483			95% t UCL	0.130
484			95% Percentile Bootstrap UCL	0.122
485			95% BCA Bootstrap UCL	0.122
486			95% BCA BOOISHAP OCL	0.139
487	Occurs Distribution Took with Detected Values On	Jan 1	Dete Distribution Test with Detected Values Only	
488	Gamma Distribution Test with Detected Values Or		Data Distribution Test with Detected Values Only	
489	k star (bias corrected)	0.589	Data appear Normal at 5% Significance Level	
490	Theta Star	0.402	,	
491	nu star	4.713		
492				
493	A-D Test Statistic	0.204	Nonparametric Statistics	
494	5% A-D Critical Value	0.662	Kaplan-Meier (KM) Method	
495	K-S Test Statistic	0.662	Mean	0.0979
496	5% K-S Critical Value	0.399	SD	0.118
497	Data appear Gamma Distributed at 5% Significance I	_evel	SE of Mean	0.0341
498			95% KM (t) UCL	0.158
499	Assuming Gamma Distribution		95% KM (z) UCL	0.154
500	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.157
501	Minimum	1E-12	95% KM (bootstrap t) UCL	0.162
502	Maximum	0.505	95% KM (BCA) UCL	0.505
503	Mean	0.222	95% KM (Percentile Bootstrap) UCL	0.297
504	Median	0.148	95% KM (Chebyshev) UCL	0.246
505	SD	0.21	97.5% KM (Chebyshev) UCL	0.311
506	k star	0.141	99% KM (Chebyshev) UCL	0.437
507	Theta star	1.581		
508	Nu star	4.502	Potential UCLs to Use	
500	AppChi2	0.929	95% KM (t) UCL	0.158
500	95% Gamma Approximate UCL	1.077	95% KM (Percentile Bootstrap) UCL	0.297
509	95% Adjusted Gamma UCL	N/A		
510	95 % Adjusted Gaillilla OCL			
510 511	-			
510 511 512	Note: DL/2 is not a recommended method.			
510 511 512 513	Note: DL/2 is not a recommended method.	UCL are pro	ovided to help the user to select the most appropriate 95% LIC	 L.
510 511 512 513 514	Note: DL/2 is not a recommended method. Note: Suggestions regarding the selection of a 95%		ovided to help the user to select the most appropriate 95% UC	
510 511 512 513	Note: DL/2 is not a recommended method. Note: Suggestions regarding the selection of a 95% These recommendations are based upon the result	ts of the sim	ovided to help the user to select the most appropriate 95% UC ulation studies summarized in Singh, Maichle, and Lee (2006) hay want to consult a statistician.	

	A B C D E	F	G	Н	1 1	1	K	ı				
517		<u> </u>	<u> </u>	11	' '	<u> </u>	K	<u> </u>				
518	c3n_eu1_mercury											
519												
520			I Statistics									
521	Number of Valid Observations	51			Number of	Distinct Obse	ervations	45				
522	D 0: 1: 1:					10						
523		Raw Statistics Log-transformed Statistics Minimum 0.0645 Minimum of Log Data -2.741										
524	Maximum Maximum					Maximum of I	•					
525	Mean					Mean of						
526	Median						log Data					
527		2.924					log Data	1.223				
528	Coefficient of Variation											
529	Skewness											
530	Chemicas	2.402										
531		Relevant l	JCL Statistics									
532	Normal Distribution Test			Loand	ormal Distri	bution Test						
533 534	Lilliefors Test Statistic	0.209				Lilliefors Test	Statistic	0.117				
	Lilliefors Critical Value	0.124				illiefors Critic						
535 536	Data not Normal at 5% Significance Level		Dat	a appear Log	gnormal at	5% Significa	nce Leve	I				
537												
538	Assuming Normal Distribution			Assumir	ng Lognorm	al Distributio	n					
539	95% Student's-t UCL	3.264				95%	6 H-UCL	4.802				
540	95% UCLs (Adjusted for Skewness)				95% Ch	ebyshev (MV	JE) UCL	5.813				
541	95% Adjusted-CLT UCL (Chen-1995)	3.403			97.5% Ch	ebyshev (MV	JE) UCL	7.028				
542	95% Modified-t UCL (Johnson-1978)	3.288			99% Ch	ebyshev (MV	JE) UCL	9.415				
543												
544	Gamma Distribution Test				Data Distril	bution						
545	k star (bias corrected)	0.955	Data ap	pear Gamma	Distribute	d at 5% Sign	ificance	Level				
546	Theta Star	2.701										
547	MLE of Mean	2.578										
548	MLE of Standard Deviation	2.639										
549	nu star											
550	Approximate Chi Square Value (.05)			Non	parametric							
551	Adjusted Level of Significance						CLT UCL					
552	Adjusted Chi Square Value	75.05				95% Jackk						
553		0.400				andard Bootst	•					
554	Anderson-Darling Test Statistic					95% Bootstra	•					
555	Anderson-Darling 5% Critical Value					Hall's Bootst						
556	Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value					centile Bootst						
557	Data appear Gamma Distributed at 5% Significance I					% BCA Bootst yshev(Mean,						
558	Data appear dannia Distributed at 5% Significance t	Level		0		ysnev(Mean, yshev(Mean,	,					
559	Assuming Gamma Distribution					yshev(Mean,	,					
560	95% Approximate Gamma UCL	3 32			3370 CHED	y 31 15 V (IVIEdII,	ou) UCL	0.001				
561	95% Adjusted Gamma UCL											
562	35 % Adjusted damina OCL	3.0 10										
563	Potential UCL to Use			l ls	e 95% Annr	oximate Gam	ıma UCI	3.32				
564	. 3.3.11.11. 332 to 300						502					
565	Note: Suggestions regarding the selection of a 95%	UCL are n	provided to help t	he user to se	elect the mo	st appropria	te 95% L	ICL.				
566	These recommendations are based upon the resu		<u> </u>									
567	and Singh and Singh (2003). For a						,	-				
568	<u> </u>	•-										

	ABCDE	F	GHIJK	L
569		·		
570	c3n_eu1_total pcbs			
571				
572		General	Statistics	
573	Number of Valid Data	51	Number of Detected Data	50
574	Number of Distinct Detected Data	47	Number of Non-Detect Data	1
575			Percent Non-Detects	1.96%
576				
577	Raw Statistics		Log-transformed Statistics	
578	Minimum Detected	0.0715		-2.638
579	Maximum Detected	89.5		4.494
580	Mean of Detected	12.28	Mean of Detected	1.55
581	SD of Detected	18.42	SD of Detected	1.608
582	Minimum Non-Detect	0.039		-3.244
583	Maximum Non-Detect	0.039	Maximum Non-Detect	-3.244
584				
585				
586			tatistics	_
587	Normal Distribution Test with Detected Values Onl		Lognormal Distribution Test with Detected Values On	_
588	Shapiro Wilk Test Statistic	0.646	•	0.947
589	5% Shapiro Wilk Critical Value	0.947	5% Shapiro Wilk Critical Value	0.947
590	Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
591				
592	Assuming Normal Distribution		Assuming Lognormal Distribution	
593	DL/2 Substitution Method		DL/2 Substitution Method	
594	Mean	12.04		1.443
595	SD	18.31	SD	1.768
596	95% DL/2 (t) UCL	16.34	95% H-Stat (DL/2) UCL	45.2
597				
598	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
599	Mean	11.83		1.47
600	SD	18.39		1.692
601	95% MLE (t) UCL	16.14		12.04
602	95% MLE (Tiku) UCL	15.76		18.31
603			95% t UCL	16.34
604			95% Percentile Bootstrap UCL	16.61
605			95% BCA Bootstrap UCL	17.53
606				
607	Gamma Distribution Test with Detected Values On		Data Distribution Test with Detected Values Only	
608	k star (bias corrected)	0.614		vel
609	Theta Star	20.01		
610	nu star	61.4		
611	A D Total Obstication	0.775	Name and the Charleston	
612	A-D Test Statistic	0.775	Nonparametric Statistics	
613	5% A-D Critical Value	0.803	' ' '	10.01
614	K-S Test Statistic	0.803		12.04
615	5% K-S Critical Value	0.131	SD ST of Many	18.13
616	Data appear Gamma Distributed at 5% Significance L	.evei	SE of Mean 95% KM (t) UCL	2.565 16.34
617	Assuming Gamma Distribution		95% KM (t) UCL 95% KM (z) UCL	16.34
618	Gamma ROS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	16.26
619	Gamma ROS Statistics using Extrapolated Data Minimum	1E-12	,	17.96
620	Maximum	1E-12 89.5	1 7	17.96
621	Maximum Mean	12.04		16.32
622	Median Median	6.11	95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	23.22
623	Median SD	18.31	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	23.22
624	k star	0.418		37.57
625	Theta star	28.79	,	37.37
626	Nu star	42.67	Potential UCLs to Use	
627	AppChi2	28.69		23.22
628	95% Gamma Approximate UCL	17.91	30 % KW (Gliebyshev) OCL	
629	95% Adjusted Gamma UCL	18.12		
630	Note: DL/2 is not a recommended method.	10.12		
631	11000. DELZ 10 not a recommended medica.			
632	Note: Suggestions regarding the calcution of a CEO	IICI oro ==	ovided to help the user to select the most appropriate 95% UC	4
633		-	ovided to neip the user to select the most appropriate 95% OC Julation studies summarized in Singh, Maichle, and Lee (2006)	
634			iulation studies summarized in Singh, Malchie, and Lee (2006) nay want to consult a statistician.	
635	i or additional insignt	., uie usei l	nay main to contout a statisticiall.	

636 c3n_eu2_mercury **General Statistics** Number of Valid Observations 12 Number of Distinct Observations 12 640 641 **Raw Statistics** Log-transformed Statistics 642 Minimum 0.033 Minimum of Log Data -3.411 643 Maximum of Log Data 1.815 Maximum 6.143 644 Mean 1.492 Mean of log Data -1.046 645 Median 0.55 SD of log Data 2.076 SD 2.024 647 Coefficient of Variation 1.357 Skewness 1.465 649 650 Relevant UCL Statistics 651 **Lognormal Distribution Test** Normal Distribution Test Shapiro Wilk Test Statistic 0.768 Shapiro Wilk Test Statistic 0.85 653 Shapiro Wilk Critical Value 0.859 Shapiro Wilk Critical Value 0.859 Data not Lognormal at 5% Significance Level Data not Normal at 5% Significance Level 655 656 **Assuming Normal Distribution Assuming Lognormal Distribution** 657 95% Student's-t UCL 2.542 95% H-UCL 75.22 658 95% Chebyshev (MVUE) UCL 7.711 95% UCLs (Adjusted for Skewness) 659 97.5% Chebyshev (MVUE) UCL 10.17 95% Adjusted-CLT UCL (Chen-1995) 2.717 660 95% Modified-t UCL (Johnson-1978) 2.583 99% Chebyshev (MVUE) UCL 15.01 662 Gamma Distribution Test Data Distribution k star (bias corrected) 0.391 Data Follow Appr. Gamma Distribution at 5% Significance Level 664 Theta Star 3.818 665 MLE of Mean 1.492 666 MLE of Standard Deviation 2.387 667 668 Approximate Chi Square Value (.05) 3.558 Nonparametric Statistics 669 95% CLT UCL 2.453 Adjusted Level of Significance 0.029 670 95% Jackknife UCL 2.542 Adjusted Chi Square Value 3.032 671 95% Standard Bootstrap UCL 2.417 672 95% Bootstrap-t UCL 3.307 Anderson-Darling Test Statistic 0.738 673 Anderson-Darling 5% Critical Value 0.795 95% Hall's Bootstrap UCL 3.254 674 Kolmogorov-Smirnov Test Statistic 0.266 95% Percentile Bootstrap UCL 2.437 675 Kolmogorov-Smirnov 5% Critical Value 0.26 95% BCA Bootstrap UCL 2.726 Data follow Appr. Gamma Distribution at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 4.039 97.5% Chebyshev(Mean, Sd) UCL 5.141 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 7.306 679 95% Approximate Gamma UCL 3.934 95% Adjusted Gamma UCL 4.617 681 682 Potential UCL to Use Use 95% Adjusted Gamma UCL 4.617 683 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) 686 and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

687

	ABCDE	F	I G I H I I J I K I	1
688	N	· ·		
689	c3n_eu2_total pcbs			
690				
691		General	Statistics	
692	Number of Valid Data	12	Number of Detected Data	11
693	Number of Distinct Detected Data	11	Number of Non-Detect Data	1
694			Percent Non-Detects	8.33%
695				
696	Raw Statistics		Log-transformed Statistics	
697	Minimum Detected	0.042		-3.17
698	Maximum Detected	70.85		4.261
699	Mean of Detected	11.71	Mean of Detected	0.267
700	SD of Detected	21.38		2.668
701	Minimum Non-Detect	0.04	Minimum Non-Detect	-3.219
702	Maximum Non-Detect	0.04	Maximum Non-Detect	-3.219
703				
704				
705			tatistics	
706	Normal Distribution Test with Detected Values Onl		Lognormal Distribution Test with Detected Values On	
707	Shapiro Wilk Test Statistic	0.627	Shapiro Wilk Test Statistic	0.927
708	5% Shapiro Wilk Critical Value	0.85		0.85
709	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
710			151.11	
711	Assuming Normal Distribution		Assuming Lognormal Distribution	
712	DL/2 Substitution Method	10.74	DL/2 Substitution Method	0.001
713	Mean	10.74		-0.081
714	SD OF W. PL. (2) A DE CO	20.66		2.815
715	95% DL/2 (t) UCL	21.45	95% H-Stat (DL/2) UCL	15224
716	Maximum Likalihaad Estimata(MLE) Mathad		Log ROS Method	
717	Maximum Likelihood Estimate(MLE) Method Mean	9.6	_	-0.278
718	SD	20.98	_	3.169
719	95% MLE (t) UCL	20.98	_	10.74
720	95% MLE (t) OCL	19.68		20.66
721	55 % WILE (TIKU) OCE	19.00	95% t UCL	21.45
722			95% Percentile Bootstrap UCL	20.84
723			95% BCA Bootstrap UCL	25.84
724			30 % 26% 2508 840 562	25.04
725	Gamma Distribution Test with Detected Values On	lv	Data Distribution Test with Detected Values Only	
726	k star (bias corrected)	0.288	-	evel
727	Theta Star	40.71		
728	nu star	6.33		
729				
730	A-D Test Statistic	0.43	Nonparametric Statistics	
731 732	5% A-D Critical Value	0.818		
	K-S Test Statistic	0.818	Mean	10.74
733 734	5% K-S Critical Value	0.275	SD	19.78
735	Data appear Gamma Distributed at 5% Significance L	.evel	SE of Mean	5.989
736			95% KM (t) UCL	21.5
737	Assuming Gamma Distribution		95% KM (z) UCL	20.59
737	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	21.45
739	Minimum	1E-12		38.54
740	Maximum	70.85	95% KM (BCA) UCL	21.97
741	Mean	10.74	95% KM (Percentile Bootstrap) UCL	21.54
742	Median	0.855	95% KM (Chebyshev) UCL	36.85
743	SD	20.66	97.5% KM (Chebyshev) UCL	48.14
744	k star	0.183	99% KM (Chebyshev) UCL	70.33
745	Theta star	58.61		
746	Nu star	4.397	Potential UCLs to Use	
747	AppChi2	0.885	95% KM (Chebyshev) UCL	36.85
748	95% Gamma Approximate UCL	53.37		
749	95% Adjusted Gamma UCL	70.03		
750	Note: DL/2 is not a recommended method.		-	
751				
752	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UC	L.
753	These recommendations are based upon the result	s of the sim	oulation studies summarized in Singh, Maichle, and Lee (2006).
754	For additional insight	, the user r	nay want to consult a statistician.	

	A B C D E	F	GIHIIJIKI	ı
755		<u>'</u>	G 11 1 5 K	<u> </u>
756	c3s_eu1_mercury			
757				
758		General	Statistics	
759	Number of Valid Data	35	Number of Detected Data	34
760	Number of Distinct Detected Data	30	Number of Non-Detect Data	1
761			Percent Non-Detects	2.86%
762		<u>'</u>		
763	Raw Statistics		Log-transformed Statistics	
764	Minimum Detected	0.012	Minimum Detected	-4.423
765	Maximum Detected	18.85	Maximum Detected	2.937
766	Mean of Detected	1.677	Mean of Detected	-1.746
767	SD of Detected	4.414	SD of Detected	1.989
768	Minimum Non-Detect	0.0083	Minimum Non-Detect	-4.791
769	Maximum Non-Detect	0.0083	Maximum Non-Detect	-4.791
770				
771				
772		UCL St		
773	Normal Distribution Test with Detected Values On	•	Lognormal Distribution Test with Detected Values Onl	-
774	Shapiro Wilk Test Statistic	0.422	Shapiro Wilk Test Statistic	0.857
775	5% Shapiro Wilk Critical Value	0.933	5% Shapiro Wilk Critical Value	0.933
776	Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
777				
778	Assuming Normal Distribution		Assuming Lognormal Distribution	
779	DL/2 Substitution Method		DL/2 Substitution Method	
780	Mean	1.63	Mean	-1.853
781	SD	4.358	SD	2.059
782	95% DL/2 (t) UCL	2.875	95% H-Stat (DL/2) UCL	5.332
783				
784	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
785	Mean	1.544	Mean in Log Scale	-1.883
786	SD	4.374	SD in Log Scale	2.121
787	95% MLE (t) UCL	2.795	Mean in Original Scale	1.63
788	95% MLE (Tiku) UCL	2.66	SD in Original Scale	4.358
789			95% t UCL	2.875
790			95% Percentile Bootstrap UCL	2.966
791			95% BCA Bootstrap UCL	3.432
792				
793	Gamma Distribution Test with Detected Values On	·	Data Distribution Test with Detected Values Only	
794	k star (bias corrected)	0.297	Data do not follow a Discernable Distribution (0.05)	
795	Theta Star	5.652		
796	nu star	20.18		
797				
798	A-D Test Statistic	4.128	Nonparametric Statistics	
799	5% A-D Critical Value	0.855	Kaplan-Meier (KM) Method	
800	K-S Test Statistic	0.855	Mean	1.63
801	5% K-S Critical Value	0.164	SD	4.295
802	Data not Gamma Distributed at 5% Significance Le	vel	SE of Mean	0.737
803			95% KM (t) UCL	2.876
804	Assuming Gamma Distribution		95% KM (z) UCL	2.842
805	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	2.875
806	Minimum	1E-12	95% KM (bootstrap t) UCL	5.636
807	Maximum	18.85	95% KM (BCA) UCL	3.176
808	Mean	1.63	95% KM (Percentile Bootstrap) UCL	2.918
809	Median	0.076	95% KM (Chebyshev) UCL	4.842
810	SD	4.358	97.5% KM (Chebyshev) UCL	6.232
811	k star	0.239	99% KM (Chebyshev) UCL	8.962
812	Theta star	6.824	But and I Linds	
813	Nu star	16.72	Potential UCLs to Use	0.000
814	AppChi2	8.469	99% KM (Chebyshev) UCL	8.962
815	95% Gamma Approximate UCL	3.216		
816	95% Adjusted Gamma UCL	3.326		
817	Note: DL/2 is not a recommended method.	т		
818				•
	l Naka Our	1101		
819		•	evided to help the user to select the most appropriate 95% UCI	
	These recommendations are based upon the result	s of the sim	vided to help the user to select the most appropriate 95% UCI ulation studies summarized in Singh, Maichle, and Lee (2006) ay want to consult a statistician.	

	A B C D E	F I	G H I J K	
822		ı	d iii i j j k	
823	c3s_eu1_total pcbs			
824 825		General	Statistics	
826	Number of Valid Data	35	Number of Detected Data	15
827	Number of Distinct Detected Data	15	Number of Non-Detect Data	20
828			Percent Non-Detects	57.14%
829 830	Raw Statistics		Log-transformed Statistics	
831	Minimum Detected	0.045	Minimum Detected	-3.101
832	Maximum Detected	126.5	Maximum Detected	4.84
833	Mean of Detected SD of Detected	24.82 42.9	Mean of Detected SD of Detected	0.794 2.726
834 835	Minimum Non-Detect	0.0385	Minimum Non-Detect	-3.257
836	Maximum Non-Detect	0.044	Maximum Non-Detect	-3.124
837				
838	Note: Data have multiple DLs - Use of KM Method is recommer For all methods (except KM, DL/2, and ROS Methods),	nded	Number treated as Non-Detect Number treated as Detected	20 15
839 840	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	57.14%
841	-			
842		UCL St		
843	Normal Distribution Test with Detected Values On Shapiro Wilk Test Statistic	l y 0.644	Lognormal Distribution Test with Detected Values Or Shapiro Wilk Test Statistic	1 ly 0.924
844 845	5% Shapiro Wilk Critical Value	0.881	5% Shapiro Wilk Critical Value	0.881
846	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
847				
848	Assuming Normal Distribution DL/2 Substitution Method		Assuming Lognormal Distribution DL/2 Substitution Method	
849 850	Mean	10.65	Mean Mean	-1.88
851	SD	30.22	SD	2.929
852	95% DL/2 (t) UCL	19.28	95% H-Stat (DL/2) UCL	167.5
853	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
854 855	MLE yields a negative mean	IN/A	Mean in Log Scale	-3.678
856			SD in Log Scale	4.404
857			Mean in Original Scale	10.64
858			SD in Original Scale 95% t UCL	30.22 19.27
859 860			95% Percentile Bootstrap UCL	19.26
861			95% BCA Bootstrap UCL	23.11
862				
863	Gamma Distribution Test with Detected Values On k star (bias corrected)	0.274	Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Le	evel
864 865	Theta Star	90.47	Data appear dannia Distributed at 0% diginiloanee Et	
866	nu star	8.229		
867	ADT	0.70		
868	A-D Test Statistic 5% A-D Critical Value	0.76 0.841	Nonparametric Statistics Kaplan-Meier (KM) Method	
869 870	K-S Test Statistic	0.841	Mean	10.66
871	5% K-S Critical Value	0.241	SD	29.78
872	Data appear Gamma Distributed at 5% Significance L	_evel	SE of Mean 95% KM (t) UCL	5.21 19.47
873 874	Assuming Gamma Distribution		95% KM (t) UCL 95% KM (z) UCL	19.47
875	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	19.26
876	Minimum	1E-12	95% KM (bootstrap t) UCL	30.06
877	Maximum Mean	126.5 24.5	95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	20.05 19.66
878 879	Median	27.19	95% KM (Chebyshev) UCL	33.37
880	SD	28.59	97.5% KM (Chebyshev) UCL	43.2
881	k star	0.337	99% KM (Chebyshev) UCL	62.5
882	Theta star Nu star	72.62 23.61	Potential UCLs to Use	
883 884	AppChi2	13.55	95% KM (t) UCL	19.47
885	95% Gamma Approximate UCL	42.67	· · · · · · · · · · · · · · · · · · ·	
886	95% Adjusted Gamma UCL	43.85		
887	Note: DL/2 is not a recommended method.	Ţ		
888 889	Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UC	CL.
890			ulation studies summarized in Singh, Maichle, and Lee (2006	
891	For additional insight	t, the user m	ay want to consult a statistician.	

	A	В	С	D	E	F	G	Н	I	J	K	L
892												
893	c3s_eu2_m	ercury										
894						0	04-41-41					
895			Niconal	h a u a £ \ /a li d	Ohaamatiana		Statistics		Nila a	u of Diotionat C		22
896		Number of Valid Observations 23 Number of Distinct Observations 23										
897		Raw Statistics Log-transformed Statistics										
898			naw S	lausucs	Minimum	0.035			.og-transion		of Log Data	_3 352
899					Maximum						of Log Data	
900						2.344					n of log Data	
901					Median						O of log Data	
902						3.078						
903				Coefficier	nt of Variation							
904					Skewness							
905												
906						Relevant U	CL Statistics	<u> </u>				
908			Normal Dist	ribution Tes	st			Lo	ognormal Di	istribution Te	 est	
909	Shapiro Wilk Test Statistic 0.711					0.711			S	Shapiro Wilk	Test Statistic	0.929
910			S	hapiro Wilk	Critical Value	0.914			S	hapiro Wilk C	Critical Value	0.914
911	Data not Normal at 5% Significance Level							Data appear	Lognormal	at 5% Signi	ficance Leve	el
912												
913	Assuming Normal Distribution							Assı	ıming Logno	ormal Distrib	ution	
914				95% Stu	udent's-t UCL	3.446					95% H-UCL	12.76
915		95%	UCLs (Adju	sted for Ske	ewness)				95%	Chebyshev (MVUE) UCL	9.362
916			95% Adjuste	ed-CLT UCL	(Chen-1995)	3.759			97.5%	Chebyshev (MVUE) UCL	12
917			95% Modifie	ed-t UCL (Jo	hnson-1978)	3.502			99%	Chebyshev (MVUE) UCL	17.2
918												
919			Gamma Dis	tribution Te	st		Data Distribution					
920				k star (bi	as corrected)		Data	appear Gar	nma Distrib	uted at 5% S	Significance	Level
921					Theta Star	3.912						
922					MLE of Mean	_						
923			М	LE of Stand	ard Deviation							
924					nu star							
925			• • • • • • • • • • • • • • • • • • • •	<u> </u>	e Value (.05)				Nonparame	tric Statistics		T
926			•		Significance						5% CLT UCL	
927			Ac	ajusted Chi s	Square Value	15.97			050/		ckknife UCL	
928			Andor	oon Dorling	Toot Statistic	0.336			95%		ootstrap UCL	
929					Test Statistic Critical Value				•		otstrap-t UCL ootstrap UCL	
930					Test Statistic						ootstrap UCL	
931		K			Critical Value						ootstrap UCL	
932	Data				Significance						an, Sd) UCL	
933	200	Gai	5.5415		g					,	an, Sd) UCL	
934		Ass	suming Gam	nma Distribi	ution	1				• ,	an, Sd) UCL	
935					Gamma UCL	3.895				, , ,		
936				• •	Gamma UCL							
937				-								
939			Potential l	JCL to Use		1			Use 95% A	pproximate (Gamma UCL	3.895
940												
941	Not	e: Suggestic	ons regardin	g the selec	tion of a 95%	UCL are pr	ovided to he	lp the user t	o select the	most appro	priate 95% l	JCL.
942	1	hese recom	mendations	are based	upon the res	ults of the si	mulation stu	idies summa	rized in Sin	gh, Singh, a	nd laci (200	2)
943			and Singh	and Singh (2003). For a	additional in	sight, the us	er may want	to consult a	a statistician		
JTJ												

	A B C D E	F	G H I I J K I	L
944		-		
945	c3s_eu2_total pcbs			
946				
947	Number of Vollid Date		Statistics Number of Data to J Data	01
948	Number of Valid Data		Number of Detected Data Number of Non-Detect Data	21
949	Number of Distinct Detected Data	21	Percent Non-Detects	8.70%
950			Percent Non-Detects	6.70%
951	Raw Statistics		Log-transformed Statistics	
952	Minimum Detected	0.14	Minimum Detected	-1.97
953	Maximum Detected	-		4.239
954 955	Mean of Detected			1.116
956	SD of Detected	16.07	SD of Detected	1.844
957	Minimum Non-Detect	0.037	Minimum Non-Detect	-3.297
958	Maximum Non-Detect	0.0385	Maximum Non-Detect	-3.257
959				
960	Note: Data have multiple DLs - Use of KM Method is recomme	nded	Number treated as Non-Detect	2
961	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	21
962	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	8.70%
963				
964			tatistics	
965	Normal Distribution Test with Detected Values Or		Lognormal Distribution Test with Detected Values Or	•
966	Shapiro Wilk Test Statistic			0.95
967	5% Shapiro Wilk Critical Value	0.908	'	0.908
968	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
969	Assuming Normal Distribution		Assuming Lognormal Distribution	
970	DL/2 Substitution Method		DL/2 Substitution Method	
971	Mean		Mean	0.674
972	SD		SD	2.289
973	95% DL/2 (t) UCL	14.99		246.6
974			33.0 (2.2.3, 2.2.2	
975 976	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
977	Mean	8.5	Mean in Log Scale	0.744
978	SD	16.26	SD in Log Scale	2.148
979	95% MLE (t) UCL	14.32	Mean in Original Scale	9.399
980	95% MLE (Tiku) UCL	13.94	SD in Original Scale	15.61
981			95% t UCL	14.99
982			95% Percentile Bootstrap UCL	15.05
983			95% BCA Bootstrap UCL	17.26
984				
985	Gamma Distribution Test with Detected Values Or		Data Distribution Test with Detected Values Only	
986	k star (bias corrected)		Data appear Gamma Distributed at 5% Significance Le	evel
987	Theta Star			
988	nu star	20.04		
989	A-D Test Statistic	0.387	Nonnarametria Statistica	
990	5% A-D Critical Value		Nonparametric Statistics Kaplan-Meier (KM) Method	
991	K-S Test Statistic		Mean	9.407
992	5% K-S Critical Value		SD	15.26
993	Data appear Gamma Distributed at 5% Significance		SE of Mean	3.26
994	,,		95% KM (t) UCL	15.01
995 996	Assuming Gamma Distribution		95% KM (z) UCL	14.77
996	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	14.99
998	Minimum	1E-12	95% KM (bootstrap t) UCL	19.63
999	Maximum	69.35	95% KM (BCA) UCL	15.22
1000	Mean	9.395	95% KM (Percentile Bootstrap) UCL	15.2
1001	Median	3.285	` '	23.62
1002			97.5% KM (Chebyshev) UCL	29.77
1003				41.85
1004				
1005				
1006			, , ,	23.62
1007				
1008		26.58		
1009	Note: DL/2 is not a recommended method.			
1010		UCI are no	ovided to help the user to select the most appropriate 95% UC	21
1011	Those recommendations are based upon the result		nulation studies summarized in Singh, Maichle, and Lee (2006	
1015	I IIIGGG IGCOIIIIIGIIUGIIOIIG are Dased mion me resin			
1012 1013	For additional incide		nay want to consult a statistician.	,-

A B C D	Е	F G	Н	I J K	L
1014					
1015 c4n_eu1_mercury					
1016	G	General Statistics			
Number of Valid Ob				Number of Distinct Observation	ns 52
018 Number of Valid Ob					
020 Raw Statistics			Log-t	ransformed Statistics	
021	Minimum 0.03	395		Minimum of Log Da	ata -3.231
022	Maximum 8.95	5		Maximum of Log Da	ata 2.192
023	Mean 1.32			Mean of log Da	
024	Median 0.59			SD of log Da	ata 1.284
025	SD 1.85				
026	of Variation 1.4				
027	Skewness 2.48	88			
028	Polo	evant UCL Statistics			
029 Normal Distribution Test	Rele	evani oce statistics	Logno	ormal Distribution Test	
U3U	est Statistic 0.3		Logilo	Lilliefors Test Statis	tic 0.0802
Lilliofors Cri	tical Value 0.12			Lilliefors Critical Val	
032 Data not Normal at 5% Significance			Data appear Log	normal at 5% Significance Le	
034				<u> </u>	
035 Assuming Normal Distribution	n		Assumin	g Lognormal Distribution	
	ent's-t UCL 1.74	46		95% H-U	CL 2.282
95% UCLs (Adjusted for Skew	ness)			95% Chebyshev (MVUE) U	CL 2.718
95% Adjusted-CLT UCL (C	hen-1995) 1.83	32		97.5% Chebyshev (MVUE) U	CL 3.298
95% Modified-t UCL (John	ison-1978) 1.76	61		99% Chebyshev (MVUE) U	CL 4.438
040					
O41 Gamma Distribution Test				Data Distribution	
042	corrected) 0.75		Data appear Log	normal at 5% Significance Le	evel
043	Theta Star 1.74				
044 MLE of Standard	E of Mean 1.32				
045	nu star 80.1				
046 Approximate Chi Square \			Noni	parametric Statistics	
Adjusted Level of Si	, ,			95% CLT U	CL 1.739
048 Adjusted Level of St 049 Adjusted Chi Squ	-			95% Jackknife U	
050				95% Standard Bootstrap U	CL 1.735
D51 Anderson-Darling Te	est Statistic 1.17	75		95% Bootstrap-t U	CL 1.896
052 Anderson-Darling 5% Cri	tical Value 0.79	91		95% Hall's Bootstrap U	CL 1.869
Nolmogorov-Smirnov Te	est Statistic 0.16	62		95% Percentile Bootstrap U	CL 1.747
Nolmogorov-Smirnov 5% Cri		27		95% BCA Bootstrap U	
Data not Gamma Distributed at 5% Signi	ficance Level			95% Chebyshev(Mean, Sd) U	
056				7.5% Chebyshev(Mean, Sd) U	
Assuming Gamma Distribution		40		99% Chebyshev(Mean, Sd) U	JL 3.849
95% Approximate Ga 95% Adjusted Ga					
009	iiiiiia UGL 1./0	00			
060 Potential UCL to Use				Use 95% H-U	CL 2.282
100				233 33 78 11 3	
062 ProUCL computes	and outputs H-	I-statistic based UCL	s for historical r	reasons only.	
H-statistic often results in unstable (t	-			<u> </u>	le.
	commended to	o avoid the use of H-s	statistic based 9	95% UCLs.	
Use of nonparametric methods are prefer	red to compute	e UCL95 for skewed	data sets which	do not follow a gamma distri	bution.
067					
Note: Suggestions regarding the selection	n of a 95% UCL	L are provided to hel	p the user to se	lect the most appropriate 959	6 UCL.
These recommendations are based up					002)
and Singh and Singh (20	03). For additi	tional insight, the use	er may want to c	onsult a statistician.	

	A B C D E	F	G H I J K	L
1071				
1072	c4n_eu1_total pcbs			
1073		General	Statistics	
1074 1075	Number of Valid Data	53		50
1075	Number of Distinct Detected Data	50	Number of Non-Detect Data	3
1077			Percent Non-Detects	5.66%
1078				
1079	Raw Statistics		Log-transformed Statistics	
1080	Minimum Detected	0.043	Minimum Detected	-3.147
1081	Maximum Detected	25.25		3.229
1082	Mean of Detected SD of Detected	3.623 5.579		0.146 1.604
1083	Minimum Non-Detect	0.0395		-3.231
1084	Maximum Non-Detect	0.042		-3.17
1085 1086				
1087	Note: Data have multiple DLs - Use of KM Method is recommen	nded	Number treated as Non-Detect	3
1088	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	50
1089	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	5.66%
1090				
1091			tatistics	
1092	Normal Distribution Test with Detected Values On	<u> </u>	Lognormal Distribution Test with Detected Values Or	•
1093	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.674 0.947	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.953 0.947
1094	5% Snapiro Wilk Critical Value Data not Normal at 5% Significance Level	0.947	Data appear Lognormal at 5% Significance Level	0.947
1095	Data Not Normal at 5 % digillioanido 25vol		Data appear Englishmar at 0% digililloannon Enver	
1096 1097	Assuming Normal Distribution		Assuming Lognormal Distribution	
1097	DL/2 Substitution Method		DL/2 Substitution Method	
1099	Mean	3.419	Mean	-0.0819
1100	SD	5.48	SD	1.819
1101	95% DL/2 (t) UCL	4.679	95% H-Stat (DL/2) UCL	11.27
1102				
1103	Maximum Likelihood Estimate(MLE) Method	2.00	Log ROS Method	0.0057
1104	Mean SD	3.22 5.652	Mean in Log Scale SD in Log Scale	-0.0657 1.786
1105	95% MLE (t) UCL	4.52		3.419
1106	95% MLE (Tiku) UCL	4.419	-	5.48
1107 1108	, ,		95% t UCL	4.68
1109			95% Percentile Bootstrap UCL	4.754
1110			95% BCA Bootstrap UCL	4.982
1111				
1112	Gamma Distribution Test with Detected Values Or		Data Distribution Test with Detected Values Only	
1113		0.529	•	
1114	Theta Star	6.844 52.93		
1115		52.93		
1116	A-D Test Statistic	1.965	Nonparametric Statistics	
1117 1118	5% A-D Critical Value	0.81	Kaplan-Meier (KM) Method	
1119	K-S Test Statistic	0.81	Mean	3.42
1120	5% K-S Critical Value	0.132	SD	5.428
1121	Data not Gamma Distributed at 5% Significance Le	vel	SE of Mean	0.753
1122			95% KM (t) UCL	4.681
1123	Assuming Gamma Distribution		95% KM (z) UCL	4.659
1124	Gamma ROS Statistics using Extrapolated Data Minimum	1E-12	95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	4.678
1125	Minimum Maximum	25.25	` ' '	5.056 4.709
1126	Mean	3.418	. ,	4.709
1127 1128	Median	0.641	95% KM (Chebyshev) UCL	6.703
1128	SD	5.481	97.5% KM (Chebyshev) UCL	8.123
1130	k star	0.263	99% KM (Chebyshev) UCL	10.91
1131	Thatastar	13.01		
1132	Nu star	27.84		
1133		16.8		8.123
1134		5.662		
1135	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.	5.745		
1136	note. DD2 is not a recommended method.			
1137	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UC	CL.
1138	These recommendations are based upon the result		ulation studies summarized in Singh, Maichle, and Lee (2006	
1120	•		<u> </u>	
1139 1140	For additional insigh	t, the user n	nay want to consult a statistician.	

	Α	В	С	D	Е	F	G	Н		J	K	L		
1141	04m 0112 m													
1142	c4n_eu2_m	ercury												
1143						Gonoral	Statistics							
1144			Numb	per of Valid C	hearyatione		Statistics		Numbo	r of Distinct (Observations	27		
1145			INUITIL	Dei Oi Vallu C) DSEI VALIONS	41			Numbe	O DISTINCT C	Doervations	37		
1146			Raw St	tatistics				1	og-transfori	ned Statistic	`s			
1147			Traw O		Minimum	0.028		-	-og-aansion		of Log Data	-3 576		
1148					Maximum						of Log Data			
1149					Mean	1.04					n of log Data			
1150					Median	0.175	SD of log Data							
1151 1152					SD	2.494								
1153				Coefficient	t of Variation	2.398								
1154					Skewness	4.159								
1155														
1156		Relevant UCL Statistics												
1157			Normal Dist	ribution Tes	t			L	ognormal Di	stribution Te	est			
1158			S	hapiro Wilk	Test Statistic	0.443			S	hapiro Wilk	Test Statistic	0.921		
1159			Sh	napiro Wilk C	Critical Value	0.941			S	napiro Wilk C	Critical Value	0.941		
1160		Data not	Normal at 5	% Significar	nce Level	1		Data not L	ognormal at	5% Signific	ance Level	11		
1161														
1162		As	suming Norr	mal Distribut	tion			Assı	uming Logno	rmal Distrib	ution			
1163					dent's-t UCL	1.696					95% H-UCL			
1164			UCLs (Adju		•					` `	MVUE) UCL			
1165			95% Adjuste		` '					• '	MVUE) UCL			
1166			95% Modifie	ed-t UCL (Jol	hnson-1978)	1.738			99%	Chebyshev (MVUE) UCL	3.388		
1167														
1168			Gamma Dist			T				stribution				
1169				k star (bia	s corrected)		Data do not follow a Discernable Distribution (0.0					5)		
1170					Theta Star									
1171			N.A.	۱ LE of Standa	ALE of Mean									
1172			IVI	LE of Standa	nu star									
1173			Approximat	e Chi Square					Nonnaramo	trio Statistica				
1174			• •	sted Level of	, ,			Nonparametric Statistics 95% CLT UCL						
1175			•	djusted Chi S							ckknife UCL			
1176			7.00	ajuotou Om O	qualo valuo	20.2			95%		otstrap UCL			
1177			Anders	son-Darling	Test Statistic	3.093					tstrap-t UCL			
1178 1179				Darling 5% C					9		otstrap UCL			
1180				ov-Smirnov							otstrap UCL			
1181		K	olmogorov-S								otstrap UCL			
1182	Da	ta not Gamr	na Distribute	ed at 5% Sig	nificance Le	evel			95% Ch	ebyshev(Me	an, Sd) UCL	2.738		
1183									97.5% Ch	ebyshev(Me	an, Sd) UCL	3.473		
1184		As	suming Gam	ma Distribu	tion	II.			99% Ch	ebyshev(Me	an, Sd) UCL	4.916		
1185			95% A	pproximate (Gamma UCL	1.605								
1186			95	% Adjusted 0	Gamma UCL	1.631								
1187														
1188			Potential U	JCL to Use					Use 95% Ch	ebyshev (Me	an, Sd) UCL	2.738		
1189														
1190			ons regardin			•		•						
1191	Т	hese recom	mendations		-							2)		
1192			and Singh a	and Singh (2	2003). For a	additional in	sight, the us	er may wan	t to consult a	a statistician	•			
1192			and Singh a	ana Singh (2	:ບບ3). For ຄ	additional in	signt, the us	er may wan	ι το consult a	a statistician	•			

	ABCDE	F I	G H I J K	1
1193		<u> </u>	G n i J k	L
1194	c4n_eu2_total pcbs			
1195				
1196	Number of Valid Data	General 3	Statistics Number of Detected Data	30
1197	Number of Distinct Detected Data	30	Number of Non-Detect Data	11
1198 1199	Number of Blother Bolosida Bala		Percent Non-Detects	26.83%
1200			l.	
1201	Raw Statistics		Log-transformed Statistics	
1202	Minimum Detected	0.0395	Minimum Detected	-3.231
1203	Maximum Detected	19.85	Maximum Detected	2.988
1204	Mean of Detected SD of Detected	2.631 4.745	Mean of Detected SD of Detected	-0.776 2.024
1205	Minimum Non-Detect	0.0365	Minimum Non-Detect	-3.31
1206 1207	Maximum Non-Detect	0.071	Maximum Non-Detect	-2.645
1207				
1209	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	17
1210	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	24
1211	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	41.46%
1212		UCL St	atietice	
1213	Normal Distribution Test with Detected Values On		Lognormal Distribution Test with Detected Values Or	nlv
1214 1215	Shapiro Wilk Test Statistic	0.622	Shapiro Wilk Test Statistic	0.889
1216	5% Shapiro Wilk Critical Value	0.927	5% Shapiro Wilk Critical Value	0.927
1217	Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
1218				
1219	Assuming Normal Distribution		Assuming Lognormal Distribution	
1220	DL/2 Substitution Method	1.931	DL/2 Substitution Method Mean	-1.593
1221	Mean SD	4.206	SD	2.2
1222	95% DL/2 (t) UCL	3.037	95% H-Stat (DL/2) UCL	8.974
1223 1224	(/		,	
1225	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
1226	MLE yields a negative mean		Mean in Log Scale	-1.927
1227			SD in Log Scale	2.597
1228			Mean in Original Scale	1.927
1229			SD in Original Scale 95% t UCL	4.208 3.033
1230			95% Percentile Bootstrap UCL	3.083
1231 1232			95% BCA Bootstrap UCL	3.497
1232				
1234	Gamma Distribution Test with Detected Values On	ly	Data Distribution Test with Detected Values Only	
1235	k star (bias corrected)	0.365	Data do not follow a Discernable Distribution (0.05))
1236	Theta Star	7.215		
1237	nu star	21.88		
1238	A-D Test Statistic	1.806	Nonparametric Statistics	
1239 1240	5% A-D Critical Value	0.836	Kaplan-Meier (KM) Method	
1241	K-S Test Statistic	0.836	Mean	1.936
1242	5% K-S Critical Value	0.172	SD	4.152
1243	Data not Gamma Distributed at 5% Significance Le	vel	SE of Mean	0.66
1244	Assuming Gamma Distribution		95% KM (t) UCL 95% KM (z) UCL	3.046 3.021
1245	Gamma ROS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	3.021
1246	Minimum	1E-12	95% KM (bootstrap t) UCL	3.773
1247 1248	Maximum	19.85	95% KM (BCA) UCL	3.149
1249	Mean	1.925	95% KM (Percentile Bootstrap) UCL	3.081
1250	Median	0.0905	95% KM (Chebyshev) UCL	4.811
1251	SD	4.209	97.5% KM (Chebyshev) UCL	6.055
1252	k star	0.104	99% KM (Chebyshev) UCL	8.498
1253	Theta star Nu star	18.51 8.529	Potential UCLs to Use	
1254	AppChi2	3.045	99% KM (Chebyshev) UCL	8.498
1255 1256	95% Gamma Approximate UCL	5.392	22.2.1 (2.1.33)31131/ 332	5.100
1256	95% Adjusted Gamma UCL	5.611		
1258	Note: DL/2 is not a recommended method.			
1259				
1260		•	ovided to help the user to select the most appropriate 95% UC	
1261	-		ulation studies summarized in Singh, Maichle, and Lee (2006 ay want to consult a statistician.).
1262	For additional insigni	., uie usei ff	ay want to consult a statisticiall.	

	A B C D E	F	G H	l	J	K	L
1263							
1264	c4s_eu1_mercury						
1265							
1266			l Statistics				
1267	Number of Valid Observations	31		Nur	mber of Distinct (Observations	31
1268							
1269	Raw Statistics			Log-trans	sformed Statistic		
1270	Minimum					of Log Data	
1271	Maximum					of Log Data	
1272	Mean Median					n of log Data	
1273		2.444			51	O of log Data	1./88
1274	Coefficient of Variation						
1275	Skewness						
1276	Skewness	1.140					
1277		Delevent I	JCL Statistics				
1278	Normal Distribution Test	r reievailt C	JOE Oldusuos	Loanorme	al Distribution Te	est	
1279	Shapiro Wilk Test Statistic	0.839		Foduoiiig	Shapiro Wilk		0.92
1280	Shapiro Wilk Critical Value				Shapiro Wilk (
1281	Data not Normal at 5% Significance Level	3.020	Data	not Loanorm	al at 5% Signific		
1282	Sata not itermal at 0% digimicanes 25voi		Data	not Lognomi	ui ut 0 /0 Olgillilo		
1283	Assuming Normal Distribution			Assumina La	ognormal Distrib	ution	
1284	95% Student's-t UCL	3.014		7.00ug		95% H-UCL	13.75
1285	95% UCLs (Adjusted for Skewness)	0.0		9	95% Chebyshev (
1286	95% Adjusted-CLT UCL (Chen-1995)	3.088			.5% Chebyshev (•	
1287	95% Modified-t UCL (Johnson-1978)				99% Chebyshev (,	
1288	,					,	
1289 1290	Gamma Distribution Test			Data	a Distribution		
1291	k star (bias corrected)	0.61	Data appea	r Gamma Dis	stributed at 5% S	Significance	_evel
1292	Theta Star	3.72					
1293	MLE of Mean	2.269					
1294	MLE of Standard Deviation	2.905					
1295	nu star	37.81					
1296	Approximate Chi Square Value (.05)	24.73		Nonpara	ametric Statistic	s	
1297	Adjusted Level of Significance	0.0413			95	5% CLT UCL	2.991
1298	Adjusted Chi Square Value	24.14			95% Ja	ckknife UCL	3.014
1299				(95% Standard Bo	otstrap UCL	2.963
1300	Anderson-Darling Test Statistic	0.298			95% Boo	tstrap-t UCL	3.117
1301	Anderson-Darling 5% Critical Value	0.796			95% Hall's Bo	ootstrap UCL	3.073
1302	Kolmogorov-Smirnov Test Statistic			9	5% Percentile Bo	·	
1303	Kolmogorov-Smirnov 5% Critical Value					ootstrap UCL	
1304	Data appear Gamma Distributed at 5% Significance	Level			% Chebyshev(Me		
1305					% Chebyshev(Me	,	
1306	Assuming Gamma Distribution			99%	% Chebyshev(Me	an, Sd) UCL	6.637
1307	95% Approximate Gamma UCL						
1308	95% Adjusted Gamma UCL	3.553					_
1309							
1310	Potential UCL to Use			Use 95	6% Approximate (Gamma UCL	3.469
1311							
1312	Note: Suggestions regarding the selection of a 95%		<u>-</u>				
1313						-	2)
1314	and Singh and Singh (2003). For a	additional ir	nsight, the user may	want to cons	uit a statistician		

	A B C D E	F	G H I J K	L					
1315	ada aud datal naha	•							
1310	c4s_eu1_total pcbs								
1317 1318		General S	Statistics						
1319	Number of Valid Data	31	Number of Detected Data	28					
1320	Number of Distinct Detected Data	28	Number of Non-Detect Data	3					
1321			Percent Non-Detects	9.68%					
1322 1323	Raw Statistics		Log-transformed Statistics						
1323	Minimum Detected	0.042	Minimum Detected	-3.17					
1325	Maximum Detected	42.9	Maximum Detected	3.759					
1326	Mean of Detected	8.284	Mean of Detected	0.811					
1327	SD of Detected Minimum Non-Detect	11.61 0.035	SD of Detected Minimum Non-Detect	1.965 -3.352					
1328 1329	Maximum Non-Detect	0.0425	Maximum Non-Detect	-3.158					
1330									
1331	Note: Data have multiple DLs - Use of KM Method is recomme	nded	Number treated as Non-Detect	4					
1332	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	27					
1333	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	12.90%					
1334 1335		UCL Sta	atistics						
1336	Normal Distribution Test with Detected Values On	ly	Lognormal Distribution Test with Detected Values Or	ıly					
1337	Shapiro Wilk Test Statistic	0.733	Shapiro Wilk Test Statistic	0.954					
1338	5% Shapiro Wilk Critical Value	0.924	5% Shapiro Wilk Critical Value	0.924					
1339	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level						
1340	Assuming Normal Distribution		Assuming Lognormal Distribution						
1341 1342	DL/2 Substitution Method		DL/2 Substitution Method						
1343	Mean	7.484	Mean	0.352					
1344	SD	11.29	SD	2.348					
1345	95% DL/2 (t) UCL	10.93	95% H-Stat (DL/2) UCL	144.4					
1346	Maximum Likelihood Estimate(MLE) Method		Log ROS Method						
1347	Mean	6.484	Mean in Log Scale	0.385					
1348 1349	SD	12.25	SD in Log Scale	2.287					
1350	95% MLE (t) UCL	10.22	Mean in Original Scale	7.485					
1351	95% MLE (Tiku) UCL	10.06	SD in Original Scale	11.29					
1352			95% t UCL	10.93					
1353			95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	10.96 11.75					
1354 1355			33% BON BOOKSHAP GOL	11.73					
1356	Gamma Distribution Test with Detected Values Or	nly	Data Distribution Test with Detected Values Only						
1357	k star (bias corrected)	0.461	Data appear Gamma Distributed at 5% Significance Le	evel					
1358	Theta Star	17.99							
1359	nu star	25.79							
1360 1361	A-D Test Statistic	0.386	Nonparametric Statistics						
1362	5% A-D Critical Value	0.813	Kaplan-Meier (KM) Method						
1363	K-S Test Statistic	0.813	Mean	7.486					
1364	5% K-S Critical Value	0.175	SD	11.1					
1365	Data appear Gamma Distributed at 5% Significance	Level	SE of Mean 95% KM (t) UCL	2.031					
1366	Assuming Gamma Distribution		95% KM (t) UCL 95% KM (z) UCL	10.93					
1367 1368	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	10.92					
1369	Minimum	1E-12	95% KM (bootstrap t) UCL	12.16					
1370	Maximum	42.9	95% KM (BCA) UCL	11.24					
1371	Mean	7.482	95% KM (Percentile Bootstrap) UCL	10.96					
1372	Median SD	1.995 11.29	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	16.34 20.17					
1373	k star	0.191	99% KM (Chebyshev) UCL	27.69					
1374 1375	Theta star	39.12	. , , , ,						
1376	Nu star	11.86	Potential UCLs to Use						
1377	AppChi2		95% KM (Chebyshev) UCL	16.34					
1378	95% Gamma Approximate UCL	17.28							
1379	95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.	18.15							
1380 1381									
1381	Note: Suggestions regarding the selection of a 95%	UCL are pro	vided to help the user to select the most appropriate 95% UC	CL.					
1383	<u> </u>		ulation studies summarized in Singh, Maichle, and Lee (2006).					
1384	For additional insigh	t, the user m	ay want to consult a statistician.						

	A B C D E	F	G	Н	I	J	K	L
1385							-	
1386 c 4	4s_eu2_mercury							
1387								
1388		Genera	I Statistics					
1389	Number of Valid Observations	38			Numb	er of Distino	t Observation:	37
1390								
1391	Raw Statistics			Lo	g-transfo	rmed Statis		
1392	Minimum						um of Log Data	
1393	Maximum			1.599				
1394	Mean						ean of log Data	
1395	Median						SD of log Data	1./14
1396		1.106						
1397	Coefficient of Variation							
1398	Skewness	1.916						
1399		<u> </u>	101 0: 11 11					
1400		Relevant	JCL Statistics	1 -		Di - 4ll41	T	
1401	Normal Distribution Test	0.750		LO		Distribution		0.005
1402	Shapiro Wilk Test Statistic						k Test Statistic	
1403	Shapiro Wilk Critical Value	0.938		Data nat La		· ·	k Critical Value	0.938
1404	Data not Normal at 5% Significance Level			Data not Lo	gnormai	at 5% Signi	ficance Level	
1405	Assuming Normal Distribution			Accur	ning Log	normal Dist	ribution	
1406	95% Student's-t UCL	1 1/10		Assui	illig Logi	nomiai Dist	95% H-UCI	3 160
1407	95% UCLs (Adjusted for Skewness)	1.140			959	6 Chehyshe	v (MVUE) UCI	
1408	95% Adjusted-CLT UCL (Chen-1995)	1 2					v (MVUE) UCI	
1409	95% Modified-t UCL (Johnson-1978)					•	v (MVUE) UCI	
1410	3370 Modifica-t 00E (001113011-1370)	1.107				o Onebysne	V (WVOL) OOI	0.071
1411	Gamma Distribution Test				Data Γ	Distribution		
1412	k star (bias corrected)	0.546	Data Foll	ow Appr. Ga			5% Significa	nce Level
1413	Theta Star							
1414	MLE of Mean							
1415	MLE of Standard Deviation							
1416	nu star	41.49						
1417 1418	Approximate Chi Square Value (.05)			N	onparam	etric Statist	tics	
1419	Adjusted Level of Significance	0.0434					95% CLT UCI	1.14
1420	Adjusted Chi Square Value	27.26				95%	Jackknife UCI	1.148
1421					959	% Standard	Bootstrap UCI	1.129
1422	Anderson-Darling Test Statistic	0.813				95% B	ootstrap-t UCI	1.25
1423	Anderson-Darling 5% Critical Value	0.806				95% Hall's	Bootstrap UCI	1.287
1424	Kolmogorov-Smirnov Test Statistic	0.136			95%	6 Percentile	Bootstrap UCI	1.166
1425	Kolmogorov-Smirnov 5% Critical Value	0.151				95% BCA	Bootstrap UCI	1.172
1426	Data follow Appr. Gamma Distribution at 5% Significand	e Level			95% C	Chebyshev(Mean, Sd) UCI	1.627
1427					97.5% C	Chebyshev(Mean, Sd) UCI	1.965
1428	Assuming Gamma Distribution				99% (Chebyshev(I	Mean, Sd) UCI	2.63
1429	95% Approximate Gamma UCL							
1430	95% Adjusted Gamma UCL	1.287						
1431								
1432	Potential UCL to Use				Use 95%	Approximat	e Gamma UCI	1.265
1433								
1434	Note: Suggestions regarding the selection of a 95%					• • •	<u>-</u>	
1435	These recommendations are based upon the resu							12)
1436	and Singh and Singh (2003). For a	dditional ir	nsight, the use	r may want t	o consult	t a statistici	an.	

	A B C D E	F	G H I J K T	L
1437				
1438				
1439		General	Statistics	
1440	Number of Valid Data	38	·	25
1441	Number of Distinct Detected Data	25	Number of Non-Detect Data	13
1443			Percent Non-Detects	34.21%
1444			1	
1445			Log-transformed Statistics	
1446		0.047	Minimum Detected	-3.058
1447	Mean of Detected	10.07 2.569	Maximum Detected Mean of Detected	2.309 0.0906
1448	SD of Dotoctod	2.943		1.547
1449	Minimum Non Dotoct	0.0405		-3.206
1451	Manipulan Nam Data at	0.048	Maximum Non-Detect	-3.037
1452				
1453	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	14
1454			Number treated as Detected	24
1455	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	36.84%
1456		UCLS	tatistics	
1457 1458	Normal Distribution Tast with Datastad Values On		Lognormal Distribution Test with Detected Values Or	nly
1459	Shanira Wilk Tast Statistic	0.804	Shapiro Wilk Test Statistic	0.949
1460	5% Shanira Wilk Critical Value	0.918	5% Shapiro Wilk Critical Value	0.918
1461	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
1462				
1463	Assuming Normal Distribution DL/2 Substitution Method		Assuming Lognormal Distribution DL/2 Substitution Method	
1464	Moon	1.698		-1.247
1465	SD.	2.668		2.255
1466 1467	0E9/ DL/2 (4) LICE	2.428		16.87
1468				
1469	Maximum Likalihaad Fatimata(MLF) Mathad		Log ROS Method	
1470		0.708		-1.115
1471	SD	3.681	SD in Log Scale	2.117
1472	95% MLE (t) UCL 95% MLE (Tiku) UCL	1.716		1.702
1473	, , ,	1.813	SD in Original Scale 95% t UCL	2.665 2.432
1474			95% Percentile Bootstrap UCL	2.444
1475 1476			95% BCA Bootstrap UCL	2.606
1477	· ·			
1478	Commo Distribution Toot with Detected Values On	ıly	Data Distribution Test with Detected Values Only	
1479		0.649	Data appear Gamma Distributed at 5% Significance Lo	evel
1480		3.957		
1481		32.46		
1482	A.D. Toot Statistic	0.335	Nonparametric Statistics	
1483 1484	E9/ A D Critical Value	0.787		
1485	V.C. Toot Statistic	0.787	Mean	1.706
1486	FOUR CONSTRUCTION	0.182	SD	2.627
1487	Data appear Commo Distributed at EV Significance I	_evel	SE of Mean	0.435
1488			95% KM (t) UCL	2.44
1489	Camma POS Statistics using Extrapolated Data		95% KM (z) UCL	2.422
1490	Gamma ROS Statistics using Extrapolated Data Minimum	1E-12	95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	2.433 2.655
1491	Mavimum	10.07	` ' '	2.055
1492 1493	Moon	1.805	, ,	2.453
1493	Madian	0.754		3.602
1495	en.	2.61	97.5% KM (Chebyshev) UCL	4.423
1496	k star	0.202		6.034
1497		8.913		
1498	A == Ch:2	15.39		0.51
1499	0E9/ Commo Approximate LICI	7.532 3.687	, , ,	2.51
1500	95% Adjusted Gamma UCL	3.802		
1501 1502	Note: DL/2 is not a recommended method.	3.302		
1502				
1504	Note: Suggestions regarding the selection of a 95%		ovided to help the user to select the most appropriate 95% UC	
1505	-		nulation studies summarized in Singh, Maichle, and Lee (2006	5).
1506	For additional insigh	t, the user n	nay want to consult a statistician.	

	Α	В	С	D	Е	F	G	Н	I	J	K	L	
1507													
1508	c4s_eu3_m	ercury											
1509						0	04-41-41						
1510			Niconal	h = = £ \ / = l; = l /	Ohaamiatiana		Statistics		Niconala a	u of Diotinot C	Na amustiana	27	
1511			Numi	ber of Valid (Observations	27			Numbe	r of Distinct C	Observations	27	
1512			Dow C	tatiatiaa						mad Ctatiotic			
1513			raw 5	tatistics	Minimum	0.027			og-transion	med Statistic	of Log Data	2 207	
1514					Maximum								
1515						1.087	Maximum of Log Data Mean of log Data						
1516					Median		SD of log Data						
1517						1.254	SD 01 log Data					1.474	
1518				Coefficien	nt of Variation								
1519					Skewness								
1520						,2							
1521						Relevant U	CL Statistics	<u> </u>					
1522			Normal Dist	tribution Tes	st				ognormal Di	stribution Te			
1523					Test Statistic	0.788					Test Statistic	0.935	
1524					Critical Value					· ·	Critical Value		
1525		Data not						Data appear					
1526 1527		Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level											
1528		As	suming Nori	mal Distribu	tion			Assu	ıming Logno	ormal Distrib	ution		
1529					ıdent's-t UCL	1.498					95% H-UCL	3.496	
1530		95%	UCLs (Adju	sted for Ske	ewness)				95%	Chebyshev (MVUE) UCL	3.258	
1531			95% Adjuste	ed-CLT UCL	(Chen-1995)	1.542			97.5%	Chebyshev (MVUE) UCL	4.111	
1532			95% Modifie	ed-t UCL (Jo	hnson-1978)	1.507			99%	Chebyshev (MVUE) UCL	5.788	
1533													
1534		-	Gamma Dis	tribution Tes	st				Data Di	stribution			
1535				k star (bia	as corrected)	0.66	Data	appear Gar	nma Distrib	uted at 5% S	ignificance	Level	
1536					Theta Star	1.646							
1537				ſ	MLE of Mean	1.087							
1538			М	LE of Standa	ard Deviation	1.337							
1539					nu star	35.65							
1540					e Value (.05)				Nonparame	tric Statistics			
1541			•		Significance						5% CLT UCL		
1542			Ac	djusted Chi S	Square Value	22.34					ckknife UCL		
1543									95%		otstrap UCL		
1544					Test Statistic						tstrap-t UCL		
1545					Critical Value						ootstrap UCL		
1546		.,			Test Statistic						ootstrap UCL		
1547	B.:				Critical Value						ootstrap UCL		
1548	Data	appear Gar	tima Distribi	utea at 5% S	Significance	Level				• •	an, Sd) UCL		
1549		A = -	oumina Co-	ma Distrik	ıtion					• `	an, Sd) UCL		
1550		AS	suming Gam		Gamma UCL	1 625			99% Cr	ienysnev(ivie	an, Sd) UCL	3.40/	
1551				• •	Gamma UCL Gamma UCL								
1552			95	no Aujusted (uaniina UCL	1./ 54							
1553			Potential I	UCL to Use					lise Q5% A	nnrovimate (Gamma UCL	1 685	
1554			i oteritial (10 USE					03e 33% P	фріохіпіаце (Janinia UCL	1.000	
1555	Not	e: Suggestio	ns renardin	n the select	tion of a 95%	UCI are no	ovided to be	In the user t	n select the	most approx	oriate 95% I	ICI .	
1556					upon the res	-					•		
1557	<u>'</u>				2003). For a							-,	
1558			ana omgil e	and onigh (2		additional III	January Control of the control of th	or may want	.o consuit e	. Judgavidii	<u> </u>		

	A B C D E	F	G H I J K	L
1559		•		
1560	c4s_eu3_total pcbs			
1561		General S	Statistics	
1562 1563	Number of Valid Data	27	Number of Detected Data	23
1564	Number of Distinct Detected Data	23	Number of Non-Detect Data	4
1565			Percent Non-Detects	14.81%
1566				
1567	Raw Statistics Minimum Detected	0.051	Log-transformed Statistics Minimum Detected	-2.976
1568	Maximum Detected	16.25	Maximum Detected	2.788
1569 1570	Mean of Detected	2.727	Mean of Detected	-0.168
1571	SD of Detected	3.955	SD of Detected	1.747
1572	Minimum Non-Detect	0.0395	Minimum Non-Detect	-3.231
1573	Maximum Non-Detect	0.0425	Maximum Non-Detect	-3.158
1574	Note: Data have multiple DLs - Use of KM Method is recomme	ndod	Number treated as Non-Detect	4
1575	For all methods (except KM, DL/2, and ROS Methods),	nueu	Number treated as Non-Detected	23
1576 1577	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	14.81%
1578	<u>`</u>			
1579		UCL Sta	atistics	
1580	Normal Distribution Test with Detected Values On	•	Lognormal Distribution Test with Detected Values Or	•
1581	Shapiro Wilk Test Statistic	0.711	Shapiro Wilk Test Statistic	0.951
1582	5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level	0.914	5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level	0.914
1583	Data not Normal at 3 % Significance Level		Data appear Lognormal at 3 % Significance Level	
1584 1585	Assuming Normal Distribution		Assuming Lognormal Distribution	
1586	DL/2 Substitution Method		DL/2 Substitution Method	
1587	Mean	2.326	Mean	-0.72
1588	SD	3.768	SD	2.097
1589	95% DL/2 (t) UCL	3.563	95% H-Stat (DL/2) UCL	24.7
1590	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
1591	Mean	1.929	Mean in Log Scale	-0.753
1592 1593	SD	4.136	SD in Log Scale	2.151
1594	95% MLE (t) UCL	3.287	Mean in Original Scale	2.326
1595	95% MLE (Tiku) UCL	3.234	SD in Original Scale	3.769
1596			95% t UCL	3.563
1597			95% Percentile Bootstrap UCL	3.547 3.909
1598			95% BCA Bootstrap UCL	3.909
1599 1600	Gamma Distribution Test with Detected Values Or	nly	Data Distribution Test with Detected Values Only	
1601	k star (bias corrected)	0.495	Data appear Gamma Distributed at 5% Significance Le	evel
1602	Theta Star	5.506		
1603	nu star	22.78		
1604	A-D Test Statistic	0.572	Nonparametric Statistics	
1605	5% A-D Critical Value	0.802	Kaplan-Meier (KM) Method	
1606 1607	K-S Test Statistic	0.802	Mean	2.331
1608	5% K-S Critical Value	0.191	SD	3.695
1609	Data appear Gamma Distributed at 5% Significance	Level	SE of Mean	0.727
1610			95% KM (t) UCL	3.571
1611	Assuming Gamma Distribution Gamma POS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	3.527 3.566
1612	Gamma ROS Statistics using Extrapolated Data Minimum	1E-12	95% KM (Jackknife) UCL	4.318
1613 1614	Maximum	16.25	95% KM (BCA) UCL	3.519
1615	Mean	2.323	95% KM (Percentile Bootstrap) UCL	3.613
1616	Median	0.712	95% KM (Chebyshev) UCL	5.5
1617	SD	3.77	97.5% KM (Chebyshev) UCL	6.871
1618	k star	0.159	99% KM (Chebyshev) UCL	9.565
1619	Theta star Nu star	14.61 8.588	Potential UCLs to Use	
1620	AppChi2		95% KM (Chebyshev) UCL	5.5
1621 1622	95% Gamma Approximate UCL	6.478	. (,, 33	
1623	95% Adjusted Gamma UCL	6.947		
	Note: DL/2 is not a recommended method.			
1625	Nan Caranta	110'		
1626		•	evided to help the user to select the most appropriate 95% UC	
1627	<u> </u>		ulation studies summarized in Singh, Maichle, and Lee (2006 ay want to consult a statistician.	<i>)</i> ·
1628	i or additional molyn	., uooi ili	ay	

	A B C D E	F	G	Н	I	J	K	L		
1629				<u> </u>						
1630	c5n_eu1_mercury									
1631										
1632		General	Statistics							
1633	Number of Valid Observations	12			Numbe	r of Distinct O	bservations	11		
1634										
1635	Raw Statistics		Log-transformed Statistics							
1636	Minimum	0.038					of Log Data			
1637	Maximum	2.2					of Log Data			
1638	Mean	1.064					of log Data			
1639	Median	1.23				SD	of log Data	1.62		
1640		0.856								
1641	Coefficient of Variation	0.804								
1642	Skewness	-0.0451								
1643										
1644		Relevant U	CL Statistics							
1645	Normal Distribution Test			Log	normal Di	stribution Te	st			
1646	Shapiro Wilk Test Statistic					hapiro Wilk T				
1647	Shapiro Wilk Critical Value	0.859				napiro Wilk C		0.859		
1648	Data appear Normal at 5% Significance Level		[Data not Log	gnormal at	5% Significa	ance Level			
1649										
1650	Assuming Normal Distribution			Assum	ning Logno	ormal Distrib				
1651	95% Student's-t UCL	1.507					95% H-UCL			
1652	95% UCLs (Adjusted for Skewness)					Chebyshev (I				
1653	95% Adjusted-CLT UCL (Chen-1995)					Chebyshev (I				
1654	95% Modified-t UCL (Johnson-1978)	1.507			99%	Chebyshev (I	MVUE) UCL	9.489		
1655										
1656	Gamma Distribution Test		Data Distribution							
1657	k star (bias corrected)			Data appear	Normal a	t 5% Signific	ance Level			
1658	Theta Star									
1659	MLE of Mean									
1660	MLE of Standard Deviation									
1661	nu star									
1662	Approximate Chi Square Value (.05)			No	onparame	tric Statistics				
1663	Adjusted Level of Significance						% CLT UCL			
1664	Adjusted Chi Square Value	7.07					ckknife UCL			
1665					95%	Standard Bo				
1666	Anderson-Darling Test Statistic						tstrap-t UCL			
1667	Anderson-Darling 5% Critical Value					5% Hall's Bo	•			
1668	Kolmogorov-Smirnov Test Statistic					Percentile Bo				
1669	Kolmogorov-Smirnov 5% Critical Value					95% BCA Bo	•			
1670	Data not Gamma Distributed at 5% Significance Le	vel				ebyshev(Mea				
1671						ebyshev(Mea				
1672	Assuming Gamma Distribution	0.141			99% Ch	ebyshev(Mea	an, Sd) UCL	3.521		
1673	95% Approximate Gamma UCL									
1674	95% Adjusted Gamma UCL	2.398								
1675	Date of the Control o					L 050/ O:		1 507		
1676	Potential UCL to Use			1		Jse 95% Stud	ients-t UCL	1.50/		
1677	Note Occurred to the control of the						J	101		
1678	Note: Suggestions regarding the selection of a 95%									
1679	These recommendations are based upon the resu							2)		
1680	and Singh and Singh (2003). For a	iuaitional ins	signt, the user	may want to	consult a	statistician.				

	A	В	С	D	Е	F	G	Н	I	J	K	L	
1681													
1682	c5n_eu1_to	otal pcbs											
1683						0	04-41-41						
1684			Niconal	h = " = f \ /= l; d C	\h		Statistics		Niconala	u of Diotinot (10	
1685			Numi	ber of Valid C	observations	12			Numbe	r of Distinct C	Diservations	12	
1686			Pow S	tatistics				1	og tronsfor	med Statistic			
1687			naw S	lausucs	Minimum	0.0565			.og-u ansion			-2 87/	
1688					Maximum			Minimum of Log Data Maximum of Log Data					
1689						2.544					n of log Data		
1690					Median						O of log Data		
1691						3.031							
1692				Coefficient	of Variation								
1693					Skewness								
1694													
1695 1696						Relevant U	CL Statistics						
1697			Normal Dist	ribution Tes	t			Lo	ognormal Di	istribution Te	 est		
1698			S	Shapiro Wilk 7	Test Statistic	0.821			S	Shapiro Wilk	Test Statistic	0.884	
1699			SI	hapiro Wilk C	ritical Value	0.859			S	hapiro Wilk C	Critical Value	0.859	
1700		Data not	Normal at 5	% Significar	nce Level			Data appear	Lognormal	at 5% Signif	ficance Leve	el	
1701													
1702		As	suming Nor	mal Distribut	ion			Assı	ıming Logno	ormal Distrib	ution		
1703				95% Stu	dent's-t UCL	4.115					95% H-UCL	82.84	
1704		95%	UCLs (Adju	sted for Ske	wness)				95%	Chebyshev (MVUE) UCL	13.53	
1705			95% Adjuste	ed-CLT UCL (Chen-1995)	4.313			97.5%	Chebyshev (MVUE) UCL	17.77	
1706			95% Modifie	ed-t UCL (Joh	nnson-1978)	4.166			99%	Chebyshev (MVUE) UCL	26.1	
1707													
1708			Gamma Dis	tribution Tes	t				Data Di	stribution			
1709				k star (bia	s corrected)		Data	Data appear Gamma Distributed at 5% Significance					
1710					Theta Star	5.434							
1711					ILE of Mean								
1712			М	LE of Standa									
1713					nu star								
1714			• • • • • • • • • • • • • • • • • • • •	te Chi Square	, ,				Nonparame	tric Statistics			
1715				sted Level of							5% CLT UCL		
1716			AC	djusted Chi S	quare value	4.103			059/		ckknife UCL		
1717			Andor	son-Darling 1	Fact Statistic	N 380			30%	Standard Bo	otstrap-t UCL		
1718				Darling 5% C					c	95 % Boo 95% Hall's Bo			
1719				ov-Smirnov						Percentile Bo	·		
1720	1	K		Smirnov 5% C						95% BCA Bo	·		
1721	Data			uted at 5% S						nebyshev(Me	·		
1722	-					-				nebyshev(Me	,		
1723		As	suming Gam	nma Distribu	tion					nebyshev(Me	,		
1724 1725				pproximate C		6.045				- `			
1726				% Adjusted C									
1727													
1728			Potential l	JCL to Use		1			Use 95% A	Approximate (Gamma UCL	6.045	
1729													
1730	No	e: Suggestic	ons regardin	g the selecti	on of a 95%	UCL are pr	ovided to he	plp the user t	o select the	most appro	priate 95% l	JCL.	
1731	-	hese recom	mendations	are based u	pon the res	ults of the si	mulation stu	ıdies summa	rized in Sin	gh, Singh, a	nd laci (200	2)	
1732			and Singh a	and Singh (2	003). For a	additional in	sight, the us	er may want	to consult a	a statistician			
., 02	1												

	A B C D E	F	G H I	J K	L			
1733								
1734	c5n_eu2_mercury							
1735								
1736			Statistics		T			
1737	Number of Valid Observations	76	Numb	er of Distinct Observations	69			
1738	D 0: 11 11			10				
1739	Raw Statistics	0.00	Log-transformed Statistics					
1740	Minimum Maximum			Minimum of Log Data				
1741				Maximum of Log Data				
1742	Mean Median			Mean of log Data				
1743		0.0755		SD of log Data	1.158			
1744	Coefficient of Variation							
1745	Coefficient of Variation Skewness	_						
1746	Skewness	4.957						
1747		Deleventi	Ol Otatictics					
1748	Normal Distribution Test	Relevant C	CL Statistics	Noteibution Toot				
1749	Normal Distribution Test Lilliefors Test Statistic	0.241	Lognormai L	Distribution Test Lilliefors Test Statistic	0.120			
1750	Lilliefors Critical Value							
1751		0.102	Data not Lagrarmal	Lilliefors Critical Value	0.102			
1752	Data not Normal at 5% Significance Level		Data not Lognormal a	at 5% Significance Level				
1753	Accuming Normal Distribution		Accumina Logo	annal Distribution				
1754	Assuming Normal Distribution 95% Student's-t UCL	0.270	Assuming Logi	normal Distribution 95% H-UCL	0.201			
1755	95% UCLs (Adjusted for Skewness)	0.379	050	6 Chebyshev (MVUE) UCL				
1756	95% OCLS (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	0.410		6 Chebyshev (MVUE) UCL				
1757	95% Adjusted-CLT OCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)			6 Chebyshev (MVUE) UCL				
1758	95% Wodilled-t OCE (Johnson-1978)	0.365	997	o Chebyshev (MVOE) OCL	0.55			
1759	Gamma Distribution Test		Doto D	istribution				
1760	k star (bias corrected)	0.657		cernable Distribution (0.0	5)			
1761	Thata Ctar		Data do flot follow a Dis					
1762	MI C of Moon							
1763	MLE of Standard Doviation							
1764	w.v. akau							
1765	Approximate Chi Square Value (05)		Nonnaram	etric Statistics				
1766	Adjusted Level of Significance		Honparam	95% CLT UCL	0.378			
1767	Adjusted Chi Square Value			95% Jackknife UCL				
1768	<u> </u>	.,,,,	959	% Standard Bootstrap UCL				
1769	Anderson Darling Test Statistic	5.456		95% Bootstrap-t UCL				
1770	Anderson-Darling 5% Critical Value			95% Hall's Bootstrap UCL				
1771	Kolmogorov-Smirnov Test Statistic			Percentile Bootstrap UCL				
1772	Valmagaray Emirnay E9/ Critical Valua			95% BCA Bootstrap UCL				
1773	Data not Gamma Distributed at 5% Significance Le		95% C	Chebyshev(Mean, Sd) UCL				
1774				Chebyshev(Mean, Sd) UCL				
1775	Accuming Camma Dietribution			Chebyshev(Mean, Sd) UCL				
1776	0E9/ Approximate Commo LICI	0.34		, , , , , , , , , , , , , , ,				
1777	0E9/ Adjusted Commo LICI							
1778	·							
1779 1780	Detential LICE to Line		Use 95% C	hebyshev (Mean, Sd) UCL	0.563			
1781 1782	Note: Suggestions regarding the selection of a 95%	UCL are p	ovided to help the user to select th	e most appropriate 95% U	JCL.			
	These recommendations are based upon the resi							
1783	and Singh and Singh (2002) For a				-			
1784								

	A B C D E	F	I G I H I I J I K I	L
1785				
1786	c5n_eu2_total pcbs			
1787		General	Statistics	
1788 1789	Number of Valid Data	76		37
1790	Number of Distinct Detected Data	36	Number of Non-Detect Data	39
1791			Percent Non-Detects	51.32%
1792				
1793	Raw Statistics		Log-transformed Statistics	
1794	Minimum Detected	0.04	Minimum Detected	-3.219
1795	Maximum Detected Mean of Detected	8.01 0.627	Maximum Detected Mean of Detected	2.081 -1.512
1796	SD of Detected	1.423		1.313
1797 1798	Minimum Non-Detect	0.0365	Minimum Non-Detect	-3.31
1799	Maximum Non-Detect	0.044	Maximum Non-Detect	-3.124
1800				
1801	Note: Data have multiple DLs - Use of KM Method is recommen	nded	Number treated as Non-Detect	41
1802	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	35 53.95%
1803	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	53.95%
1804		UCL S	tatistics	
1805 1806	Normal Distribution Test with Detected Values On		Lognormal Distribution Test with Detected Values On	ıly
1807	Shapiro Wilk Test Statistic	0.433	Shapiro Wilk Test Statistic	0.935
1808	5% Shapiro Wilk Critical Value	0.936	5% Shapiro Wilk Critical Value	0.936
1809	Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
1810				
1811	Assuming Normal Distribution DL/2 Substitution Method		Assuming Lognormal Distribution DL/2 Substitution Method	
1812	DL/2 Substitution Method Mean	0.315		-2.75
1813	SD	1.032		1.518
1814 1815	95% DL/2 (t) UCL	0.512		0.332
1816				
1817	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
1818	MLE yields a negative mean		Mean in Log Scale	-3.312
1819			SD in Log Scale	2.072
1820			Mean in Original Scale	0.31
1821			SD in Original Scale 95% t UCL	1.034 0.507
1822			95% Percentile Bootstrap UCL	0.534
1823 1824			95% BCA Bootstrap UCL	0.644
1825				
1826	Gamma Distribution Test with Detected Values Or	nly	Data Distribution Test with Detected Values Only	
1827	k star (bias corrected)	0.562	,)
1828	Theta Star	1.115		-
1829	nu star	41.62		
1830	A-D Test Statistic	2.284	Nonparametric Statistics	-
1831 1832	5% A-D Critical Value	0.804		
1833	K-S Test Statistic	0.804	Mean	0.326
1834	5% K-S Critical Value	0.152	SD	1.022
1835	Data not Gamma Distributed at 5% Significance Le	vel	SE of Mean	0.119
1836	According Community of		95% KM (t) UCL	0.524
1837	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	0.521 0.522
1838	Gamma ROS Statistics using Extrapolated Data Minimum	0.04	95% KM (Jackknie) UCL	0.522
1839	Maximum	8.01	` ' '	0.562
1840 1841	Mean	0.627		0.522
1842	Median	0.622	95% KM (Chebyshev) UCL	0.844
1843	SD	0.986	` ,	1.068
1844	k star	1.085		1.508
1845	Theta star	0.578		
1846	Nu star AppChi2	164.9 136.2		0.562
1847	AppCniz 95% Gamma Approximate UCL	0.76	· ·	0.562
1848	95% Adjusted Gamma UCL	0.762		
1849 1850	Note: DL/2 is not a recommended method.			
1851				
1852		•	ovided to help the user to select the most appropriate 95% UC	
1853	<u> </u>		ulation studies summarized in Singh, Maichle, and Lee (2006).
1854	For additional insigh	ι, τne user r	nay want to consult a statistician.	

	A		В	С		D	Е	F	G	Н	- 1	J	K	L
1855	-F	1												
1856	c5s_eu	I_me	ercury											
1857								Cono	ral Ctatiatics					
1858				Nicon		-£\/-1:-l C	Na		ral Statistics		Niconala	an of Distin	-4 Observation	74
1859				Null	ibei	oi valiu C	Observation	5 70			Numb	ei oi Distin	ct Observatio	115 74
1860				Raw S	Static	otion					og tronsfo	rmed Stati	istics	
1861				naws	otatis	sucs	Minimu	n 0.018			oy-li al isio		num of Log Da	ata _4.017
1862							Maximu						num of Log Da	
1863								n 0.472					lean of log Da	
1864								n 0.0838					SD of log Da	
1865								0.84						
1866					C	coefficient	t of Variation							
1867							Skewnes							
1868														
1869								Relevan	t UCL Statistic	S				
1870 1871				Normal Dis	tribu	ıtion Tes	t			Lo	ognormal [Distribution	Test	
1872					I	_illiefors	Test Statist	c 0.308				Lilliefo	ors Test Statis	tic 0.164
1873					L	illiefors C	Critical Valu	e 0.1				Lilliefo	rs Critical Val	ue 0.1
1874			Data not	Normal at	5% \$	Significar	nce Level			Data not L	ognormal a	at 5% Sign	ificance Lev	el
1875														
1876			As	suming Nor	rmal	Distribut	tion			Assu	ıming Logr	normal Dis	tribution	
1877						95% Stu	dent's-t UC	L 0.63					95% H-U	CL 0.701
1878			95%	UCLs (Adju	uste	d for Ske	wness)				95%	6 Chebyshe	ev (MVUE) U	CL 0.848
1879				95% Adjust	ed-C	LT UCL ((Chen-199	0.661			97.5%	6 Chebyshe	ev (MVUE) U	CL 1.032
1880				95% Modifi	ied-t	UCL (Jol	hnson-1978	3) 0.635			99%	6 Chebyshe	ev (MVUE) U	CL 1.392
1881														
1882				Gamma Dis	strib	ution Tes	t				Data D	istribution		
1883					ŀ	k star (bia	s corrected	·		Data do not fo	llow a Dis	cernable D	Distribution ().05)
1884							Theta Sta	or 0.904						
1885							/ILE of Mea	-						
1886				N	/ILE	of Standa	rd Deviatio							
1887								ar 81.35						
1888				Approxima		•	`	′		l	Nonparam	etric Statis		
1889				-			Significano						95% CLT U	
1890				Α	djus	ted Chi S	quare Valu	e 61.24			0.50		Jackknife U	
1891						D !! -		5 507			955		Bootstrap U	
1892							Test Statist						Bootstrap-t U	
1893							Critical Valu						Bootstrap U	
1894			L/	colmogorov-S							90%		Bootstrap U	
1895		Dat		na Distribut							Q5%_C		(Mean, Sd) U	
1896		Jal	a not Gaill	וים הופתוחמו	.cu č	<i>o 1</i> 0 319	minearic e i	.6461				·	(Mean, Sd) U	
1897			Δο	suming Gar	mma	Distribu	tion						(Mean, Sd) U	
1898			, 13				Gamma UC	L 0.623						
1899							Gamma UC							_
1900						,								
1901				Potential	UCL	to Use				l	Jse 95% C	hebyshev ((Mean, Sd) U	CL 0.886
1902												, (, , , , , , , , , ,	
1903		Note	: Suggestic	ons regardir	ng th	ne selecti	on of a 95	% UCL are	provided to he	lp the user t	o select th	e most apr	propriate 95°	6 UCL.
1904 1905				_	-				simulation stu	-			-	
1905									insight, the us					
טטפו						- `	•		- · · · ·					

	ABCDE	FI	G H I I J K	1 1
1907		<u> </u>	д п ј ј ј к	L
1908	c5s_eu1_total pcbs			
1909				
1910	Number of Valid Data	General S	Number of Detected Data	36
1911	Number of Distinct Detected Data	36	Number of Non-Detect Data	42
1912 1913			Percent Non-Detects	53.85%
1914				
1915	Raw Statistics		Log-transformed Statistics	
1916	Minimum Detected	0.041	Minimum Detected	-3.194
1917	Maximum Detected Mean of Detected	14.5	Maximum Detected Mean of Detected	2.674 -0.519
1918	SD of Detected	3.218	SD of Detected	1.652
1919 1920	Minimum Non-Detect	0.0365	Minimum Non-Detect	-3.31
1921	Maximum Non-Detect	0.044	Maximum Non-Detect	-3.124
1922				
1923	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	43
1924	For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs		Number treated as Detected	35 55.13%
1925	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	55.15%
1926 1927		UCL Sta	atistics	
1928	Normal Distribution Test with Detected Values On	ly	Lognormal Distribution Test with Detected Values Or	ıly
1929	Shapiro Wilk Test Statistic	0.579	Shapiro Wilk Test Statistic	0.951
1930	5% Shapiro Wilk Critical Value	0.935	5% Shapiro Wilk Critical Value	0.935
1931	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
1932	Assuming Normal Distribution		Assuming Lognormal Distribution	
1933 1934	DL/2 Substitution Method		DL/2 Substitution Method	
1935	Mean	0.874	Mean	-2.347
1936	SD	2.36	SD	2.035
1937	95% DL/2 (t) UCL	1.319	95% H-Stat (DL/2) UCL	1.701
1938	Marine I italihaad Falimaka (MIF) Mathad	NI/A	Low DOC Method	
1939	Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean	N/A	Log ROS Method Mean in Log Scale	-2.892
1940	Wile yields a negative mean		SD in Log Scale	2.604
1941 1942			Mean in Original Scale	0.869
1943			SD in Original Scale	2.361
1944			95% t UCL	1.315
1945			95% Percentile Bootstrap UCL	1.347
1946			95% BCA Bootstrap UCL	1.519
1947	Gamma Distribution Test with Detected Values On	lly	Data Distribution Test with Detected Values Only	
1948 1949	k star (bias corrected)	0.52	Data Follow Appr. Gamma Distribution at 5% Significance	Level
1950	Theta Star	3.597		
1951	nu star	37.44		
1952	A-D Test Statistic	0.809	Nonparametric Statistics	
1953	5% A-D Critical Value	0.809	Kaplan-Meier (KM) Method	
1954 1955	K-S Test Statistic	0.808	Mean	0.885
1956	5% K-S Critical Value	0.155	SD	2.341
1957	Data follow Appr. Gamma Distribution at 5% Significance	e Level	SE of Mean	0.269
1958	A-2		95% KM (t) UCL	1.333
1959	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	1.327 1.327
1960	Minimum	0.041	95% KM (bootstrap t) UCL	1.783
1961 1962	Maximum	14.5	95% KM (BCA) UCL	1.352
1963	Mean	1.81	95% KM (Percentile Bootstrap) UCL	1.368
1964	Median	1.39	95% KM (Chebyshev) UCL	2.057
1965	SD k star	2.288	97.5% KM (Chebyshev) UCL	2.564
1966	k star Theta star	0.907 1.995	99% KM (Chebyshev) UCL	3.559
1967 1968	Nu star	141.6	Potential UCLs to Use	
1968	AppChi2	115.1	95% KM (t) UCL	1.333
1970	95% Gamma Approximate UCL	2.227		
1971	95% Adjusted Gamma UCL	2.236		
1972	Note: DL/2 is not a recommended method.	T	<u>, , , , , , , , , , , , , , , , , , , </u>	
1973	Note: Suggestions regarding the selection of a 05%	UCI are pro	vided to help the user to select the most appropriate 95% UC	<u> </u>
1974		•	ulation studies summarized in Singh, Maichle, and Lee (2006	
1975 1976	<u> </u>		ay want to consult a statistician.	-
1370				

	A B C D E	F	G	Н	1 1	J	K	L
1977			-		<u> </u>			
1978	c6n_eu1_mercury							
1979								
1980		Genera	l Statistics					
1981	Number of Valid Observations	20			Number o	f Distinct O	bservations	20
1982								
1983	Raw Statistics			Log-	transforme	ed Statistics		
1984	Minimum						of Log Data	
1985	Maximum						of Log Data	
1986	Mean						of log Data	
1987	Median					SD	of log Data	1.6
1988		1.099						
1989	Coefficient of Variation							
1990	Skewness	2.109						
1991								
1992		Relevant L	JCL Statistics					
1993	Normal Distribution Test			Logno		ribution Tes		T
1994	Shapiro Wilk Test Statistic					•	est Statistic	
1995	Shapiro Wilk Critical Value	0.905	_		<u>'</u>		ritical Value	
1996	Data not Normal at 5% Significance Level		Data	a appear Log	gnormal at	5% Signifi	cance Leve)
1997								
1998	Assuming Normal Distribution			Assumin	ng Lognorn	nal Distribu		
1999	95% Student's-t UCL	1.208					95% H-UCL	
2000	95% UCLs (Adjusted for Skewness)						IVUE) UCL	
2001	95% Adjusted-CLT UCL (Chen-1995)					• ,	IVUE) UCL	
2002	95% Modified-t UCL (Johnson-1978)	1.228			99% Cr	nebyshev (N	MVUE) UCL	4.61
2003								
2004	Gamma Distribution Test	0.505			Data Distr		01 10	
2005	k star (bias corrected)		Data Follow	v Appr. Gam	ma Distrib	ution at 5%	Significan	ce Level
2006	Theta Star							
2007	MLE of Mean							
2008	MLE of Standard Deviation							
2009	nu star					O		
2010				Non	iparametri	c Statistics	V OLT LIOL	1 100
2011	Adjusted Level of Significance						% CLT UCL	
2012	Adjusted Chi Square Value	11.33			0E0/ C4		kknife UCL	
2013	Anderson-Darling Test Statistic	U 8U3			9070 SI		otstrap UCL strap-t UCL	
2014	Anderson-Darling 1est Statistic Anderson-Darling 5% Critical Value				OF 0		otstrap-t UCL	
2015	Kolmogorov-Smirnov Test Statistic						otstrap UCL	
2016	Kolmogorov-Smirnov 19st Statistic Kolmogorov-Smirnov 5% Critical Value						otstrap UCL	
2017	Data follow Appr. Gamma Distribution at 5% Significance						in, Sd) UCL	
2018	рака юном дррг. Gamina різніринон ак 576 окупінсанс	C LGVGI		0		• •	ın, Sd) UCL ın, Sd) UCL	
2019	Assuming Gamma Distribution			9		• •	ın, Sd) UCL ın, Sd) UCL	
2020	95% Approximate Gamma UCL	1 41			33 /0 CHEL	y si iev (IVIEd	ııı, Ju) UCL	5.220
2021	95% Adjusted Gamma UCL							
2022	93 % Aujusteu Gaillina UCL	1.40	+					
2023	Potential UCL to Use			Ha	o 05% Ann	rovimata C	amma UCL	1 // 1
2024	Fotelitial OOL to USE			US	e an whb	oroximale G	annia UCL	1.41
2025	Note: Suggestions regarding the selection of a 95%	IICI aro n	rovided to halp t	he user to so	alect the m	oet ennron	riate QE% I	ICI
2026	These recommendations are based upon the resu		<u>-</u>					
2027	and Singh and Singh (2003). For a						u iaci (200	-,
2028	and Singh and Singh (2003). For a	auduviiai II	ioigiit, tile usef li	nay want to t	oonsuit a S	ausuciaii.		

	A B C D E	F	G H I J K	L
2029				
2030	c6n_eu1_total pcbs			
2031		0	Obstitution	
2032	Number of Valid Data		Statistics Number of Detected Data	1.4
2033	Number of Distinct Detected Data	20 14	Number of Detected Data Number of Non-Detect Data	14 6
2034	Number of distinct detected data	14	Percent Non-Detects	30.00%
2035			1 Gleent Non-Beleets	30.0070
2036	Raw Statistics		Log-transformed Statistics	
2037	Minimum Detected	0.039	Minimum Detected	-3.244
2038	Maximum Detected	7.9	Maximum Detected	2.067
2039	Mean of Detected	1.852	Mean of Detected	-0.402
2040	SD of Detected	2.333	SD of Detected	1.708
2042	Minimum Non-Detect	0.037	Minimum Non-Detect	-3.297
2043	Maximum Non-Detect	0.039	Maximum Non-Detect	-3.244
2044				
2045	Note: Data have multiple DLs - Use of KM Method is recommen	nded	Number treated as Non-Detect	6
2046	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	14
2047	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	30.00%
2048				
2049			tatistics	
2050	Normal Distribution Test with Detected Values On	•	Lognormal Distribution Test with Detected Values Or	•
2051	Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	0.947
2052	5% Shapiro Wilk Critical Value	0.874	5% Shapiro Wilk Critical Value	0.874
2053	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
2054	Assuming Normal Distribution		Assuming Lognormal Distribution	
2055	DL/2 Substitution Method		DL/2 Substitution Method	
2056	Moon	1.302	DL/2 Substitution Method Mean	-1.469
2057	SD	2.114	SD	2.189
2058	95% DL/2 (t) UCL	2.119		26.11
2059	· · · · · · · · · · · · · · · · · · ·	2.110	30% 11 Stat (552) 332	20.11
2060	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
2061	Mean	0.743	_	-1.607
2062	SD	2.658	SD in Log Scale	2.366
2063 2064	95% MLE (t) UCL	1.771	Mean in Original Scale	1.3
2065	95% MLE (Tiku) UCL	1.817	SD in Original Scale	2.115
2066			95% t UCL	2.118
2067			95% Percentile Bootstrap UCL	2.079
2068			95% BCA Bootstrap UCL	2.334
2069				
2070	Commo Distribution Toot with Detected Values Or	nly	Data Distribution Test with Detected Values Only	
2071	k star (bias corrected)	0.524	Data appear Gamma Distributed at 5% Significance Lo	evel
2072	Theta Star	3.538		
2073	nu star	14.66		
2074				
2075		0.345	Nonparametric Statistics	
2076		0.784	Kaplan-Meier (KM) Method	
2077	K-S Test Statistic	0.784	Mean	1.308
2078	5% K-S Critical Value	0.24	SD	2.056
2079	Data appear Gamma Distributed at 5% Significance I	Level	SE of Mean 95% KM (t) UCL	0.477
2080	Assuming Gamma Distribution		95% KM (t) UCL 95% KM (z) UCL	2.133 2.093
2081	Gamma ROS Statistics using Extrapolated Data		95% KM (2) UCL 95% KM (jackknife) UCL	2.093
2082	Minimum	1E-12	95% KM (bootstrap t) UCL	2.709
2083	Maximum	7.9	` ' '	2.139
2084	Mean	1.3	95% KM (Percentile Bootstrap) UCL	2.153
2085 2086	Modian	0.22	95% KM (Chebyshev) UCL	3.388
2086	SD	2.115	97.5% KM (Chebyshev) UCL	4.288
2088	k star	0.124	99% KM (Chebyshev) UCL	6.056
2089	Thota star	10.51		
2090	Nu stor	4.946	Potential UCLs to Use	
2091	AppChi2	1.128	95% KM (BCA) UCL	2.139
2092	95% Gamma Approximate UCL	5.704		
2093	95% Adjusted Gamma UCL	6.479		
2094	Note: DL/2 is not a recommended method.			
2095				
2096		•	ovided to help the user to select the most appropriate 95% UC	
2097	·		ulation studies summarized in Singh, Maichle, and Lee (2006).
2098	For additional insigh	ι, τne user n	nay want to consult a statistician.	

	Α	В	С	D	Е	F	G	Н		J	K	L
2099												
2100	c6s_eu1_m	nercury										
2101												
2102							Statistics					
2103			Numl	per of Valid C	bservations	21			Numbe	r of Distinct C	bservations	21
2104												
2105			Raw S	tatistics			Log-transformed Statistics					
2106					Minimum		Minimum of Log Data -3.6					
2107					Maximum						of Log Data	
2108						0.966					of log Data	
2109					Median					SD	of log Data	1.647
2110						2.082						
2111				Coefficient	of Variation							
2112					Skewness	3.611						
2113												
2114						Relevant U	CL Statistics					
2115				ribution Tes				Lo		stribution Te		
2116				hapiro Wilk 1						hapiro Wilk T		
2117				napiro Wilk C		0.908				napiro Wilk C		
2118		Data not	Normal at 5	% Significar	nce Level			Data appear	Lognormal	at 5% Signif	icance Leve	l
2119												
2120		As	suming Nor	mal Distribut				Assu	ıming Logno	ormal Distrib		
2121					dent's-t UCL	1.749					95% H-UCL	
2122				sted for Ske						Chebyshev (I	· · · · · · · · · · · · · · · · · · ·	
2123			•	d-CLT UCL (•					Chebyshev (I	,	
2124			95% Modifie	ed-t UCL (Joh	nnson-1978)	1.809			99%	Chebyshev (I	MVUE) UCL	4.368
2125												
2126			Gamma Dist	tribution Tes	t					stribution		
2127				k star (bia	s corrected)			Data appear	Lognormal	at 5% Signif	icance Leve	l
2128					Theta Star	2.263						
2129				•	ILE of Mean							
2130			М	LE of Standa	rd Deviation	1.478						
2131					nu star							
2132				e Chi Square					Nonparame	tric Statistics		
2133			·	ted Level of							% CLT UCL	
2134			Ac	ljusted Chi S	quare Value	8.858					ckknife UCL	
2135									95%	Standard Bo		
2136				son-Darling 1							tstrap-t UCL	
2137				Darling 5% C						5% Hall's Bo		
2138				ov-Smirnov 7						Percentile Bo		
2139				mirnov 5% C						95% BCA Bo	•	
2140	Da	ita not Gamr	na Distribute	ed at 5% Sig	nificance Le	evel				ebyshev(Mea		
2141										ebyshev(Mea		
2142		As		ıma Distribu		1			99% Ch	ebyshev(Mea	an, Sd) UCL	5.486
2143				pproximate C								
2144			95	% Adjusted C	Samma UCL	1.953						
2145												
2146			Potential l	JCL to Use				l	Jse 95% Ch	ebyshev (Mea	an, Sd) UCL	2.946
2147												
2148						-				most approp		
2149	7	These recom								gh, Singh, ar	-	2)
2150			and Singh a	and Singh (2	003). For a	additional in	sight, the us	er may want	to consult a	a statistician.	•	

		A B C D E	F	G H I J K	L
Second Color	2152	c6s_eu1_total pcbs			
Number of Decision Date 15	2153		Conorol	Chatiatica	
Number of fuelence Description Description 19		Number of Valid Data			13
Present Non-Descots 38-107					8
1935 1936				Percent Non-Detects	38.10%
Page					
Major Majo		Raw Statistics		Log-transformed Statistics	
Mean of Detected 4.25	2160				-3.206
1.57	2161				2.799
Maintrum Non-Detect 1,000 Main					
Maximum Non-Detect 0.0446					-3.297
2225 None Data have multiple Disa - Use of KM Method is recommended Number related as Non-Delect 1230 None Detection (except KM, DLZ, and ROS Methods) Number related as Non-Delect 1230 Number related 1230		Maximum Non-Detect	0.0445	Maximum Non-Detect	-3.112
Number remoted as Descended 1,250					
	2167		nded	Number treated as Non-Detect	9
177	2168				12
Voc. Statistics		Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	42.86%
Normal Distribution Test with Detected Values Only Legnormal Distribution Test with Detected Values Only			UCL S	tatistics	
Shapiro Wilk Test Statistic 0.532		Normal Distribution Test with Detected Values On			nly
1975			-		0.954
2176			0.866		0.866
1717 1718	2175	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
2178	2176	Against Name of Pict 19, 19		According Language Plants and	
2179		<u> </u>		• •	
2198			1.37		-1.919
1218 95% DLZ (I) UCL 2.738 95% H-Stat (DLZ) UCL 12.5		SD		SD	2.155
2183		95% DL/2 (t) UCL	2.738	95% H-Stat (DL/2) UCL	12.53
Main Moment Mom					
SD in Log Scale 2.77	2183		N/A		
1.26		MLE yields a negative mean			
SD In Original Scale SD In Original Scale SD In Original Scale SS IN ORIGINAL SCALE				_	
2188 95% Horizontal Bootstrap UCL 2.73					3.637
1919				95% t UCL	2.733
				95% Percentile Bootstrap UCL	2.814
A star Distribution Test with Detected Values Only Data Distribution Test with Detected Values Only	2190			95% BCA Bootstrap UCL	3.655
Data appear Gamma Distributed at 5% Significance Level	2191	O Did ii . T ii . D		Data District Track ill Data and Web and Orl	
Theta Star 10.06			•		
10.06				Data appear Gamma Distributed at 5% diginicance L	
2196 2197					
2197					
2199 K-S Test Statistic 0.803 Mean 1.37		A-D Test Statistic	0.583	Nonparametric Statistics	
2200 S% K-S Critical Value 0.252 SD 3.54	2198			, , ,	4.070
Data appear Gamma Distributed at 5% Significance Level					
2202 95% KM (t) UCL 2.76					0.805
2203 Assuming Gamma Distribution 95% KM (z) UCL 2.70					2.766
Comma ROS Statistics using Extrapolated Data 95% KM (jackknife) UCL 2.77		Assuming Gamma Distribution		95% KM (z) UCL	2.702
Maximum 16.43 95% KM (BCA) UCL 2.88					2.74
Mean 1.41 95% KM (Percentile Bootstrap) UCL 2.78	2205				7.207
Median 0.165 95% KM (Chebyshev) UCL 4.88				· · ·	2.882
SD 3.622 97.5% KM (Chebyshev) UCL 6.40				· · · · · · · · · · · · · · · · · · ·	4.887
2210				· · · · · ·	6.405
Theta star 12.59 Nu star 4.706 Potential UCLs to Use 2213 Potential UCLs to Use 2214 Potential UCLs to Use 2215 Potential UCLs to Use 2216 Note: DL/2 is not a recommended method. 2217 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 2219 These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).		k star	0.112	` ' '	9.388
Nu star 4.706 Potential UCLs to Use 2213 AppChi2 1.019 95% KM (BCA) UCL 2.88 2214 95% Gamma Approximate UCL 6.513 2215 95% Adjusted Gamma UCL 7.404 2216 Note: DL/2 is not a recommended method. 2217 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 2219 These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).		Theta star			
2214 95% Gamma Approximate UCL 6.513 2215 95% Adjusted Gamma UCL 7.404 2216 Note: DL/2 is not a recommended method. 2217 2218 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 2219 These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).					
2215 95% Adjusted Gamma UCL 7.404 2216 Note: DL/2 is not a recommended method. 2217 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 2219 These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).					2.882
Note: DL/2 is not a recommended method. 2217 2218 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 2219 These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).					
2217 2218 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 2219 These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).		-	7.404		
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).	2210				
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).		Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% U	CL.
For additional insight, the user may want to consult a statistician.		·			6).
	2220	For additional insigh	t, the user n	nay want to consult a statistician.	

	A B C D E	F	G H I J K	L
2221				
2222	c7n_eu1_mercury			
2223				
2224		General		
2225	Number of Valid Data	25	Number of Detected Data	24
2226	Number of Distinct Detected Data	21	Number of Non-Detect Data	1
2227			Percent Non-Detects	4.00%
2228				
2229	Raw Statistics		Log-transformed Statistics	
2230	Minimum Detected	0.011	Minimum Detected	-4.51
2231	Maximum Detected	1.4	Maximum Detected	0.336
2232	Mean of Detected	0.221	Mean of Detected	-2.333
2233	SD of Detected	0.351	SD of Detected	1.233
2234	Minimum Non-Detect	0.0068	Minimum Non-Detect	-4.991
2235	Maximum Non-Detect	0.0068	Maximum Non-Detect	-4.991
2236				
2237				
2238		UCL St		
2239	Normal Distribution Test with Detected Values On	•	Lognormal Distribution Test with Detected Values O	
2240	Shapiro Wilk Test Statistic	0.603	Shapiro Wilk Test Statistic	0.937
2241	5% Shapiro Wilk Critical Value	0.916	5% Shapiro Wilk Critical Value	0.916
2242	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
2243				
2244	Assuming Normal Distribution		Assuming Lognormal Distribution	
2245	DL/2 Substitution Method		DL/2 Substitution Method	
2246	Mean	0.212	Mean	-2.467
2247	SD	0.347	SD	1.381
2248	95% DL/2 (t) UCL	0.331	95% H-Stat (DL/2) UCL	0.515
2249				
2250	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
2251	Mean	0.204	Mean in Log Scale	-2.454
2252	SD 250 M 5 (2) LO	0.349	SD in Log Scale	1.351
2253	95% MLE (t) UCL	0.323	Mean in Original Scale	0.212
2254	95% MLE (Tiku) UCL	0.313	SD in Original Scale	0.347
2255			95% t UCL	0.331
2256			95% Percentile Bootstrap UCL	0.334
2257			95% BCA Bootstrap UCL	0.364
2258	Commo Distribution Test with Detected Values On	.h.	Data Distribution Test with Detected Values Only	
2259	Gamma Distribution Test with Detected Values On k star (bias corrected)	0.667	Data appear Lognormal at 5% Significance Level	
2260	Theta Star	0.332	Data appear Logitorinal at 5 % Significance Level	
2261	nu star	31.99		
2262	nu stai	31.33		
2263	A-D Test Statistic	1.53	Nonparametric Statistics	
2264	5% A-D Critical Value	0.784	Kaplan-Meier (KM) Method	
2265	K-S Test Statistic	0.784	Mean	0.213
2266	5% K-S Critical Value	0.185	SD	0.339
2267	Data not Gamma Distributed at 5% Significance Le		SE of Mean	0.0693
2268	Sata not danina Siotasatoa at 6 % Signinoanos Es	101	95% KM (t) UCL	0.331
2269	Assuming Gamma Distribution		95% KM (z) UCL	0.327
2270	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.327
2271	Minimum	1E-12	95% KM (bootstrap t) UCL	0.331
2272	Maximum	1.4	95% KM (BCA) UCL	0.47
2273	Mean	0.212	95% KM (Percentile Bootstrap) UCL	0.339
2274	Median	0.06	95% KM (Chebyshev) UCL	0.535
2275	SD	0.347	97.5% KM (Chebyshev) UCL	0.646
2276	k star	0.353	99% KM (Chebyshev) UCL	0.902
2277	Theta star	0.333	33 % INVI (Chebyshev) OCL	0.502
2278	Nu star	17.67	Potential UCLs to Use	
2279	AppChi2	9.151	97.5% KM (Chebyshev) UCL	0.646
2280	95% Gamma Approximate UCL	0.41	37.3% Nivi (Chebyshev) OCL	0.040
2281	95% Adjusted Gamma UCL	0.419		
2282	Note: DL/2 is not a recommended method.	J123		
2203				
2284	Note: Suggestions regarding the selection of a 95%	UCL are nr	ovided to help the user to select the most appropriate 95% U	CL.
2285			ulation studies summarized in Singh, Maichle, and Lee (2006	
2286	-		nay want to consult a statistician.	•
2287	i or additional insigni	., 4501 11	,	

	A B C D E	F	G H I J K	L
2288				
2209	c7n_eu1_total pcbs			
2290		General	Statistics	
2291 2292	Number of Valid Data	73	Number of Detected Data	33
2293	Number of Distinct Detected Data	32	Number of Non-Detect Data	40
2294			Percent Non-Detects	54.79%
2295				
2296	Raw Statistics Minimum Detected	0.036	Log-transformed Statistics Minimum Detected	-3.324
2297	Maximum Detected	5.015	Maximum Detected	1.612
2298 2299	Mean of Detected	0.441	Mean of Detected	-1.93
2300	SD of Detected	0.969	SD of Detected	1.289
2301	Minimum Non-Detect	0.0345	Minimum Non-Detect	-3.367
2302	Maximum Non-Detect	0.057	Maximum Non-Detect	-2.865
2303	Note: Data have multiple DLs - Use of KM Method is recommer	adod	Number treated as Non-Detect	48
2304	For all methods (except KM, DL/2, and ROS Methods),	lueu	Number treated as Detected	25
2305 2306	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	65.75%
2307			1	
2308		UCL St		
2309	Normal Distribution Test with Detected Values On	•	Lognormal Distribution Test with Detected Values Or	-
2310	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.466 0.931	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.854 0.931
2311	Data not Normal at 5% Significance Level	0.931	Data not Lognormal at 5% Significance Level	0.951
2312 2313				
2314	Assuming Normal Distribution		Assuming Lognormal Distribution	
2315	DL/2 Substitution Method		DL/2 Substitution Method	
2316	Mean	0.21	Mean	-3.045
2317	SD 95% DL/2 (t) UCL	0.68	SD 95% H-Stat (DL/2) UCL	1.335 0.175
2318	93 % DL12 (t) OCL	0.342	95% N-Stat (DL/2) OCL	0.175
2319 2320	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
2321	MLE yields a negative mean		Mean in Log Scale	-3.831
2322			SD in Log Scale	2.038
2323			Mean in Original Scale	0.202
2324			SD in Original Scale 95% t UCL	0.682 0.335
2325			95% Percentile Bootstrap UCL	0.335
2326 2327			95% BCA Bootstrap UCL	0.404
2328			1	
2329	Gamma Distribution Test with Detected Values On	-	Data Distribution Test with Detected Values Only	
2330	k star (bias corrected)	0.531	Data do not follow a Discernable Distribution (0.05)
2331	Theta Star	0.829 35.05		
2332	nu sta	33.03		
2333 2334	A-D Test Statistic	3.566	Nonparametric Statistics	
2335	5% A-D Critical Value	0.805	Kaplan-Meier (KM) Method	
2336	K-S Test Statistic	0.805	Mean	0.219
2337	5% K-S Critical Value	0.161	SD SE of Moon	0.673
2338	Data not Gamma Distributed at 5% Significance Le	v C I	SE of Mean 95% KM (t) UCL	0.0799 0.352
2339 2340	Assuming Gamma Distribution		95% KM (z) UCL	0.35
2340	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.35
2342	Minimum	0.036	95% KM (bootstrap t) UCL	0.543
2343	Maximum	5.015	95% KM (BCA) UCL	0.372
2344	Mean Median	0.443	95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.364 0.567
2345	Median SD	0.422	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.567
2346 2347	k star	1.094	99% KM (Chebyshev) UCL	1.014
2347	Theta star	0.404		
2349	Nu star	159.8	Potential UCLs to Use	
2350	AppChi2	131.5	95% KM (BCA) UCL	0.372
2351	95% Gamma Approximate UCL 95% Adjusted Gamma UCL	0.538 0.54		
2352	Note: DL/2 is not a recommended method.	0.54		
2353 2354				
2355	Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UG	CL.
2356	-		ulation studies summarized in Singh, Maichle, and Lee (2006	5).
2357	For additional insight	t, the user m	ay want to consult a statistician.	

	Α	В	С	D	Е	F	G	Н	I	J	K	L
2358												
2359	c7s_eu1_m	nercury										
2360						0	04-41-41					
2361			Niconal	h £ \ / - l; -l (Ob		Statistics		Nila a	u of Diotinot (24
2362			Numi	ber of Valid (Observations	26			Numbe	r of Distinct C	Diservations	24
2363			Dow C	tatiatiaa						mad Ctatiotic		
2364			Raw S	tatistics	Minimum	0.0075	Log-transformed Statistics Minimum of Log Data -4.8					4 902
2365					Maximum						of Log Data	
2366						0.185					n of log Data	
2367						0.183					O of log Data	
2368						0.575					—————	1.131
2369				Coefficien	t of Variation							
2370					Skewness							
2371					ORCWICSS	7.571						
2372						Relevant U	CL Statistics	<u> </u>				
2373			Normal Dist	ribution Tes	at .	Troiovani O			ognormal Di	istribution Te	est	
2374					Test Statistic	0.295				Shapiro Wilk		0.875
2375				•	Critical Value					hapiro Wilk C		
2376		Data not	Normal at 5					Data not L		t 5% Signific		
2377												
2378		As	suming Nori	mal Distribu	tion			Assu	ıming Logno	ormal Distrib	ution	
2379					ident's-t UCL	0.378					95% H-UCL	0.222
2380 2381		95%	UCLs (Adju	sted for Ske	ewness)				95%	Chebyshev (MVUE) UCL	0.242
2382					(Chen-1995)	0.488				Chebyshev (•	
2383			95% Modifie	ed-t UCL (Jo	hnson-1978)	0.396			99%	Chebyshev (MVUE) UCL	0.412
2384												
2385			Gamma Dis	tribution Tes	st				Data Di	stribution		
2386				k star (bia	as corrected)	0.495	D	ata do not fo	ollow a Disc	ernable Dist	ribution (0.0	5)
2387					Theta Star	0.375						
2388				N	MLE of Mean	0.185						
2389			М	LE of Standa	ard Deviation	0.264					-	
2390					nu star	25.72						
2391			Approximat	te Chi Squar	e Value (.05)	15.17			Nonparame	tric Statistic	3	
2392			Adjus	sted Level of	Significance	0.0398				95	5% CLT UCL	0.371
2393			Ad	djusted Chi S	Square Value	14.63				95% Ja	ckknife UCL	0.378
2394									95%	Standard Bo		
2395					Test Statistic						tstrap-t UCL	
2396					Critical Value					95% Hall's Bo	·	
2397					Test Statistic					Percentile Bo	·	
2398					Critical Value					95% BCA Bo	·	
2399	Da	ita not Gamr	ma Distribute	ed at 5% Sig	gnificance Le	evel				nebyshev(Me		
2400										nebyshev(Me		
2401		As	suming Gam			0.04.4			99% Cł	nebyshev(Me	an, Sd) UCL	1.307
2402	<u> </u>				Gamma UCL							
2403			95	% Adjusted (Gamma UCL	0.326						
2404			Determine	101 4- 11-					I 050/ 01	alassals as 78.5	0-1/1101	0.677
2405			Potential (JCL to Use					use 95% Ch	ebyshev (Me	an, Sd) UCL	U.b//
2406	Mai	o Cuesa	no sociali-	a the actact	ion of a OFO	LICI are re-	ovided to be	In the	0 00100445	most sees	prioto 050/ !	
2407	ļ ,									most appro		
2408		nese recom			=					gh, Singh, a	•	-)
2409			anu əmyn a	anu əmyn (z	LUUS). FUT	auuluonai M	əiyiii, iile üS	or may want	to consult	a statistician	<u>. </u>	

	ABCDE	F	G H I J K	L
2410		· ·		_
2411	c7s_eu1_total pcbs			
2412		General	Statistics	
2413 2414	Number of Valid Data	77	Number of Detected Data	31
2415	Number of Distinct Detected Data	31	Number of Non-Detect Data	46
2416			Percent Non-Detects	59.74%
2417				
2418	Raw Statistics	0.0445	Log-transformed Statistics	0.400
2419	Minimum Detected Maximum Detected	0.0415 9.85	Minimum Detected Maximum Detected	-3.182 2.287
2420	Mean of Detected	1.237	Mean of Detected	-1.19
2421 2422	SD of Detected	2.361	SD of Detected	1.672
2423	Minimum Non-Detect	0.0345	Minimum Non-Detect	-3.367
2424	Maximum Non-Detect	0.0405	Maximum Non-Detect	-3.206
2425				
2426	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	46
2427	For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs		Number treated as Detected Single DL Non-Detect Percentage	31 59.74%
2428	Observations > Largest ND are freated as NDS		Single DL Non-Detect Percentage	39.74 //
2429 2430		UCL St	atistics	
2431	Normal Distribution Test with Detected Values On	ly	Lognormal Distribution Test with Detected Values Or	nly
2432	Shapiro Wilk Test Statistic	0.564	Shapiro Wilk Test Statistic	0.899
2433	5% Shapiro Wilk Critical Value	0.929	5% Shapiro Wilk Critical Value	0.929
2434	Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
2435	Assuming Normal Distribution		Assuming Lognormal Distribution	
2436	DL/2 Substitution Method		DL/2 Substitution Method	
2437	Mean	0.509	Mean	-2.858
2438 2439	SD	1.6	SD	1.733
2440	95% DL/2 (t) UCL	0.813	95% H-Stat (DL/2) UCL	0.477
2441				
2442	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	4 400
2443	MLE yields a negative mean		Mean in Log Scale SD in Log Scale	-4.109 2.826
2444			Mean in Original Scale	0.501
2445 2446			SD in Original Scale	1.603
2447			95% t UCL	0.805
2448			95% Percentile Bootstrap UCL	0.825
2449			95% BCA Bootstrap UCL	0.969
2450	Own Birth to Take it Date to IV.		Data District Control of the Control	
2451	Gamma Distribution Test with Detected Values On k star (bias corrected)	0.436	Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)	\
2452	Theta Star	2.835	Data do not follow a Discernable Distribution (0.00)	<u>'</u>
2453 2454	nu star	27.05		
2455				
2456	A-D Test Statistic	2.087	Nonparametric Statistics	
2457	5% A-D Critical Value	0.819	Kaplan-Meier (KM) Method	
2458	K-S Test Statistic 5% K-S Critical Value	0.819	Mean SD	0.523
2459	Data not Gamma Distributed at 5% Significance Le	0.168 vel	SE of Mean	1.586 0.184
2460 2461	Distributed at 0.0 digitification Le		95% KM (t) UCL	0.104
2461	Assuming Gamma Distribution		95% KM (z) UCL	0.825
2463	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.823
2464	Minimum	0.0415	95% KM (bootstrap t) UCL	1.126
2465	Maximum	9.85	95% KM (BCA) UCL	0.866
2466	Mean Median	1.225 1.163	95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.853 1.323
2467	Median SD	1.163	95% KM (Chebyshev) UCL	1.323
2468 2469	k star	0.951	99% KM (Chebyshev) UCL	2.35
2469	Theta star	1.288	, , , , , , ,	
2470	Nu star	146.5	Potential UCLs to Use	
2472	AppChi2	119.5	95% KM (Chebyshev) UCL	1.323
2473	95% Gamma Approximate UCL	1.502		
2474	95% Adjusted Gamma UCL	1.508		
24/3	Note: DL/2 is not a recommended method.			
2476	Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UC	CL.
24772478		•	ulation studies summarized in Singh, Maichle, and Lee (2006	
2479	-		ay want to consult a statistician.	
<u> 4/9</u>				

	A B C D E	F	G H I J K L
2480		•	
2481	c8n_eu1_mercury		
2482			
2483	North and Wall d Observations		al Statistics
2484	Number of Valid Observations	6	Number of Distinct Observations 6
2485	Raw Statistics		Log-transformed Statistics
2486	Minimum	0.019	Minimum of Log Data -3.963
2487	Maximum		Maximum of Log Data 1.649
2488 2489	Mean	1.232	Mean of log Data -2.008
2499	Median	0.0365	SD of log Data 2.51
2491	SD	2.109	
2492	Coefficient of Variation	1.713	
2493	Skewness	1.794	
2494			
2495			
2496	Warning: A sample size of 'n' = 6 may not adequat	te enough to	to compute meaningful and reliable test statistics and estimates!
2497			
2498			observations using these statistical methods! ctives (DQO) based sample size and analytical results.
2499	ii possible compute and collect Data Qu	анку Објеск	cuves (DQO) based sample size and analytical results.
2500			
2501	Warning: -	There are or	only 6 Values in this data
2502			tstrap methods may be performed on this data set,
2503 2504		<u> </u>	be reliable enough to draw conclusions
2505			
2506	The literature suggests to use bootstra	ap methods	s on data sets having more than 10-15 observations.
2507			
2508		Relevant U	UCL Statistics
2509	Normal Distribution Test		Lognormal Distribution Test
2510	Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic 0.768
2511	Shapiro Wilk Critical Value	0.788	Shapiro Wilk Critical Value 0.788
2512	Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level
2513	Assuming Normal Distribution		Assuming Lognormal Distribution
2514	95% Student's-t UCL	2 967	95% H-UCL 147253
2515	95% UCLs (Adjusted for Skewness)	2.007	95% Chebyshev (MVUE) UCL 4.735
2516	95% Adjusted-CLT UCL (Chen-1995)	3.322	97.5% Chebyshev (MVUE) UCL 6.335
2517 2518	95% Modified-t UCL (Johnson-1978)	3.072	99% Chebyshev (MVUE) UCL 9.479
2519			
2520	Gamma Distribution Test		Data Distribution
2521	k star (bias corrected)	0.266	Data do not follow a Discernable Distribution (0.05)
2522	Theta Star	4.632	
2523	MLE of Mean		
2524	MLE of Standard Deviation		
2525	nu star		N
2526	Adjusted Level of Significance		Nonparametric Statistics
2527	Adjusted Level of Significance Adjusted Chi Square Value		95% CLT UCL 2.648 95% Jackknife UCL 2.967
2528	Aujusteu Cili Square Value	0.100	95% Standard Bootstrap UCL 2.52
2529	Anderson-Darling Test Statistic	0.835	95% Bootstrap-t UCL 256.2
2530 2531	Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL 148
2531	Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL 2.613
2533	Kolmogorov-Smirnov 5% Critical Value	0.356	95% BCA Bootstrap UCL 2.961
2534	Data not Gamma Distributed at 5% Significance Le	evel	95% Chebyshev(Mean, Sd) UCL 4.985
2535			97.5% Chebyshev(Mean, Sd) UCL 6.61
2536	Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL 9.8
2537	95% Approximate Gamma UCL		
2538	95% Adjusted Gamma UCL	20.15	
2539			
2540	Potential UCL to Use	1101	Use 95% Hall's Bootstrap UCL 148
2541			eds the maximum observation
2542	iii Case bootstrap t and/or mair's Bootstrap yields an t	umeasonabl	bly large UCL value, use 97.5% or 99% Chebyshev (Mean, Sd) UCL
2543	Note: Suggestions regarding the selection of a 95%	UCL are nr	provided to help the user to select the most appropriate 95% UCL.
2544			simulation studies summarized in Singh, Singh, and laci (2002)
2545 2546	and Singh and Singh (2003). For a	additional in	insight, the user may want to consult a statistician.

	A B C D E	F	G H I J K	L
2547	c8n_eu1_total pcbs			
2548 2549	con_eu i_totai pcus			
2550		General St	atistics	
2551	Number of Valid Data	24	Number of Detected Data	18
2552	Number of Distinct Detected Data	18	Number of Non-Detect Data Percent Non-Detects	25.00%
2553 2554				
2555	Raw Statistics		Log-transformed Statistics	
2556	Minimum Detected Maximum Detected	0.0365 8.13	Minimum Detected Maximum Detected	-3.31 2.096
2557	Mean of Detected	1.739	Mean of Detected	-0.548
2558 2559	SD of Detected	2.13	SD of Detected	1.794
2560	Minimum Non-Detect	0.035	Minimum Non-Detect	-3.352
2561	Maximum Non-Detect	0.0385	Maximum Non-Detect	-3.257
2562 2563	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	7
2564	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	17
2565	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	29.17%
2566		UCL Stat	istics	
2567 2568	Normal Distribution Test with Detected Values On		Lognormal Distribution Test with Detected Values On	ıly
2569	Shapiro Wilk Test Statistic	0.785	Shapiro Wilk Test Statistic	0.901
2570	5% Shapiro Wilk Critical Value	0.897	5% Shapiro Wilk Critical Value	0.897
2571	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
2572 2573	Assuming Normal Distribution		Assuming Lognormal Distribution	
2574	DL/2 Substitution Method		DL/2 Substitution Method	
2575	Mean SD	1.309	Mean SD	-1.41 2.17
2576 2577	95% DL/2 (t) UCL	2.003	95% H-Stat (DL/2) UCL	18.62
2578			, , , , , , , , , , , , , , , , , , ,	
2579	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
2580	Mean SD	0.809 2.492	Mean in Log Scale SD in Log Scale	-1.541 2.351
2581 2582	95% MLE (t) UCL	1.68	Mean in Original Scale	1.307
2583	95% MLE (Tiku) UCL	1.717	SD in Original Scale	1.984
2584			95% t UCL	2.002
2585			95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	1.977 2.132
2586 2587				
2588	Gamma Distribution Test with Detected Values On	-	Data Distribution Test with Detected Values Only	
2589	k star (bias corrected) Theta Star	0.509	Data appear Gamma Distributed at 5% Significance Le	vel
2590 2591	nu star	18.31		
2591				
2593	A-D Test Statistic	0.714	Nonparametric Statistics	
2594	5% A-D Critical Value K-S Test Statistic	0.794	Kaplan-Meier (KM) Method Mean	1.314
2595 2596	5% K-S Critical Value	0.214	SD	1.938
2597	Data appear Gamma Distributed at 5% Significance L	_evel	SE of Mean	0.407
2598			95% KM (t) UCL	2.011
2599	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	1.983 2.004
2600 2601	Minimum	1E-12	95% KM (bootstrap t) UCL	2.31
2602	Maximum	8.13	95% KM (BCA) UCL	2.05
2603	Median	1.304 0.161	95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	2.026 3.088
2604	Median SD	1.986	97.5% KM (Chebyshev) UCL	3.856
2605 2606	le otor	0.121	99% KM (Chebyshev) UCL	5.364
2607	Theta star	10.8		
2608	Nu star AppChi2	5.796 1.536	Potential UCLs to Use 95% KM (Chebyshev) UCL	3.088
2609	050/ 0	4.92	95% KW (Chebyshev) UCL	ა.088
2610 2611	95% Adjusted Gamma UCL	5.444		
2612	Note: DL/2 is not a recommended method.			
2613	Note: Suggestions regarding the selection of a CEV	IICI are pro-	ided to help the user to select the most appropriate 95% UC	<u>'</u>
2614 2615			ided to neip the user to select the most appropriate 95% OC ation studies summarized in Singh, Maichle, and Lee (2006)	
2615 2616	For additional insight		y want to consult a statistician.	
_0.0				

TABLE I-1
Pro-UCL Outputs - Primary COPCs, 0-1 Ft BGS

	Α	В	С	D	Е	F	G	Н		J	K	L
2617												
2618	c8s_eu1_m	ercury										
2619												
2620						General	Statistics					
2621			Numb	er of Valid C	Observations	2			Numbe	of Distinct C	bservations	2
2622												
2623												
2624					Warning: Ti	his data set	only has 2 o	bservations	!			
2625			Data	set is too s	mall to com	pute reliable	and meanir	ngful statistic	cs and estim	ates!		
2626			<u> </u>	The dat	ta set for va	riable c8s_e	u1_mercury	was not pro	cessed!			
2627												
2628			It is sugge	sted to colle	ect at least 8	to 10 obser	rvations befo	ore using the	ese statistica	I methods!		
2629		lf po	ssible, comp	ute and col	lect Data Qu	ıality Object	ives (DQO) l	based samp	le size and a	analytical re	sults.	

	ABCDE	F	GHIJK	L
2630		•		
2631	c8s_eu1_total pcbs			
2632		General	Photiotica	
2633	Number of Valid Data	20	Number of Detected Data	10
2634	Number of Distinct Detected Data	10	Number of Non-Detect Data	10
2635 2636			Percent Non-Detects	50.00%
2637			l	
2638	Raw Statistics		Log-transformed Statistics	
2639	Minimum Detected	0.046	Minimum Detected	-3.079
2640	Maximum Detected	3.64	Maximum Detected	1.292
2641	Mean of Detected SD of Detected	0.617 1.173	Mean of Detected SD of Detected	-1.744 1.5
2642	Minimum Non-Detect	0.035	Minimum Non-Detect	-3.352
2643 2644	Maximum Non-Detect	0.051	Maximum Non-Detect	-2.976
2645				
2646	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	11
2647	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	9
2648	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	55.00%
2649		UCL St	atietice	
2650	Normal Distribution Test with Detected Values On		Lognormal Distribution Test with Detected Values Or	nly
2651 2652	Shapiro Wilk Test Statistic	0.566	Shapiro Wilk Test Statistic	0.81
2653	5% Shapiro Wilk Critical Value	0.842	5% Shapiro Wilk Critical Value	0.842
2654	Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
2655				
2656	Assuming Normal Distribution DL/2 Substitution Method		Assuming Lognormal Distribution DL/2 Substitution Method	
2657	Mean	0.318	DL/2 Substitution Metriod Mean	-2.863
2658	SD	0.864	SD	1.546
2659 2660	95% DL/2 (t) UCL	0.652	95% H-Stat (DL/2) UCL	0.654
2661				
2662	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
2663	MLE yields a negative mean		Mean in Log Scale	-3.738
2664			SD in Log Scale	2.323
2665			Mean in Original Scale SD in Original Scale	0.31 0.867
2666			95% t UCL	0.645
2667 2668			95% Percentile Bootstrap UCL	0.658
2669			95% BCA Bootstrap UCL	0.94
2670				
2671	Gamma Distribution Test with Detected Values On	-	Data Distribution Test with Detected Values Only	
2672	k star (bias corrected)	0.419	Data do not follow a Discernable Distribution (0.05)
2673	Theta Star nu star	1.471 8.383		
2674	nd star	0.000		
2675 2676	A-D Test Statistic	1.357	Nonparametric Statistics	
2677	5% A-D Critical Value	0.777	Kaplan-Meier (KM) Method	
2678	K-S Test Statistic	0.777	Mean	0.331
2679	5% K-S Critical Value	0.281	SD	0.837
2680	Data not Gamma Distributed at 5% Significance Le	vel	SE of Mean	0.197
2681	Assuming Gamma Distribution		95% KM (t) UCL 95% KM (z) UCL	0.672 0.656
2682 2683	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.661
2684	Minimum	1E-12	95% KM (bootstrap t) UCL	5.062
2685	Maximum	3.64	95% KM (BCA) UCL	0.758
2686	Mean	0.489	95% KM (Percentile Bootstrap) UCL	0.682
2687	Median	0.274	95% KM (Chebyshev) UCL	1.191
2688	SD k star	0.849 0.318	97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	1.563 2.294
2689	k star Theta star	1.535	99% KINI (Chebysnev) UCL	2.294
2690	Nu star	12.73	Potential UCLs to Use	
2691 2692	AppChi2	5.714	95% KM (BCA) UCL	0.758
2693	95% Gamma Approximate UCL	1.089		
2694	95% Adjusted Gamma UCL	1.164		
2695	Note: DL/2 is not a recommended method.			
2696	Nato Cugarations regardles the selection of CCC	HOL 575	wided to help the versus a close the second of the second	
2697		<u> </u>	ovided to help the user to select the most appropriate 95% UC ulation studies summarized in Singh, Maichle, and Lee (2006	
2698	<u> </u>		uration studies summarized in Singh, Malchie, and Lee (2006) ay want to consult a statistician.	···
2699	i oi additional maight	., 4001 11		

	A	В	С	D	Е	F	G	Н	I	J	K	L
2700												
2701	c9n_eu1_m	nercury										
2702						0	04-41-41					
2703			Niconal	h a a £ \ / a li a / C)h = = m := ti = m =		Statistics		Nila a	u of Diotinot (Na amustiana	20
2704			Numi	ber of Valid C	Observations	20			Numbe	r of Distinct C	bservations	20
2705			Dow C	tatiatiaa						mad Ctatiotic		
2706			Raw S	tatistics	Minimum	0.0215		<u>L</u>	.og-transion	med Statistic	of Log Data	2 450
2707					Maximum						of Log Data	
2708						0.382					n of log Data	
2709					Median						O of log Data	
2710						0.843					—————	1.402
2711				Coefficient	t of Variation							
2712					Skewness							
2713					CROWNOOD	2.010						
2714						Relevant U	CL Statistics	<u> </u>				
2715			Normal Dist	tribution Tes	t				ognormal Di	istribution Te	est	
2716				Shapiro Wilk		0.457				Shapiro Wilk		0.736
2717				hapiro Wilk C						hapiro Wilk C		
2718 2719		Data not		5% Significar				Data not L		t 5% Signific		
2719												
2721		As	suming Nori	mal Distribut	tion			Assı	ıming Logno	ormal Distrib	ution	
2722					dent's-t UCL	0.708					95% H-UCL	0.74
2723		95%	UCLs (Adju	sted for Ske	wness)				95%	Chebyshev (MVUE) UCL	0.622
2724			95% Adjuste	ed-CLT UCL ((Chen-1995)	0.811			97.5%	Chebyshev (MVUE) UCL	0.788
2725			95% Modifie	ed-t UCL (Jol	hnson-1978)	0.726			99%	Chebyshev (MVUE) UCL	1.115
2726												1
2727			Gamma Dis	tribution Tes	st .				Data Di	stribution		
2728				k star (bia	s corrected)	0.431	D	ata do not fo	ollow a Disc	ernable Dist	ribution (0.0	5)
2729					Theta Star	0.886						
2730				Λ	MLE of Mean	0.382						
2731			М	LE of Standa	rd Deviation	0.582						
2732					nu star							
2733				te Chi Square	. ,				Nonparame	tric Statistic		
2734				sted Level of							5% CLT UCL	
2735			Ac	djusted Chi S	quare Value	8.382					ckknife UCL	
2736									95%	Standard Bo	·	
2737	<u> </u>			son-Darling							tstrap-t UCL	
2738				Darling 5% C						95% Hall's Bo		
2739				ov-Smirnov						Percentile Bo		
2740				Smirnov 5% C						95% BCA Bo		
2741		ita not Gamr	na Distribute	ed at 5% Sig	miticance Le	evei				nebyshev(Me		
2742		A =	oumina Ca-	nma Distribu	tion					nebyshev(Me		
2743		AS		pproximate (0.744			99% Cr	nebyshev(Me	an, ou) UCL	2.23/
2744				% Adjusted 0								
2745			95	70 Aujusieu C	Janina UCL	0.707						
2746			Potential I	JCL to Use				I	Ise 95% Ch	ebyshev (Me	an Sd\UCI	1 203
2747			i oteritiai (20E 10 096					J3E 3J /0 UII	CDySHEV (IVIE	un, ou) occ	1.200
2748	Mai	e: Suggestic	ons recerdin	n the selecti	ion of a 95%	UCI are no	ovided to be	In the user t	o select the	most appro	oriate 95% I	JCI .
2749	ļ ,					-				gh, Singh, a	•	
2750					=					a statistician		
2751	l		and Onight			additional III	Janu, une us	or maj wall	Jonisuit (. ouououdii	· ———	

		F	GIHIIJK	1
2752		·		
2753	c9n_eu1_total pcbs			
2754		General	Statistics	
2755	Number of Valid Data	20	Number of Detected Data	7
2756	Number of Distinct Detected Data	7	Number of Non-Detect Data	13
2757			Percent Non-Detects	65.00%
2758				
2759	Raw Statistics		Log-transformed Statistics	
2760	Minimum Detected	0.0575	Minimum Detected	-2.856
	Maximum Detected	4.455	Maximum Detected	1.494
2761	Mean of Detected	1.342	Mean of Detected	-1.042
2762	SD of Detected	1.764	SD of Detected	1.976
2763	Minimum Non-Detect	0.037	Minimum Non-Detect	-3.297
2764	Maximum Non-Detect	0.0415	Maximum Non-Detect	-3.182
2765	Waximum Non-Beteet	0.0413	Waximum Non-Beleet	-5.102
2766	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	13
2767	For all methods (except KM, DL/2, and ROS Methods),	lueu	Number treated as Non-Detect	7
2768	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	65.00%
2769	<u> </u>		Single DE Non-Detect Percentage	05.00%
2770			Data de d'Arberta la della data	
2771			Detected Values in this data	
2772			pootstrap may be performed on this data set	
2773	the resulting calculations	may not be	reliable enough to draw conclusions	
2774				
2775	It is recommended to have 10-15 or m	ore distinct	observations for accurate and meaningful results.	
2776				
2777				
2778			tatistics	
2779	Normal Distribution Test with Detected Values On		Lognormal Distribution Test with Detected Values On	-
2780	Shapiro Wilk Test Statistic	0.787	Shapiro Wilk Test Statistic	0.797
2781	5% Shapiro Wilk Critical Value	0.803	5% Shapiro Wilk Critical Value	0.803
2782	Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
2783				
2784	Assuming Normal Distribution		Assuming Lognormal Distribution	
2785	DL/2 Substitution Method		DL/2 Substitution Method	
2786	Moon	0.482	Mean	-2.916
2787	SD	1.184	SD	1.795
2788	95% DL/2 (t) UCL	0.94	95% H-Stat (DL/2) UCL	1.374
	·		, ,	
2789	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
2790	MLE yields a negative mean		Mean in Log Scale	-5.235
2791	WEE Floras a negative mean		SD in Log Scale	3.481
2792			Mean in Original Scale	0.47
2793			SD in Original Scale	1.189
2794			95% t UCL	0.93
2795			95% Percentile Bootstrap UCL	0.93
2796			95% BCA Bootstrap UCL	
2797			95% BCA Bootstrap UCL	1.069
2798			Deta Distribution Test with Detacted Values Only	
2799			Data Distribution Test with Detected Values Only	1
2800		0.369	Data appear Gamma Distributed at 5% Significance Le	v ⊡ I
2801	Theta Star	3.639		
2802	nu star	5.162		
2803				
2804	A-D Test Statistic	0.735	Nonparametric Statistics	
2805	5% A-D Critical Value	0.755	Kaplan-Meier (KM) Method	
2806	K-S Test Statistic	0.755	Mean	0.507
2807	5% K-S Critical Value	0.328	SD	1.144
2808	Data appear Gamma Distributed at 5% Significance I	_evel	SE of Mean	0.276
2809			95% KM (t) UCL	0.985
2810	Assuming Gamma Distribution		95% KM (z) UCL	0.961
2811	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.958
2812	Minimum	0.0575	95% KM (bootstrap t) UCL	1.618
2813	Movimum	4.455	95% KM (BCA) UCL	1.05
2814	Moon	1.349	95% KM (Percentile Bootstrap) UCL	1.005
r	Madian	1.19	95% KM (Chebyshev) UCL	1.711
2815	en en	1.177	97.5% KM (Chebyshev) UCL	2.233
2815 2816	 	0.901	99% KM (Chebyshev) UCL	3.256
2816	l, atox			
2816 2817	k star	1.497	ı	
2816 2817 2818	k star Theta star	1.497 36.05	Potential UCLs to Use	
2816 2817 2818 2819	k star Theta star Nu star		Potential UCLs to Use 95% KM (t) UCL	0.985
2816 2817 2818 2819 2820	k star Theta star Nu star	36.05		0.985
2816 2817 2818 2819 2820 2821	k star Theta star Nu star AppChi2	36.05 23.31		0.985
2816 2817 2818 2819 2820 2821 2822	k star Theta star Nu star AppChi2 95% Gamma Approximate UCL 95% Adjusted Gamma UCL	36.05 23.31 2.087		0.985
2816 2817 2818 2819 2820 2821 2822 2823	k star Theta star Nu star AppChi2 95% Gamma Approximate UCL	36.05 23.31 2.087		0.985
2816 2817 2818 2819 2820 2821 2822 2823 2824	k star Theta star Nu star AppChi2 95% Gamma Approximate UCL 95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.	36.05 23.31 2.087 2.162	95% KM (t) UCL	
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825	k star Theta star Nu star AppChi2 95% Gamma Approximate UCL 95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. Note: Suggestions regarding the selection of a 95%	36.05 23.31 2.087 2.162	95% KM (t) UCL ovided to help the user to select the most appropriate 95% UC	L.
2816 2817 2818 2819 2820 2821 2822 2823 2824	k star Theta star Nu star AppChi2 95% Gamma Approximate UCL 95% Adjusted Gamma UCL Note: DL/2 is not a recommended method. Note: Suggestions regarding the selection of a 95% These recommendations are based upon the result	36.05 23.31 2.087 2.162 UCL are pross of the sim	95% KM (t) UCL	L.

	A B C D E	F	G	Н	1	J	К	L
2828	X 5 5 5		<u> </u>			, ,		
2829	c9s_eu1_mercury							
2830								
2831			Statistics					
2832	Number of Valid Observations	20			Numbe	er of Distin	ct Observation	s 18
2833								
2834	Raw Statistics			Log-	transfo	rmed Stati		
2835	Minimum						um of Log Dat	
2836	Maximum						um of Log Dat	
2837	Mean					N.	lean of log Dat	
2838	Median						SD of log Dat	a 0.948
2839		0.187						
2840	Coefficient of Variation Skewness							
2841	Skewness	0.835						
2842		Balayant II	ICL Statistics					
2843	Normal Distribution Test	Relevant U	Totalistics	Loan	ormal F	Distribution	Toot	
2844	Shapiro Wilk Test Statistic	Λ Q7Q		Logii			ilk Test Statisti	0 0 800
2845	Shapiro Wilk Critical Value						lk Critical Valu	
2846	Data not Normal at 5% Significance Level	0.905		ata not Logr			ificance Leve	
2847	Data not Normal at 3 % Significance Level			ata not Logi	ioiiiiai e	at 5 % Sign	ilicalice Leve	
2848	Assuming Normal Distribution			Assumi	na Loan	ormal Dis	tribution	
2849	95% Student's-t UCL	0.305		Aooum	ing Logi		95% H-UC	0 436
2850	95% UCLs (Adjusted for Skewness)	0.000			95%	Chebyshe	ev (MVUE) UC	
2851	95% Adjusted-CLT UCL (Chen-1995)	0.31					ev (MVUE) UC	
2852	95% Modified-t UCL (Johnson-1978)					-	ev (MVUE) UC	
2853								
2854	Gamma Distribution Test				Data D	istribution		
2855	k star (bias corrected)	1.282	Data Follow	w Appr. Gam	ma Dis	tribution a	t 5% Significa	nce Level
2856 2857	Theta Star	0.182						
2858	MLE of Mean	0.233						
2859	MLE of Standard Deviation	0.206						
2860	nu star	51.3						
2861	Approximate Chi Square Value (.05)	35.85		Nor	nparamo	etric Statis	tics	
2862	Adjusted Level of Significance	0.038					95% CLT UC	L 0.302
2863	Adjusted Chi Square Value	34.83				95%	Jackknife UC	L 0.305
2864					95%	% Standard	Bootstrap UC	L 0.301
2865	Anderson-Darling Test Statistic	0.814				95% E	Bootstrap-t UC	L 0.315
2866	Anderson-Darling 5% Critical Value	0.758				95% Hall's	Bootstrap UC	L 0.309
2867	Kolmogorov-Smirnov Test Statistic	0.19			95%	Percentile	Bootstrap UC	L 0.304
2868	Kolmogorov-Smirnov 5% Critical Value						Bootstrap UC	
2869	Data follow Appr. Gamma Distribution at 5% Significand	e Level					Mean, Sd) UC	
2870						•	Mean, Sd) UC	
2871	Assuming Gamma Distribution				99% C	hebyshev(Mean, Sd) UC	L 0.649
2872	95% Approximate Gamma UCL							
2873	95% Adjusted Gamma UCL	0.343						
2874								
2875	Potential UCL to Use			Us	se 95% /	Approxima	te Gamma UC	L 0.333
2876						1		<u> </u>
2877	Note: Suggestions regarding the selection of a 95%		<u> </u>				-	
2878	These recommendations are based upon the results and Singh and Singh (2003). For a							J2)
 							!	

		F	G H H I I J K T	1
2880		1	G III I J K	
2881	c9s_eu1_total pcbs			
2882		0	On at at a	
2883	Number of Valid Data	General 3	Number of Detected Data	11
2884	Number of Distinct Detected Data	11	Number of Non-Detect Data	9
2885 2886			Percent Non-Detects	45.00%
2887				
2888	Raw Statistics		Log-transformed Statistics	
2889	Minimum Detected	0.126 0.44	Minimum Detected	-2.071 -0.821
2890	Maximum Detected Mean of Detected	0.44	Maximum Detected Mean of Detected	-1.321
2891	SD of Detected	0.091	SD of Detected	0.354
2892 2893	Minimum Non-Detect	0.0385	Minimum Non-Detect	-3.257
2894	Maximum Non-Detect	0.041	Maximum Non-Detect	-3.194
2895				
2896	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	9
2897	For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs		Number treated as Detected Single DL Non-Detect Percentage	45.00%
2898	Observations × Largest ND are treated as NDs		Single DE Norr-Detect i elcentage	43.00 /0
2899 2900		UCL St	atistics	
2901	Normal Distribution Test with Detected Values On	ly	Lognormal Distribution Test with Detected Values Or	nly
2902	Shapiro Wilk Test Statistic	0.98	Shapiro Wilk Test Statistic	0.955
2903	5% Shapiro Wilk Critical Value	0.85	5% Shapiro Wilk Critical Value	0.85
2904	Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
2905	Assuming Normal Distribution		Assuming Lognormal Distribution	
2906 2907	DL/2 Substitution Method		DL/2 Substitution Method	
2908	Mean	0.164	Mean	-2.49
2909	SD	0.149	SD	1.351
2910	95% DL/2 (t) UCL	0.221	95% H-Stat (DL/2) UCL	0.552
2911	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
2912	Mean	0.101	Mean in Log Scale	-1.725
2913 2914	SD	0.225	SD in Log Scale	0.536
2915	95% MLE (t) UCL	0.188	Mean in Original Scale	0.204
2916	95% MLE (Tiku) UCL	0.204	SD in Original Scale	0.11
2917			95% t UCL	0.247
2918			95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	0.246 0.251
2919			33 % BCA BOOISHAP CCL	0.231
2920 2921	Gamma Distribution Test with Detected Values On	ly	Data Distribution Test with Detected Values Only	
2922	k star (bias corrected)	7.06	Data appear Normal at 5% Significance Level	
2923	Theta Star	0.0398		
2924	nu star	155.3		
2925	A-D Test Statistic	0.207	Nonparametric Statistics	
2926	5% A-D Critical Value	0.207	Kaplan-Meier (KM) Method	
2927 2928	K-S Test Statistic	0.73	Mean	0.211
2929	5% K-S Critical Value	0.255	SD	0.101
2930	Data appear Gamma Distributed at 5% Significance L	_evel	SE of Mean	0.0236
2931			95% KM (t) UCL	0.252
2932	Assuming Gamma Distribution		95% KM (z) UCL 95% KM (jackknife) UCL	0.25
2933	Gamma ROS Statistics using Extrapolated Data Minimum	0.126	95% KM (Jackknife) UCL 95% KM (bootstrap t) UCL	0.251 0.25
2934	Maximum	0.120	95% KM (BCA) UCL	0.23
2935 2936	Mean	0.27	95% KM (Percentile Bootstrap) UCL	0.277
2937	Median	0.262	95% KM (Chebyshev) UCL	0.314
2938		0.0746	97.5% KM (Chebyshev) UCL	0.359
2939		11.29	99% KM (Chebyshev) UCL	0.446
2940	Theta star Nu star	0.0239 451.8	Potential UCLs to Use	
2941	AppChi2	403.5	95% KM (t) UCL	0.252
2942 2943	95% Gamma Approximate UCL	0.302	95% KM (Percentile Bootstrap) UCL	0.277
2943	95% Adjusted Gamma UCL	0.305		
2945	Note: DL/2 is not a recommended method.			
2946	N			
2947	These recommendations are based upon the recult		ovided to help the user to select the most appropriate 95% UC	
2948	For additional insight		ulation studies summarized in Singh, Maichle, and Lee (2006 ay want to consult a statistician.	·)·
2949 2950			•	
∠330				

	A B C D E	F	G H I J K	L
1	General UCL Statistics	for Data Se	ts with Non-Detects	
2	User Selected Options From File WorkSheet.wst			
3	Full Precision OFF			
5	Confidence Coefficient 95%			
6	Number of Bootstrap Operations 2000			
7	,			
8				
9	2,3,7,8-TCDD TEQ (Mammal)			
10		General	Statistics	
11 12	Number of Valid Data	112		108
13	Number of Distinct Detected Data	108	Number of Non-Detect Data	4
14			Percent Non-Detects	3.57%
15	B. 0. 0. 0.			
16	Raw Statistics Minimum Detected	2.561E-06	Log-transformed Statistics Minimum Detected	-12.88
17	Maximum Detected	0.000174		-8.657
18 19	Mean of Detected	2.195E-05		-11.12
20	SD of Detected	2.53E-05		0.868
21	Minimum Non-Detect	9.24E-07	Minimum Non-Detect	-13.89
22	Maximum Non-Detect	2.474E-06	Maximum Non-Detect	-12.91
23	Notes Data have a little Division of the latest and			
24	Note: Data have multiple DLs - Use of KM Method is recomme For all methods (except KM, DL/2, and ROS Methods),	naed	Number treated as Non-Detect Number treated as Detected	108
25	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	3.57%
26 27			5g.5 2 _ 1.0 2 0.001. 0.001.14g5	0.0770
28		UCL S	tatistics	
29	Normal Distribution Test with Detected Values On	ly	Lognormal Distribution Test with Detected Values C	nly
30	Lilliefors Test Statistic	0.261		0.0864
31	5% Lilliefors Critical Value	0.0853		0.0853
32	Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
33	Assuming Normal Distribution		Assuming Lognormal Distribution	
34 35	DL/2 Substitution Method		DL/2 Substitution Method	
36	Mean	0.0000212	Mean	-11.22
37	SD	2.515E-05		1.005
37 38	SD 95% DL/2 (t) UCL	2.515E-05 2.514E-05	SD	1.005 2.741E-05
	95% DL/2 (t) UCL		SD 95% H-Stat (DL/2) UCL	
38 39 40	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	2.514E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method	2.741E-05
38 39 40 41	95% DL/2 (t) UCL		SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	
38 39 40 41 42	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean	2.514E-05 2.072E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale	2.741E-05 -11.19
38 39 40 41	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD	2.514E-05 2.072E-05 2.566E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale	2.741E-05 -11.19 0.936
38 39 40 41 42 43	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	2.514E-05 2.072E-05 2.566E-05 2.474E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL	-11.19 0.936 2.123E-05 2.512E-05 2.517E-05
38 39 40 41 42 43 44	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	2.514E-05 2.072E-05 2.566E-05 2.474E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.517E-05 2.547E-05
38 39 40 41 42 43 44 45 46	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	2.514E-05 2.072E-05 2.566E-05 2.474E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	-11.19 0.936 2.123E-05 2.512E-05 2.517E-05 2.547E-05 2.64E-05
38 39 40 41 42 43 44 45 46 47	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	2.514E-05 2.072E-05 2.566E-05 2.474E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.517E-05 2.547E-05
38 39 40 41 42 43 44 45 46 47 48	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	2.514E-05 2.072E-05 2.566E-05 2.474E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.517E-05 2.547E-05 2.64E-05 2.58E-05
38 39 40 41 42 43 44 45 46 47	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values On k star (bias corrected)	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.08)	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05
38 39 40 41 42 43 44 45 46 47 48 49 50	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values On k star (bias corrected) Theta Star	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.379 1.592E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.08)	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values On k star (bias corrected)	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.08)	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values On k star (bias corrected) Theta Star nu star	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.379 1.592E-05 297.9	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.09)	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values On k star (bias corrected) Theta Star	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.379 1.592E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.09) Nonparametric Statistics	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Theta Star nu star A-D Test Statistic	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.379 1.592E-05 297.9	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.0) Nonparametric Statistics Kaplan-Meier (KM) Method	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL K star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.379 1.592E-05 297.9 2.279 0.772	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.09) Nonparametric Statistics Kaplan-Meier (KM) Method Mean	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.517E-05 2.64E-05 2.58E-05
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL K star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.379 1.592E-05 297.9 0.772 0.0892	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.09) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05 / 5) 2.126E-05 2.499E-05 2.373E-06
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Le	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.379 1.592E-05 297.9 0.772 0.0892	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.0) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05 / 5) 2.126E-05 2.499E-05 2.373E-06 2.519E-05
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values On k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Le	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.379 1.592E-05 297.9 0.772 0.0892	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.0) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05 / 5) 2.126E-05 2.499E-05 2.373E-06 2.519E-05 2.516E-05
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values On k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.379 1.592E-05 297.9 0.772 0.772 0.0892 vel	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.0) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.517E-05 2.547E-05 2.58E-05 / 5) 2.126E-05 2.499E-05 2.373E-06 2.519E-05 2.519E-05 2.519E-05
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values On k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Le	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.379 1.592E-05 297.9 0.772 0.0892	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.0) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (jackknife) UCL 95% KM (jackknife) UCL	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05 / 5) 2.126E-05 2.499E-05 2.373E-06 2.519E-05 2.516E-05
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values On k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.592E-05 297.9 0.772 0.0892 vel	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.0) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (gackknife) UCL 95% KM (bootstrap t) UCL	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05 // 5) 2.126E-05 2.499E-05 2.373E-06 2.519E-05 2.519E-05 2.519E-05 2.678E-05
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	Maximum Likelihood Estimate (MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values On k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.379 1.592E-05 297.9 0.772 0.772 0.0892 vel 0.000001 0.000174	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.0) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05 / 5) 2.126E-05 2.499E-05 2.373E-06 2.519E-05 2.519E-05 2.519E-05 2.519E-05 2.519E-05 2.52E-05 0.0000316
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values On k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median Median SD	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.379 1.592E-05 297.9 0.772 0.772 0.0892 vel 0.000001 0.000174 2.12E-05 1.576E-05 2.515E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.0) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.54F-05 2.58E-05 / 5) 2.126E-05 2.499E-05 2.373E-06 2.519E-05 2.519E-05 2.519E-05 2.519E-05 2.502E-05 2.545E-05 0.0000316 3.608E-05
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 66	Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values On k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data not Gamma Distributed at 5% Significance Le Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Mean Median	2.514E-05 2.072E-05 2.566E-05 2.474E-05 2.444E-05 1.592E-05 297.9 0.772 0.772 0.0892 vel 0.000001 0.0000174 2.12E-05 1.576E-05	SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.0) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (jackknife) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	2.741E-05 -11.19 0.936 2.123E-05 2.512E-05 2.547E-05 2.64E-05 2.58E-05 / 5) 2.126E-05 2.499E-05 2.373E-06 2.519E-05 2.519E-05 2.519E-05 2.519E-05 2.519E-05 2.52E-05 0.0000316

TABLE I-2
Pro-UCL Outputs - Other COPCs

	Α	В	С	D	E	F	G	Н	I	J	K	L		
70					Nu star	271.1	Potential UCLs to Use							
71					AppChi2	234				95% KN	1 (BCA) UCL	2.502E-05		
72	9	5% Gamma A	Approximate	UCL (Use w	hen n >= 40)	2.457E-05								
73		95% Adjı	sted Gamma	a UCL (Use v	when n < 40)	2.461E-05								
74	Note: DL/2	is not a reco	ommended i	nethod.										
75														
76	Not	te: Suggesti	ons regardin	g the select	ion of a 95%	UCL are pro	ovided to he	elp the user t	o select the	most appro	priate 95% l	JCL.		
77	TI	nese recomn	nendations a	are based up	on the resul	ts of the sim	ulation stud	lies summari	ized in Singl	n, Maichle, a	and Lee (200	6).		
78				For add	itional insigh	t, the user m	nay want to	consult a sta	atistician.					

J	ı					工		J	J	\Box		K			L
ber of Distinc	lumber o	mber	mber	mber	ber	er c	r of	of Dis	istinc	ct O	 Obse	ervati	ions	15	
				-						-	-				-
ormed Statis	nsform	sform	sforn	sforr	form	rme	med	ed St	Statis	stic	cs				
Minimu								Min	1inimu	ium	of L	Log D	Data	8.82	4
Maximu								Max	aximu	ium	of L	Log D	Data	9.75	3
Me									Me	lean	n of l	log D	Data	9.28	7
										SD	O of I	log D	Data	0.28	3
						—									
Distribution	mal Dist	al Dis	al Di	al Di	Dis	Dist	istril	tributi	ution	ı Te:	est				
Shapiro Wil												t Stati	istic	0.92	8
Shapiro Will								•							
nal at 5% Sig	ormal a	rmal a	rmal :	rmal	nal a	al at	at 5	t 5%	% Sig	gnifi	ficar	nce L	Leve) 	
gnormal Dist	Lognor	.ogno	.ogno	.ognc	gno	norr	orma	mal C	Distr	tribu	utio	n			
										ξ	95%	% H-L	JCL	1293	38
% Chebyshe	95% C	95% C) 5% () 5% (% C	6 Cł	Che	hebys	yshev	εν (N	MVL	UE) l	JCL	1480)6
% Chebyshe									•	•	•				
% Chebyshe	99% C	39% C	∂9% (} 9% (1% C	د Cł	Che	hebys	yshev	∋v (N	MVL	UE) L	JCL	1942	!7
Distribution															
l at 5% Signi	rmai at s	181 at	181 at	1aı aı	ıı at	at 5	1 5%	کر کا 	Signi	IITICE	anc	e Le	vei		
netric Statist	arametr	amet	amet	ame	met	etri	tric	ic Sta	tatist	stics					
												CLTL	UCL	1262	26
95%								95	95% .	Jac	ckkr	nife l	UCL	1272	26
% Standard	95% S	95% 5	95%	95%	5% 5	% S	Sta	tanda	dard [Boo	otst	trap l	JCL	1254	8
95% B							-	95%	5% Bo	3oot	tstra	ap-t l	JCL	1299	7
95% Hall's	95	95	9!	9	95	95°	5%	% Ha	lall's l	Вос	otst	trap l	JCL	1266	51
% Percentile	95% Pe	5% P	5% P	5% F	% P	Pe	Perc	ercent	ntile F	Boo	otst	trap (JCL	1258	8
95% BCA	95	9	Ć	Ć	9	95	95%	5% BC	BCA F	Boo	otst	trap l	JCL	1271	2
Chebyshev(N										`					54
Chebyshev(N										`					
Chebyshev(N	9% Che	% Che	% Che	% Ch	Che	het	ieby	byshe	hev(N	Mea	an, S	Sd) L	JCL	1975	50
														<u> </u>	
														<u> </u>	
110-050/ 0							1-	- 051	NEO/ C	C+- '	٠ - لــ		1101	1071	<u> </u>
Use 95% S	Us					US	Jse	e 95%	5% S	Stud	aent	τ's-t L	JCL	12/2	.o
he most spe	ot the -	t tha	t tha	+ +h-	the			noot 1	ton	nron	Drio!	te OF	50/ 1		
												au (2		-/	
Singh	in Singl	n Sing	Sing	Sing	Sing	ngh	gh	h	, S	, Singh	, Singh, a		, Singh, and laci (, Singh, and laci (2002	ost appropriate 95% UCL. , Singh, and laci (2002) tatistician.

	Α	В	С	D	Е	F	G	Н	I		J	K	L
132	Arsenic												
133						Genera	I Statistics						
134			Num	ber of Valid	Observations				Numl	per of Dis	stinct O	bservations	67
135 136													
137			Raw S	tatistics					Log-transf	ormed S	tatistics	3	
138					Minimun	n 2.75		of Log Data	Data 1.012				
139					Maximun	n 18.5				Ma	ximum (of Log Data	2.918
140						n 6.864					Mean	of log Data	1.839
141				Ge	ometric Mea						SD	of log Data	0.403
142					Media								
143				0.1		3.22							
144					Error of Mear								
145				Coefficier	Skewnes								
146					Skewiles:	5 1.712							
147						Relevant L	JCL Statistics	<u> </u>					
148			Normal Dist	tribution Te	st				Lognormal	Distribut	tion Tes	st	
149 150					Test Statistic	c 0.204	+		-			est Statistic	0.14
151				Lilliefors	Critical Value	e 0.0978				Lilli	efors Cı	ritical Value	0.0978
152		Data not	t Normal at 5	5% Significa	ance Level			Data not	Lognormal	at 5% S	ignifica	nce Level	<u>I</u>
153													
154		As	suming Nor					As	suming Log	normal l			
155					udent's-t UCI	7.456						95% H-UCL	
156			UCLs (Adju		-						•	IVUE) UCL	
157					. (Chen-1995							IVUE) UCL	
158			95% Modifi	ea-t UCL (Jo	ohnson-1978	7.467			99	% Cheby	snev (IV	IVUE) UCL	9.939
159			Gamma Dis	tribution Te	et				Data	Distribut	ion		
160			Gaillilla Dio		ias corrected) 5.698	D	ata do not	follow a Di			ibution (0.0	5)
161				0.0. (0.	Theta Sta	'							
162 163					MLE of Mea	n 6.864							
164			М	LE of Stand	ard Deviation	n 2.876							
165					nu sta	r 934.4							
166			Approxima	te Chi Squa	re Value (.05	864.5			Nonparan	netric St	atistics		
167					f Significance						959	% CLT UCL	7.449
168			A	djusted Chi	Square Value	e 863.3						kknife UCL	
169									95			tstrap UCL	
170					Test Statistic		1					strap-t UCL	
171					Critical Value Test Statistic				OF			otstrap UCL otstrap UCL	
172		K			Critical Value				957			otstrap UCL	
173	D:	ata not Gamı	_				1		95%			n, Sd) UCL	
174 175					J		+			•	•	n, Sd) UCL	
175 176		As	suming Gan	nma Distrib	ution		+				•	n, Sd) UCL	
170 177	9	5% Approxim	nate Gamma	UCL (Use v	vhen n >= 40) 7.419							
178		95% Adjı	usted Gamma	a UCL (Use	when n < 40) 7.43	1						
179													
180			Potential	UCL to Use	 							ent's-t UCL	
181										or 9	5% Mod	dified-t UCL	7.467
182													
183							rovided to he						
184		i nese recom					simulation stu					a iaci (2002	<u></u>
185			anu əmgn	anu əmgn (zuusj. For	auullional Ir	nsight, the use	er may wa	iii io consu	ıı a statis	oucian.		

	A B C D E	F	G H I J K	L
186	Benzo(a)anthracene			
187		_		
188			Statistics	
189	Number of Valid Data	15		/
190	Number of Distinct Detected Data	7	Number of Non-Detect Data	8 52.220/
191			Percent Non-Detects	53.33%
192	Raw Statistics		Log-transformed Statistics	
193	Minimum Detected	0.019	Minimum Detected	-3.963
194	Maximum Detected	0.205	Maximum Detected	-1.587
195	Mean of Detected	0.0848	Mean of Detected	-2.84
196	SD of Detected	0.0781	SD of Detected	0.938
197	Minimum Non-Detect	0.35	Minimum Non-Detect	-1.05
198	Maximum Non-Detect	0.38	Maximum Non-Detect	-0.968
199 200				
200	Note: Data have multiple DLs - Use of KM Method is recomme	nded	Number treated as Non-Detect	15
202	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	0
203	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	100.00%
204				
205	Warning: There	are only 7	Detected Values in this data	
206	Note: It should be noted that ev	ven though b	pootstrap may be performed on this data set	
207	the resulting calculations	may not be	reliable enough to draw conclusions	
208	-		<u> </u>	
209	It is recommended to have 10-15 or m	nore distinct	observations for accurate and meaningful results.	
210			-	
211				
212		UCL St	tatistics	
213	Normal Distribution Test with Detected Values On	ıly	Lognormal Distribution Test with Detected Values Or	nly
214	Shapiro Wilk Test Statistic	0.781	Shapiro Wilk Test Statistic	0.907
215	5% Shapiro Wilk Critical Value	0.803	5% Shapiro Wilk Critical Value	0.803
216	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
217				
218	Assuming Normal Distribution		Assuming Lognormal Distribution	
219	DL/2 Substitution Method		DL/2 Substitution Method	
220	Mean	0.136	Mean	-2.238
221	SD	0.0713	SD	0.847
222	95% DL/2 (t) UCL	0.168	95% H-Stat (DL/2) UCL	0.269
223				
224	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
225	MLE method failed to converge properly		Mean in Log Scale	-2.84
226			SD in Log Scale	0.729
227			Mean in Original Scale	0.0751
228			SD in Original Scale	0.0578
229			95% t UCL	0.101
230			95% Percentile Bootstrap UCL	0.0993
231			95% BCA Bootstrap UCL	0.105
232			95% H-UCL	0.12
233				
234	Gamma Distribution Test with Detected Values Or	nly	Data Distribution Test with Detected Values Only	
235	k star (bias corrected)	0.945	Data appear Gamma Distributed at 5% Significance Lo	evel
236	Theta Star	0.0897		
237	nu star	13.23		
238				
239	A-D Test Statistic	0.477	Nonparametric Statistics	
240	5% A-D Critical Value	0.721	Kaplan-Meier (KM) Method	
241	K-S Test Statistic	0.721	Mean	0.0848
242	5% K-S Critical Value	0.317	SD	0.0723
243	Data appear Gamma Distributed at 5% Significance I	Level	SE of Mean	0.0295
244			95% KM (t) UCL	0.137
245	Assuming Gamma Distribution		95% KM (z) UCL	0.133
246	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.139
247	Minimum	0.019	` ' '	0.266
248	Maximum	0.205	95% KM (BCA) UCL	0.136
249	Mean	0.0843	95% KM (Percentile Bootstrap) UCL	0.135
250	Median	0.0655		0.213
251	SD	0.0615		0.269
252	k star	1.606		0.379
253	Theta star	0.0525		
254	Nu star	48.17	Potential UCLs to Use	

TABLE I-2
Pro-UCL Outputs - Other COPCs

	Α	В	С	D	Е	F	G	Н	I	J	K	L	
255					AppChi2	33.24		95% KM (t) UCL					
256	95	5% Gamma A	Approximate	UCL (Use wl	nen n >= 40)	0.122							
257		•		•	vhen n < 40)	0.128							
258	Note: DL/2 is not a recommended method.												
259													
260	N												
261	These recommendations are based upon the recults of the simulation studies summerized in Singh Maighle, and Lee (2006)												
262	For additional insight, the user may want to consult a statistician												

K L	G H I J K	F	A B C D E				
			Benzo(a)pyrene	263			
				264			
		General S		265			
	Number of Detected Data Number of Non-Detect Data	15	Number of Valid Data Number of Distinct Detected Data	266			
	Percent Non-Detects	О	Number of distinct detected data	267			
Detects 00.00	Fetcent Non-Detects			268			
	Log-transformed Statistics		Raw Statistics	269			
etected -3.8	Minimum Detected	0.0215	Minimum Detected	270			
	Maximum Detected	0.0213	Maximum Detected	271			
	Mean of Detected	0.071	Mean of Detected	272			
	SD of Detected	0.0687	SD of Detected	273			
	Minimum Non-Detect	0.35	Minimum Non-Detect	274			
	Maximum Non-Detect	0.38	Maximum Non-Detect	275			
				276			
-Detect 1	Number treated as Non-Detect	ded	Note: Data have multiple DLs - Use of KM Method is recomme	277 278			
etected	Number treated as Detected		For all methods (except KM, DL/2, and ROS Methods),	278 279			
entage 100.00	Single DL Non-Detect Percentage		Observations < Largest ND are treated as NDs	279 280			
	cted Values in this data	are only 6 D	Warning: There	281 282			
	strap may be performed on this data set						
	able enough to draw conclusions			283			
				284			
	ervations for accurate and meaningful results.	re distinct o	It is recommended to have 10-15 or m	285 286			
				287			
				288			
	ics	UCL Sta		289			
alues Only	Lognormal Distribution Test with Detected Values C	,	Normal Distribution Test with Detected Values Or	209 290			
Statistic 0.92	Shapiro Wilk Test Statistic	0.719	Shapiro Wilk Test Statistic	290 291			
l Value 0.78	5% Shapiro Wilk Critical Value	0.788	5% Shapiro Wilk Critical Valu				
e Level	Data appear Lognormal at 5% Significance Level		Data not Normal at 5% Significance Level				
			7	293 294			
	Assuming Lognormal Distribution		Assuming Normal Distribution	294 295			
Viethod	DL/2 Substitution Method		DL/2 Substitution Method	296			
Mean -2.20	Mean	0.137	Mean	297			
SD 0.78	SD	0.0692	SD	298			
2) UCL 0.24	95% H-Stat (DL/2) UCL	0.168	95% DL/2 (t) UCL	299			
				300			
Vlethod	Log ROS Method	N/A	Maximum Likelihood Estimate(MLE) Method	301			
g Scale -2.93	Mean in Log Scale		MLE method failed to converge properly	302			
g Scale 0.6	SD in Log Scale			303			
I Scale 0.06	Mean in Original Scale			304			
I Scale 0.04	SD in Original Scale			305			
t UCL 0.085	95% t UCL			306			
ap UCL 0.083	95% Percentile Bootstrap UCL			307			
ap UCL 0.092	95% BCA Bootstrap UCL			308			
H-UCL 0.091	95% H-UCL			309			
				310			
es Only	Data Distribution Test with Detected Values Only	У	Gamma Distribution Test with Detected Values Or	311			
cance Level	Data appear Gamma Distributed at 5% Significance L	1.037	k star (bias corrected)	312			
		0.0684	Theta Star	313			
		12.45	nu star	314			
				315			
	Nonparametric Statistics	0.48	A-D Test Statistic	316			
	Kaplan-Meier (KM) Method	0.705	5% A-D Critical Value	317			
Mean 0.07		0.705	K-S Test Statistic	318			
SD 0.062		0.336	5% K-S Critical Value	319			
	SE of Mean	evel	Data appear Gamma Distributed at 5% Significance	320			
	95% KM (t) UCL			321			
	95% KM (z) UCL		Assuming Gamma Distribution	322			
*			Gamma ROS Statistics using Extrapolated Data	323			
e) UCL 0.12	95% KM (jackknife) UCL		Minimum	324			
e) UCL 0.12 t) UCL 0.22	95% KM (bootstrap t) UCL	0.0189					
e) UCL 0.12 t) UCL 0.22 A) UCL 0.12	95% KM (bootstrap t) UCL 95% KM (BCA) UCL	0.207	Maximum	325			
e) UCL 0.12 t) UCL 0.22 A) UCL 0.12 p) UCL 0.1	95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.207 0.071	Mean	325 326			
e) UCL 0.12 t) UCL 0.22 A) UCL 0.12 p) UCL 0.19 v) UCL 0.19	95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.207 0.071 0.066	Mean Median	326			
e) UCL 0.12 t) UCL 0.22 A) UCL 0.12 p) UCL 0.15 v) UCL 0.19 v) UCL 0.24	95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.207 0.071 0.066 0.0513	Mean Median SD				
e) UCL 0.12 t) UCL 0.22 A) UCL 0.12 p) UCL 0.15 v) UCL 0.19 v) UCL 0.24	95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.207 0.071 0.066	Mean Median	326 327			

TABLE I-2
Pro-UCL Outputs - Other COPCs

	A	В	С	D	E	F	G	Н	1	J	K	L	
332					AppChi2	39.15		95% KM (t) UCI					
333	95	5% Gamma A	Approximate	UCL (Use w	hen n >= 40)	0.1							
334				`	when n < 40)	0.105							
335	Note: DL/2 is not a recommended method.												
336													
337	Not	te: Suggestic	ons regardin	g the select	ion of a 95%	UCL are pro	ovided to he	lp the user t	o select the	most approp	priate 95% U	JCL.	
338	Tł	nese recomm	nendations a	re based up	on the resul	ts of the sim	ulation stud	ies summari	ized in Singl	n, Maichle, a	nd Lee (200	6).	
339	For additional insight, the upon may want to consult a attriction												

	ABCDE	F	G H I J K	L
340	Benzo(b)fluoranthene			
341				
342		General		
343	Number of Valid Data	15	Number of Detected Data	6
344	Number of Distinct Detected Data	6	Number of Non-Detect Data	9
345			Percent Non-Detects	60.00%
346	Daw Statistics		Low transfermed Chatistics	
347	Raw Statistics Minimum Detected	0.026	Log-transformed Statistics Minimum Detected	-3.65
348	Maximum Detected	0.026	Maximum Detected	-2.495
349	Mean of Detected	0.0823	Mean of Detected	-3.087
350	SD of Detected	0.0203	SD of Detected	0.421
351	Minimum Non-Detect	0.35	Minimum Non-Detect	-1.05
352	Maximum Non-Detect	0.38	Maximum Non-Detect	-0.968
353	Maximum Non Beleet	0.00	WAARIAN NOT BOLOCK	0.000
354	Note: Data have multiple DLs - Use of KM Method is recomme	nded	Number treated as Non-Detect	15
355	For all methods (except KM, DL/2, and ROS Methods),	naca	Number treated as Detected	0
356	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	100.00%
357			og.c	
358	Warning: There	are only 6 I	Detected Values in this data	
359	-	-	pootstrap may be performed on this data set	
360			reliable enough to draw conclusions	
361		, may not bo	Tollable chagnite aran considering	
362	It is recommended to have 10-15 or m	ore distinct	observations for accurate and meaningful results.	
363	Tele recommended to mave re-re-ci-	ioro diotimot	obbot valiono for document and modningral rocatio.	
364				
365		UCL St	atistics	
366	Normal Distribution Test with Detected Values On		Lognormal Distribution Test with Detected Values On	ılv
367	Shapiro Wilk Test Statistic	•		0.963
368	5% Shapiro Wilk Critical Value	0.788	5% Shapiro Wilk Critical Value	0.788
369	Data appear Normal at 5% Significance Level	0.700	Data appear Lognormal at 5% Significance Level	0.700
370	Data appear Normal at 0 % digililloando Edvar		Data appear Eognomia at 0% Oigninearios Eover	
371	Assuming Normal Distribution		Assuming Lognormal Distribution	
372	DL/2 Substitution Method		DL/2 Substitution Method	
373	Mean	0.128	Mean	-2.262
374	SD	0.0679	SD	0.741
375	95% DL/2 (t) UCL	0.159	95% H-Stat (DL/2) UCL	0.219
376	3070 2012 (4) 302	0.100	30% 11 Stat (BE12) 332	0.210
377	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
378	MLE method failed to converge properly	14/7	Mean in Log Scale	-3.087
379	MEE modified failed to converge property		SD in Log Scale	0.329
380			Mean in Original Scale	0.048
381			SD in Original Scale	0.0157
382			95% t UCL	0.0551
383			95% Percentile Bootstrap UCL	0.0546
384			95% BCA Bootstrap UCL	0.0553
385			95% H-UCL	0.057
386				
387	Gamma Distribution Test with Detected Values Or	nly	Data Distribution Test with Detected Values Only	
388	k star (bias corrected)	3.639	Data appear Normal at 5% Significance Level	
389	Theta Star	0.0135		
390	nu star	43.67		
391 392				
392	A-D Test Statistic	0.234	Nonparametric Statistics	
393 394	5% A-D Critical Value	0.698	Kaplan-Meier (KM) Method	
394	K-S Test Statistic	0.698	Mean	0.0491
395	5% K-S Critical Value	0.333	SD	0.0186
396	Data appear Gamma Distributed at 5% Significance I	Level	SE of Mean	0.0083
			95% KM (t) UCL	0.0637
398	Assuming Gamma Distribution		95% KM (z) UCL	0.0627
399 400	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.0645
400	Minimum	0.026	95% KM (bootstrap t) UCL	0.0678
401	Maximum	0.0825	95% KM (BCA) UCL	0.0627
402 403	Mean	0.0499	95% KM (Percentile Bootstrap) UCL	0.0635
	Median	0.0517	95% KM (Chebyshev) UCL	0.0852
		- '		0.101
404	SD	0.0157	97.5% KM (Chebyshev) UCL	0.101
404 405	SD k star	0.0157 8.303	97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.101
404 405 406			· · · · · · · · · · · · · · · · · · ·	
404 405	k star Theta star	8.303	· · · · · · · · · · · · · · · · · · ·	

TABLE I-2
Pro-UCL Outputs - Other COPCs

	Α	В	С	D	E	F	G	Н	I	J	K	L		
409					AppChi2	213.5		95% KM (t) UCL						
410	95	5% Gamma A	Approximate	UCL (Use w	nen n >= 40)	0.0582			95% KM (P	ercentile Boo	otstrap) UCL	0.0635		
411		-		•	vhen n < 40)	0.0593								
412	Note: DL/2 is not a recommended method.													
413														
414	Not	e: Suggestic	ons regardin	g the selecti	on of a 95%	UCL are pro	ovided to he	lp the user t	o select the	most appro	priate 95% U	JCL.		
415	Th	ese recomm	nendations a	re based up	on the resul	ts of the sim	ulation stud	ies summari	ized in Singl	n, Maichle, a	nd Lee (200	6).		
416				For addi	tional insigh	t, the user m	nay want to	consult a sta	atistician.					

Auto-				Benzo(k)fluoranthene	417
					440
199		Statistics	Genera		
Number of Distinct Detected Data 6	\	Number of Detected Data		Number of Valid Data	
	лата	Number of Non-Detect Data		Number of Distinct Detected Data	
Faw Statistics	ects 60.00°	Percent Non-Detects			
Minimum Detected 0.022					423
Maximum Detected 0.206	cted -3.81	Log-transformed Statistics Minimum Detected	0.00		424
Mean of Detected 0.0757 Mean of Detected 20.0757 Mean of Detected 20.0865 SD of Detected 20.0865 Mean of Detected 20.086		Maximum Detected			
SD of Detected 0.0885 SD of C		Mean of Detected			
Maximum Non-Detect 0.35	cted 0.84	SD of Detected	0.068	SD of Detected	
Maximum Non-Detect 0.38	etect -1.0	Minimum Non-Detect	0.3	Minimum Non-Detect	
Assuming Normal Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level Data appear Normal Distribution Test with Data appear Normal Data Data Data Data Data Data Data Da	-0.96	Maximum Non-Detect	0.3	Maximum Non-Detect	430
For all methods (except KM, DL/2, and ROS Methods), Number treated as I Single DL Non-Detect Per	11	Number to dee New Debut		Alata Data kana makinla Dia dia atau (MMA) kadia manana	431
Single DL Non-Detect Per		Number treated as Non-Detect Number treated as Detected	naea		
1.59		Single DL Non-Detect Percentage			
Warning: There are only 6 Detected Values in this data	-9-	5gs = 1 5			
Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions		Petected Values in this data	are only 6	Warning: There	
the resulting calculations may not be reliable enough to draw conclusions lit is recommended to have 10-15 or more distinct observations for accurate and meaningful results. Lognormal Distribution Test with Detected Values Only Lognormal Distribution Value Only Lognormal Distribution Value Only Lognormal Distribution Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level Data appear Lognormal Distribution Assuming Lognormal Distribution Assuming Lognormal Distribution DL/2 Substitution Method DL/2 Substitution DL/2 Substitu		ootstrap may be performed on this data set	en though	Note: It should be noted that e	
It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.		reliable enough to draw conclusions	may not b	the resulting calculation	
					439
442 443 444 444 444 444 444 444 444 445 445 446 445 446 5% Shapiro Wilk Test Statistic 0.795 5% Shapiro Wilk Test Statistic 0.795 5% Shapiro Wilk Test 5% Shapiro Wilk Critical Value 0.788 5% Shapiro Wilk Critical Value 0.789 5% Shapiro Wilk Critical Value 0.189 0.95% H-Statistical Value Shapiro Wilk Critical Value 0.789 0.0672 0.		bservations for accurate and meaningful results.	ore distind	It is recommended to have 10-15 or n	440
Add					
Normal Distribution Test with Detected Values Only Lognormal Distribution Test with Detected Values Only		atistics	UCL :		
Shapiro Wilk Test Statistic 0.795 Shapiro Wilk Test	es Only	Lognormal Distribution Test with Detected Values On		Normal Distribution Test with Detected Values Or	
446 5% Shapiro Wilk Critical Value 0.788 5% Shapiro Wilk Critical Value 447 Data appear Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 448 Assuming Normal Distribution Assuming Lognormal Distribution 450 DL/2 Substitution Method DL/2 Substitution 451 Mean 0.139 452 SD 0.0672 453 95% DL/2 (t) UCL 0.169 95% H-Stat (DL 454 Maximum Likelihood Estimate (MLE) Method N/A Log ROS 455 MLE method failed to converge properly Mean in Log ROS 456 MLE method failed to converge properly Mean in Origin 457 SD in Origin 458 Mean in Origin 460 95% Percentile Bootsti 461 95% Percentile Bootsti 462 95% BCA Bootsti 463 Gamma Distribution Test with Detected Values Only Data Distribution Test with Detected Values Only 464 Assuming Lognormal Distribution Test with Detected Values Only Data appear Normal at 5% Significance 467 Thet	istic 0.92	Shapiro Wilk Test Statistic	0.79	Shapiro Wilk Test Statistic	
448	alue 0.78	5% Shapiro Wilk Critical Value	0.78	5% Shapiro Wilk Critical Value	
449 Assuming Normal Distribution Assuming Lognormal Distribution 450 DL/2 Substitution Method DL/2 Substitution 451 Mean 0.139 452 SD 0.0672 453 95% DL/2 (t) UCL 0.169 95% H-Stat (DL 454 455 Maximum Likelihood Estimate(MLE) Method N/A Log ROS 456 MLE method failed to converge properly Mean in Log 457 SD in Log 458 Mean in Origin 459 SD in Origin 460 95% Percentile Bootst 461 95% Percentile Bootst 462 95% BCA Bootst 463 95% 464 95% 465 Gamma Distribution Test with Detected Values Only Data Distribution Test with Detected Values 466 k star (bias corrected) 1.013 Data appear Normal at 5% Significanc 467 Theta Star 0.0747 468 nu star 12.15 469 A-D Test Statistic 0.362 Nonparametric Statistics <td>evel</td> <td>Data appear Lognormal at 5% Significance Level</td> <td></td> <td>Data appear Normal at 5% Significance Level</td> <td>447</td>	evel	Data appear Lognormal at 5% Significance Level		Data appear Normal at 5% Significance Level	447
A50		Association I District		Assert News I Blue II also	448
Mean 0.139	hod	Assuming Lognormal Distribution DL/2 Substitution Method		•	
SD 0.0672		Mean	0.13		
453 95% DL/2 (t) UCL 0.169 95% H-Stat (DL 454 455 456 457 458 459 459 450 451 452 453 454 455 456 457 458 460 461 462 463 464 465 466 467 468 470 471 481 482 473 484 475 476 477	SD 0.77				
454 455 Maximum Likelihood Estimate(MLE) Method N/A Log ROS 456 MLE method failed to converge properly Mean in Log ROS 457 SD in Log ROS 458 Mean in Origin 459 SD in Origin 460 95% Percentile Bootsti 461 95% Percentile Bootsti 462 95% BCA Bootsti 463 95% 464 95% 465 Gamma Distribution Test with Detected Values Only Data Distribution Test with Detected Values Only 466 k star (bias corrected) 1.013 Data appear Normal at 5% Significance 467 Theta Star 0.0747 0.0747 468 12.15 0.0747 469 A-D Test Statistic 0.362 Nonparametric Statistics 470 A-D Test Statistic 0.706 Kaplan-Meier (KM)	JCL 0.25	95% H-Stat (DL/2) UCL	0.16	95% DL/2 (t) UCL	
MLE method failed to converge properly Mean in Lot					
SD in Local		Log ROS Method	N/A		455
Mean in Origin		Mean in Log Scale		MLE method failed to converge properly	456
SD in Origin SD i		SD in Log Scale			
460 95% 461 95% Percentile Bootsti 462 95% BCA Bootsti 463 95% 464 465 Gamma Distribution Test with Detected Values Only Data Distribution Test with Detected Values Only 466 k star (bias corrected) 1.013 Data appear Normal at 5% Significance 467 Theta Star 0.0747 468 nu star 12.15 469 470 A-D Test Statistic 0.362 Nonparametric Statistics 471 5% A-D Critical Value 0.706 Kaplan-Meier (KM)		SD in Original Scale			
95% Percentile Bootsti 462 95% BCA Bootsti 463 95% 464 465 Gamma Distribution Test with Detected Values Only Data Distribution Test with Detected Values Only 466 k star (bias corrected) 1.013 Data appear Normal at 5% Significance 467 Theta Star 0.0747 468 nu star 12.15 469 470 A-D Test Statistic 0.362 Nonparametric Statistics 471 5% A-D Critical Value 0.706 Kaplan-Meier (KM)		95% t UCL			
95% BCA Bootstr 463	JCL 0.090	95% Percentile Bootstrap UCL			
464 465 Gamma Distribution Test with Detected Values Only 466 k star (bias corrected) 467 Theta Star 0.0747 468 nu star 12.15 469 470 A-D Test Statistic 0.362 Nonparametric Statistics 471 S Tact Statistic 0.706 Kaplan-Meier (KM)		95% BCA Bootstrap UCL			
Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star 0.0747 12.15 A-D Test Statistic 5% A-D Critical Value 0.706 Data Distribution Test with Detected Value Data appear Normal at 5% Significance 1.013 Data appear Normal at 5% Significance 1.014 Data Distribution Test with Detected Value 0.0747 Data Distribution Test with Detected Value Data Distribution Test Value Data Distribution Test with Detected Value Data Distribution Test with Detected Value Data Distribution Test value Data Distribution Test with Detected Value Data Distribution Test value	JCL 0.10	95% H-UCL			463
466	Only	Data Distribution Test with Detected Values Only	h.	Commo Distribution Test with Detected Values O	
467 Theta Star 0.0747 468 nu star 12.15 469 470 A-D Test Statistic 0.362 Nonparametric Statistics 471 5% A-D Critical Value 0.706 Kaplan-Meier (KM)		•	•		
12.15 12.1				,	
469 470 A-D Test Statistic 0.362 Nonparametric Statistics 471 5% A-D Critical Value 0.706 Kaplan-Meier (KM)					
470 A-D Test Statistic 0.362 Nonparametric Statistics 471 5% A-D Critical Value 0.706 Kaplan-Meier (KM)					
V. C. Toot Ctatistic 0.706					
W. S. Lees Coesies III III.		Kaplan-Meier (KM) Method			471
FV K S Critical Value 0.226	SD 0.062	Mean SD		K-S Test Statistic	
Data annear Commo Distributed at E0/ Cignificance Level		SE of Mean			
4/4		95% KM (t) UCL	*	.,	
475 476 Assuming Gamma Distribution 95% KM	JCL 0.12	95% KM (z) UCL		Assuming Gamma Distribution	
Gamma ROS Statistics using Extrapolated Data 95% KM (jackkni		95% KM (jackknife) UCL		Gamma ROS Statistics using Extrapolated Data	
478 Minimum 0.0198 95% KM (bootstrap		95% KM (bootstrap t) UCL			
479		95% KM (BCA) UCL			479
Moding 0.0754 OF9/ VM (Chabush		95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL			
401 CD 0.0520 0.7.59/ VAI (Chabush		97.5% KM (Chebyshev) UCL			
462		99% KM (Chebyshev) UCL		l, atox	
483 Theta star 0.0419					
Nu star 54.12 Potential UCLs to Use		Potential UCLs to Use	54.1	Nu star	

TABLE I-2
Pro-UCL Outputs - Other COPCs

	Α	В	С	D	E	F	G	Н	1	J	K	L		
486					AppChi2	38.22		95% KM (t) UCL						
487	95	5% Gamma A	Approximate	UCL (Use w	nen n >= 40)	0.107			95% KM (P	ercentile Boo	otstrap) UCL	0.123		
488		,		`	vhen n < 40)	0.112								
489	Note: DL/2 is not a recommended method.													
490														
491	Not	e: Suggestic	ons regardin	g the selecti	on of a 95%	UCL are pro	ovided to he	lp the user t	o select the	most approp	oriate 95% L	JCL.		
492	Th	ese recomn	nendations a	re based up	on the resul	ts of the sim	ulation stud	ies summari	zed in Singl	n, Maichle, a	nd Lee (200	6).		
493	Found distance include the programmer promite agreement in a statistician													

01	A B C D E	F	G H I J K L
194	omium		
195		Genera	I Statistics
196	Number of Valid Observations		Number of Distinct Observations 72
97 98			
99	Raw Statistics		Log-transformed Statistics
00	Minimum	6	Minimum of Log Data 1.792
01	Maximum	67.45	Maximum of Log Data 4.211
02	Mean	16.93	Mean of log Data 2.682
03	Geometric Mean	14.61	SD of log Data 0.527
04	Median	13.48	
)5	SD	10.44	
06	Std. Error of Mean	1.153	
07	Coefficient of Variation	0.617	
)8	Skewness	2.023	
)9			
10		Relevant U	JCL Statistics
11	Normal Distribution Test		Lognormal Distribution Test
2	Lilliefors Test Statistic	0.16	Lilliefors Test Statistic 0.0877
13	Lilliefors Critical Value	0.0978	Lilliefors Critical Value 0.0978
14	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level
15			
16	Assuming Normal Distribution		Assuming Lognormal Distribution
17	95% Student's-t UCL	18.85	95% H-UCL 18.71
18	95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL 21.25
19	95% Adjusted-CLT UCL (Chen-1995)	19.1	97.5% Chebyshev (MVUE) UCL 23.2
20	95% Modified-t UCL (Johnson-1978)	18.89	99% Chebyshev (MVUE) UCL 27.02
21			
22	Gamma Distribution Test		Data Distribution
23	k star (bias corrected)	3.43	Data appear Lognormal at 5% Significance Level
24	Theta Star	4.936	
25	MLE of Mean	16.93	
26	MLE of Standard Deviation	9.141	
27	nu star	562.4	
28	Approximate Chi Square Value (.05)		Nonparametric Statistics
29	Adjusted Level of Significance	0.0471	95% CLT UCL 18.83
30	Adjusted Chi Square Value	507.5	95% Jackknife UCL 18.85
31			95% Standard Bootstrap UCL 18.83
32	Anderson-Darling Test Statistic	1.373	95% Bootstrap-t UCL 19.15
33	Anderson-Darling 5% Critical Value		95% Hall's Bootstrap UCL 19.25
34	Kolmogorov-Smirnov Test Statistic		95% Percentile Bootstrap UCL 18.82
35	Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL 19.05
36	Data not Gamma Distributed at 5% Significance Le	evel	95% Chebyshev(Mean, Sd) UCL 21.96
37			97.5% Chebyshev(Mean, Sd) UCL 24.13
38	Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL 28.4
39	95% Approximate Gamma UCL (Use when n >= 40)		
10	95% Adjusted Gamma UCL (Use when n < 40)	18.76	
11			
2	Potential UCL to Use		Use 95% H-UCL 18.71
3			
4	-		tic based UCLs for historical reasons only.
15			lues of UCL95 as shown in examples in the Technical Guide.
16			the use of H-statistic based 95% UCLs.
17	Use of nonparametric methods are preferred to com-	pute UCLS	95 for skewed data sets which do not follow a gamma distribution.
18			
19			provided to help the user to select the most appropriate 95% UCL.
1	These recommendations are based upon the res	ults of the	simulation studies summarized in Singh, Singh, and Iaci (2002)
0			nsight, the user may want to consult a statistician.

<u> </u>	GIHIIJKI	F I	ABCDE					
		' '	Chrysene	552				
				553				
	stics	General St		554				
8	Number of Detected Data	15	Number of Valid Data	555				
7	Number of Non-Detect Data	8	Number of Distinct Detected Data	556				
46.67%	Percent Non-Detects			557				
				558				
	Log-transformed Statistics		Raw Statistics	559				
-3.631	Minimum Detected	0.0265	Minimum Detected	560				
-1.653	Maximum Detected	0.192	Maximum Detected	561				
-2.667	Mean of Detected	0.09	Mean of Detected	562				
0.785	SD of Detected	0.0673	SD of Detected	563				
-1.05	Minimum Non-Detect	0.35	Minimum Non-Detect	564				
-0.968	Maximum Non-Detect	0.38	Maximum Non-Detect	565				
				566				
15	Number treated as Non-Detect	ded	Note: Data have multiple DLs - Use of KM Method is recomme	567				
0	Number treated as Detected		For all methods (except KM, DL/2, and ROS Methods),	568				
100.00%	Single DL Non-Detect Percentage		Observations < Largest ND are treated as NDs	569				
				570				
	cted Values in this data			571				
	strap may be performed on this data set			572				
	able enough to draw conclusions	nay not be r	the resulting calculations	573				
				574				
	ervations for accurate and meaningful results.	re distinct o	It is recommended to have 10-15 or m	575				
				576				
				577				
		UCL Sta		578				
	Lognormal Distribution Test with Detected Values On		Normal Distribution Test with Detected Values Or	579				
0.912	Shapiro Wilk Test Statistic	0.836	Shapiro Wilk Test Statisti					
0.818	5% Shapiro Wilk Critical Value	0.818	5% Shapiro Wilk Critical Valu					
	Data appear Lognormal at 5% Significance Level		Data appear Normal at 5% Significance Leve					
				583				
	Assuming Lognormal Distribution		Assuming Normal Distribution	584				
	DL/2 Substitution Method		DL/2 Substitution Method	585				
-2.221	Mean	0.132	Mean	586				
0.743	SD	0.0669	SD	587				
0.229	95% H-Stat (DL/2) UCL	0.163	95% DL/2 (t) UCL	588				
				589				
	Log ROS Method	N/A	Maximum Likelihood Estimate(MLE) Method	590				
-2.667	Mean in Log Scale		MLE method failed to converge properly	591				
0.625	SD in Log Scale			592				
0.0832	Mean in Original Scale			593				
0.0528	SD in Original Scale			594				
0.107	95% t UCL			595				
0.107	95% Percentile Bootstrap UCL			596				
0.109	95% BCA Bootstrap UCL			597				
0.122	95% H-UCL			598				
				599				
	Data Distribution Test with Detected Values Only		Gamma Distribution Test with Detected Values Or	600				
	Data appear Normal at 5% Significance Level	1.384	k star (bias corrected)	601				
		0.065	Theta Star	602				
		22.14	nu star	603				
				604				
	Nonparametric Statistics	0.365	A-D Test Statistic	605				
	Kaplan-Meier (KM) Method	0.724	5% A-D Critical Value	606				
		0.724	K-S Test Statistic	607				
0.09	Mean		5% K-S Critical Value	608				
0.063	SD	0.297	B.1					
0.063	SD SE of Mean		Data appear Gamma Distributed at 5% Significance	609				
0.063 0.0238 0.132	SE of Mean 95% KM (t) UCL							
0.063 0.0238 0.132 0.129	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL		Assuming Gamma Distribution	610				
0.063 0.0238 0.132 0.129 0.133	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL	vel	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data	609 610 611 612				
0.063 0.0238 0.132 0.129 0.133 0.171	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	0.0265	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum	610 611 612				
0.063 0.0238 0.132 0.129 0.133 0.171 0.131	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL	0.0265 0.192	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum	610 611				
0.063 0.0238 0.132 0.129 0.133 0.171 0.131	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.0265 0.192 0.0911	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean	610 611 612 613 614				
0.063 0.0238 0.132 0.129 0.133 0.171 0.131 0.131	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.0265 0.192 0.0911 0.0936	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median	610 611 612 613				
0.063 0.0238 0.132 0.129 0.133 0.171 0.131 0.131 0.194 0.239	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.0265 0.192 0.0911 0.0936 0.054	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD	610 611 612 613 614 615 616				
0.063 0.0238 0.132 0.129 0.133 0.171 0.131 0.131	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.0265 0.192 0.0911 0.0936 0.054 2.363	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star	610 611 612 613 614 615 616				
0.063 0.0238 0.132 0.129 0.133 0.171 0.131 0.131 0.194 0.239	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.0265 0.192 0.0911 0.0936 0.054	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD	610 611 612 613 614 615				

TABLE I-2
Pro-UCL Outputs - Other COPCs

	Α	В	С	D	E	F	G	Н	I	J	K	L		
621					AppChi2	52.51		95% KM (t) UCL						
622	95	5% Gamma A	Approximate	UCL (Use w	hen n >= 40)	0.123			95% KM (P	ercentile Boo	otstrap) UCL	0.131		
623		•		•	when n < 40)	0.128								
624	Note: DL/2 is not a recommended method.													
625														
626	Not	e: Suggestic	ons regardin	g the selecti	ion of a 95%	UCL are pro	ovided to he	lp the user t	o select the	most appro	priate 95% l	JCL.		
627	Th	ese recomn	nendations a	re based up	on the resul	ts of the sim	ulation stud	ies summar	ized in Singl	n, Maichle, a	nd Lee (200	6).		
628	For additional incight, the user may want to consult a statistician													

	Α	В	С		D	ΙE		F	G	Н		1	_	ı	$\overline{}$	K	т .	\neg
629	Cobalt	1 5			<u> </u>	<u> </u>	I.		ų .					<u> </u>				
630																		
631								General	Statistics									
			Nur	nber of	Valid (Observat	tions 8	32				Numl	ber o	of Distinct		rvations	70	
632																		
633			Raw	Statisti	cs						Loa	-transf	orm	ed Statis	tics			
634						Minir	mum 3	3 15				tranor	····			og Data	1 147	
635							mum 2									og Data		
636							/lean 8											
637					God	metric M			Mean of log Data 2.102 SD of log Data 0.387									
638					acc		edian 8									- Data	0.507	
639						IVIC	SD 3										-	
640					Std E	Error of M												
641				Cor		t of Varia												
642					enicien		ness 1											
643						Skewi	ness	1.005										
644							_) - +	Ol Otatistiss									
645			Name at Di		T		r	Relevant U	CL Statistics	i 	1		Di-		T			
646			Normal Di				6	2.40	Lognormal Distribution Test Lilliefors Test Statistic 0.053									
647						Test Stat												
648		D-t	. NI I - 4			Critical V		0.0978		D-4	1-			Lilliefors				5
649		Data not	t Normal at	5% Si	gnifica	nce Lev	eı		Data appear Lognormal at 5% Significance Level									
650																		
651		As	ssuming No						Assuming Lognormal Distribution									
652						ident's-t		9.479	95% H-UCL 9.52 ⁻ 95% Chebyshev (MVUE) UCL 10.5 ⁻									
653			UCLs (Ad															
654			95% Adjus			•			97.5% Chebyshev (MVUE) UCL 11.24 99% Chebyshev (MVUE) UCL 12.68									
655			95% Modi	fied-t U	CL (Jo	hnson-1	978) 9	9.491				99	% C	hebyshev	/ (MVL	JE) UCL	12.68	
656																		
657			Gamma Di											ribution				
658				k s	star (bia	as correc	,		Data	appear G	amm	a Distr	ribut	ted at 5%	Signi	ficance	Level	
659							Star 1											
660						MLE of M												
661			ı	MLE of	Standa	ard Devia												
662							star 1											
663			Approxim				` ,				No	nparan	netr	ic Statist				
664						Significa										LT UCL		
665			,	Adjuste	d Chi S	Square V	'alue 1	1010								nife UCL		
666												95	5% S	Standard E		•		
667						Test Stat										ip-t UCL		
668			Anderso											% Hall's E		•		
669			Kolmogo									959		ercentile E		•		
670			Colmogorov											5% BCA E		· ·		
671	Dat	a appear Ga	mma Distri	buted a	at 5% S	Significa	nce Le	evel						byshev(M				
672									97.5% Chebyshev(Mean, Sd) UCL 11.31									
673	Assuming Gamma Distribution 95% Approximate Gamma UCL (Use when n >= 40) 9.473											99%	Che	byshev(M	lean, S	3d) UCL	12.79	
674	9	• •			•		,											
675		95% Adju	usted Gamr	na UCL	(Use	when n <	< 40) 9	9.485										
676																		
677			Potentia	I UCL to	o Use						U	se 95%	Ар	proximate	Gamı	ma UCL	9.473	
678																_		
679	No	te: Suggesti	ons regard	ing the	select	ion of a	95% l	JCL are pr	ovided to he	lp the use	r to s	elect t	he n	nost appı	opriat	e 95% l	JCL.	
680		These recon	nmendation	ns are b	oased (upon the	e resul	Its of the s	imulation stu	dies sumr	mariz	ed in S	Singl	h, Singh,	and la	aci (200	2)	
681			and Singh	n and S	ingh (2	2003).	For ad	ditional in	sight, the use	er may wa	nt to	consu	lt a	statisticia	ın.			

Pro-UCL Outputs - Other COPCs

	A B C D E	F	G H I J K	L
682 I	Indeno(1,2,3-cd)pyrene			
683				
684	North on of Volid Date	General S		
685	Number of Valid Data Number of Distinct Detected Data	15 4	Number of Detected Data Number of Non-Detect Data	11
686	Number of Distinct Detected Data	4	Percent Non-Detects	73.33%
687			Fercent Non-Detects	73.33 //
688	Raw Statistics		Log-transformed Statistics	
689	Minimum Detected	0.0355	Minimum Detected	-3.338
690 691	Maximum Detected	0.2	Maximum Detected	-1.609
692	Mean of Detected	0.0803	Mean of Detected	-2.819
693	SD of Detected	0.0801	SD of Detected	0.821
694	Minimum Non-Detect	0.35	Minimum Non-Detect	-1.05
695	Maximum Non-Detect	0.39	Maximum Non-Detect	-0.942
696				
697 ^I	Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	15
090	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	0
699 ⁽	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	100.00%
700				
701	-		nct Detected Values in this data	
702			pootstrap may be performed on this data set	
703	the resulting calculations	may not be	reliable enough to draw conclusions	
704	la in recommended to hove 10 15 or m	distinct		
705	it is recommended to have 10-15 or mo	ore distinct	observations for accurate and meaningful results.	
706				
707		UCL St	atietice	
708	Normal Distribution Test with Detected Values Onl		Lognormal Distribution Test with Detected Values Or	nlv
709	Shapiro Wilk Test Statistic	0.691	Shapiro Wilk Test Statistic	0.762
710	5% Shapiro Wilk Critical Value	0.748	5% Shapiro Wilk Critical Value	0.748
711	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
712 713	<u> </u>			
714	Assuming Normal Distribution		Assuming Lognormal Distribution	
715	DL/2 Substitution Method		DL/2 Substitution Method	
716	Mean	0.155	Mean	-2.001
717	SD	0.0598	SD	0.637
718	95% DL/2 (t) UCL	0.182	95% H-Stat (DL/2) UCL	0.242
719				
720	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
721	MLE method failed to converge properly		Mean in Log Scale	-2.819
722			SD in Log Scale	0.547
723			Mean in Original Scale	0.0696
724			SD in Original Scale	0.0456
725			95% t UCL	0.0903
726			95% Percentile Bootstrap UCL	0.0898
727			95% BCA Bootstrap UCL	0.096
728			95% H-UCL	0.0944
729	Gamma Distribution Test with Detected Values Onl	lv	Data Distribution Test with Detected Values Only	
730	k star (bias corrected)	0.625	Data Follow Appr. Gamma Distribution at 5% Significance	e I evel
731	Theta Star	0.023		
732	nu star	5.001		
733	stal	2.001		
734 735	A-D Test Statistic	0.7	Nonparametric Statistics	
736	5% A-D Critical Value	0.661	Kaplan-Meier (KM) Method	
737	K-S Test Statistic	0.661	Mean	0.0803
738	5% K-S Critical Value	0.398	SD	0.0694
739	Data follow Appr. Gamma Distribution at 5% Significance	e Level	SE of Mean	0.04
740			95% KM (t) UCL	0.151
741	Assuming Gamma Distribution		95% KM (z) UCL	0.146
742	Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.159
743	Minimum	0.0149	95% KM (bootstrap t) UCL	0.819
744	Maximum	0.2	95% KM (BCA) UCL	0.159
745	Mean	0.0775	95% KM (Percentile Bootstrap) UCL	0.15
746	Median	0.0718	95% KM (Chebyshev) UCL	0.255
747	SD	0.0546	97.5% KM (Chebyshev) UCL	0.33
748	k star	1.719	99% KM (Chebyshev) UCL	0.479
749	Theta star Nu star	0.0451 51.57	-	
		E1 E7	Potential UCLs to Use	

TABLE I-2
Pro-UCL Outputs - Other COPCs

	Α	В	С	D	E	F	G	Н	I	J	K	L
751					AppChi2	36.07				95%	KM (t) UCL	0.151
752	95	5% Gamma A	Approximate	UCL (Use w	nen n >= 40)	0.111						
753		-		•	vhen n < 40)	N/A						
754	Note: DL/2	is not a reco	ommended n	nethod.								
755												
756	Not	e: Suggestic	ons regardin	g the selecti	on of a 95%	UCL are pro	ovided to he	lp the user t	o select the	most appro	priate 95% l	JCL.
757	Th	ese recomn	nendations a	re based up	on the resul	ts of the sim	ulation stud	ies summari	ized in Singl	n, Maichle, a	nd Lee (200	6).
758				For addi	tional insigh	t, the user m	nay want to	consult a sta	atistician.			

Pro-UCL Outputs - Other COPCs

	Α	В	С		D	E		F	G	Н	Т	1	Т	J	\top	K	ΤL
759 Ir	on					<u>. </u>						·	-		_		
760																	
761							G	eneral	Statistics								
762			Num	nber of	Valid C	Observation	ons 15					Numb	er c	of Distinct	Obse	rvations	15
763																	
764			Raw S	Statisti	ics						Log	-transfo	ormo	ed Statis			
765							num 9820									og Data	
766							num 4280							Maximu		•	
767							ean 1922									log Data	
768					Geo	metric Me									SD of	log Data	0.462
769							dian 1445										
770					044.5	rror of Me	SD 1056										
771				0-													
772					emcien	t of Variat	ess 1.62										
773						Skewii	ess 1.02	0									
774							Polo	vant I I	CL Statistics								
775			Normal Dis	tributi	on Tes	<u> </u>	Neie	vanii O	CL Statistics	•	Logi	normal l	Diet	ribution ⁻	Toet		
776						Test Stati	istic 0.76	8			Logi	ioiiiai i		apiro Wilk		Statistic	0 895
777						Critical Va								apiro Wilk			
778		Data not	Normal at	•				•		Data appe	ear Lo			·			
779					3												
780		As	suming Nor	rmal D	istribu	tion				As	ssum	ing Log	nor	mal Distr	ibutio		
781 782						dent's-t U	JCL 2403	31								6 H-UCL	24592
783		95%	UCLs (Adju	usted	for Ske	wness)						95%	% C	nebyshev	/ (MVl	JE) UCL	29130
784			95% Adjuste	ed-CL	TUCL	Chen-19	95) 2493	36				97.5%	% C	hebyshev	/ (MVl	JE) UCL	33513
785			95% Modifi	ied-t U	CL (Jo	hnson-19	78) 2422	22				99%	% C	hebyshev	/ (MVl	JE) UCL	42124
786																	
787			Gamma Dis	stribut	ion Tes	;t						Data I	Dist	ribution			
788				k s	star (bia	as correct	ted) 3.77	ed) 3.778 Data Follow Appr. Gamma Distribution at 5% Sign									ice Level
789						Theta S	Star 5089)									
790					N	MLE of Me	ean 1922	28									
791			N	/ILE of	Standa	ard Deviat	tion 9892	2									
792						nu s	star 113.	3									
793			Approxima			•	,				No	nparam	netri	c Statisti			
794						Significa										CLT UCL	
795			Α	djuste	d Chi S	Square Va	alue 87.1	9								nife UCL	
796												959	% S	tandard E		•	
797						Test Stati										ap-t UCL	
798			Anderson					9				050		% Hall's E		•	
799		1/	Kolmogo									95%		ercentile E		•	
800	Data fe		Colmogorov-S									050/ 0		5% BCA E		·	
801	Data it	ollow Appr. G	aamma Dist	nbutic	on at 57	% Signific	cance Le	vei						byshev(N			
802		Δο	suming Gar	mme r)ietrih	tion								byshev(N			
803	9	5% Approxim					40) 2427	78				33 /0 (J110	Jy3Hev(Iv			40300
804	<u> </u>		ısted Gamm		•		,										+
805				001	, 555 (.5/ 2-100										
806			Potential	UCL t	o Use						U	se 95%	Anı	oroximate	Gam	ma UCI	24278
807			. 5.5.1641										- 1				
808	No	te: Sugaestic	ons regardir	ng the	select	ion of a 9	95% UCL	are pi	rovided to he	lp the use	er to s	elect th	ne m	nost appr	opriat	e 95% l	JCL.
809									imulation stu	-							
810						·-			sight, the us								
811																	

Pro-UCL Outputs - Other COPCs

	A B C D E	F	G	Н	I	Τ,	J	K	L				
812	Manganese												
813													
814		Genera	al Statistics										
815	Number of Valid Observations	82			Numb	per of Dis	tinct Obs	servation	s 79				
816			I										
817	Raw Statistics			L	og-transf	ormed St	atistics						
818	Minimum	188				Mir	nimum of	Log Data	5.236				
819	Maximum	4310				Max	kimum of	Log Data	a 8.369				
820	Mean	856.9					Mean o	f log Data	a 6.552				
821	Geometric Mean	700.4					SD o	f log Data	a 0.628				
822	Median	745.8											
823	SD	634.6											
824	Std. Error of Mean	70.08											
825	Coefficient of Variation	0.741											
826	Skewness	2.716											
827													
828		Relevant I	UCL Statistics										
829	Normal Distribution Test			Lo	gnormal	Distribut	ion Test						
830	Lilliefors Test Statistic	0.186				Lillie	efors Tes	st Statisti	0.0677				
831	Lilliefors Critical Value	0.0978				Lillie	efors Crit	ical Value	0.0978				
832	Data not Normal at 5% Significance Level			Data appear	Lognorm	al at 5%	Significa	ance Lev	el				
833													
834	Assuming Normal Distribution			Assu	ıming Log	normal [Distributi	ion					
835	95% Student's-t UCL	973.5					95	5% H-UCI	976.1				
836	95% UCLs (Adjusted for Skewness)	l .			959	% Cheby	shev (M\	/UE) UCI	1129				
837	95% Adjusted-CLT UCL (Chen-1995)	994.6			97.5°	% Cheby	shev (M\	/UE) UCI	1250				
838	95% Modified-t UCL (Johnson-1978)	977 99% Chebyshev (M							1487				
839													
840	Gamma Distribution Test				Data	Distributi	on						
841	k star (bias corrected)	2.547	Data Fo	llow Appr. G	amma Di	stributio	n at 5%	Significa	nce Level				
842	Theta Star	336.5											
843	MLE of Mean	856.9											
844	MLE of Standard Deviation	536.9											
845	nu star												
846	Approximate Chi Square Value (.05)	371.3		ı	Nonparan	netric Sta	atistics						
847	Adjusted Level of Significance	0.0471					95%	CLT UCI	972.1				
848	Adjusted Chi Square Value	370.5						knife UCI					
849					95			strap UCI					
850	Anderson-Darling Test Statistic							rap-t UCI					
851	Anderson-Darling 5% Critical Value							strap UCI					
852	Kolmogorov-Smirnov Test Statistic				95%			strap UCI					
853	Kolmogorov-Smirnov 5% Critical Value							strap UCI					
854	Data follow Appr. Gamma Distribution at 5% Significand	ce Level					`	, Sd) UCI					
855							•	, Sd) UCI					
856	Assuming Gamma Distribution	1			99% (Chebysh	ev(Mean	, Sd) UCI	1554				
857	95% Approximate Gamma UCL (Use when n >= 40)												
858	95% Adjusted Gamma UCL (Use when n < 40)	965.9											
859													
860	Potential UCL to Use			,	Use 95%	Approxii	mate Ga	mma UCI	963.9				
861													
862	Note: Suggestions regarding the selection of a 95%												
863	These recommendations are based upon the res							laci (200)2)				
864	and Singh and Singh (2003). For a	additional i	nsight, the use	er may want	to consu	t a statis	tician.						

	Α	В	С	D	Е	F	G	Н	I	J	K	L					
1					L Statistics	for Data Se	ts with Non-	Detects									
2		User Selec	cted Options														
3			From File	soil 0_4.wst													
4			Il Precision	OFF													
5		Confidence		95%													
6	Number o	of Bootstrap	Operations	2000													
7																	
8	a1 au2 tat	al naha															
9	c1_eu2_tot	ai pcos															
10						Conorol	Statistics										
11			Numb	ber of Valid O	hearvations		Statistics		Numbo	or of Distinct (Observations	28					
12			INGIIII	bei oi valid o	D3CI Valion3	20			Numbe	or Distiller		20					
13			Raw S	tatistics					og-transfor	med Statistic							
14					Minimum	0.115					of Log Data	-2.163					
15					Maximum						of Log Data						
16						47.93					n of log Data						
17					Median						D of log Data						
18 19						41.35											
20				Coefficient	of Variation												
20 21					Skewness	1.581											
22						1	1										
23						Relevant U	CL Statistics	;									
24			Normal Dist	ribution Test				L	ognormal D	istribution Te	∍st						
25			S	Shapiro Wilk T	est Statistic	0.85			5	Shapiro Wilk	Test Statistic	0.786					
26			S	hapiro Wilk C	ritical Value	0.924			S	Shapiro Wilk (Critical Value	0.924					
27		Data not	t Normal at 5	5% Significan	ce Level			Data not l	_ognormal a	t 5% Signific	ance Level						
28																	
29		As	ssuming Nor	mal Distributi	on		Assuming Lognormal Distribution										
30					lent's-t UCL	61.24					95% H-UCL						
31				sted for Skev		T.	95% Chebyshev (MVUE) UCL 173										
32			-	ed-CLT UCL (•						(MVUE) UCL						
33			95% Modifie	ed-t UCL (Joh	inson-1978)	61.63			99%	Chebyshev ((MVUE) UCL	303.8					
34			O B'						D D.								
35			Gamma Dist	tribution Test		1.047	Dete			istribution	Namificana.	Laval					
36				K Star (blas	s corrected) Theta Star		Data	appear Ga	mma Distrib	uted at 5% 3	Significance	Levei					
37				M	LE of Mean												
38			M	LE of Standar													
39					nu star												
40			Approximat	te Chi Square					Nonparame	etric Statistic							
41				sted Level of S	, ,						5% CLT UCL	60.78					
42 43				djusted Chi So							ckknife UCL						
43 44				<u>- </u>	<u> </u>				95%		otstrap UCL						
44 45			Anders	son-Darling T	est Statistic	0.384					tstrap-t UCL						
45 46			Anderson-	Darling 5% C	ritical Value	0.771			Ç	95% Hall's Bo	ootstrap UCL	65.69					
47			Kolmogor	ov-Smirnov T	est Statistic	0.111			95%	Percentile Bo	ootstrap UCL	60.82					
48		K	Colmogorov-S	Smirnov 5% C	ritical Value	0.17				95% BCA Bo	ootstrap UCL	63.14					
49	Data	appear Ga	mma Distribu	uted at 5% Si	ignificance	Level			95% CI	hebyshev(Me	an, Sd) UCL	81.99					
50									97.5% Cl	hebyshev(Me	an, Sd) UCL	96.73					
51		As		nma Distribut					99% CI	hebyshev(Me	an, Sd) UCL	125.7					
52				pproximate G													
53			95	% Adjusted G	iamma UCL	68.28											
54																	
55			Potential U	JCL to Use					Use 95% A	Approximate (Gamma UCL	66.86					
56																	
50	Not	e: Suggestie	ons regardin	a the selection	on of a 95%	UCL are pr	ovided to he	lp the user	to select the	most appro	priate 95% l	JCL.					
57						•											
			nmendations	are based u	pon the res	ults of the s	imulation stu	idies summa	arized in Sin	igh, Singh, a	nd laci (2002	2)					

	Α	В	С	D	Е	F	G	Н	I	J	K	L			
60															
61	c2n_eu1_ı	mercury													
62															
63							Statistics					T			
64			Numl	ber of Valid C	bservations	14			Numb	er of Distinct	Observations	13			
65							1								
66			Raw S	tatistics		T			Log-transfo	rmed Statist					
67					Minimum						n of Log Data				
68					Maximum						n of Log Data				
69						0.374					an of log Data				
70					Median						D of log Data	1.61			
71				0 45: - : 4		0.573									
72				Coefficient	of Variation										
73					Skewness	1.42									
74						Deleventi	ICL Statistics								
75			Normal Diet	tribution Tes		Relevant C	UCL Statistics			Natulbudian T	·				
76				Chapiro Wilk 7	-	0.655			.ognormai i	Distribution T	Test Statistic	0.702			
77				shapiro Wilk C							Critical Value				
78		Data no	ot Normal at 5	•		0.674		Doto not I		at 5% Signifi		0.674			
79		Data IIO	i Normai at c	o o orginical	ice Level			Data not i	Logiloilliai	at 5 % Signin	calice Level				
80		A	ssuming Nor	mal Distribut	ion			Ass	umina Loa	normal Distri	bution				
81					dent's-t UCL	0.645					95% H-UCL	2.205			
82		95%	6 UCLs (Adju						95%	6 Chebyshev	(MVUE) UCL				
83				ed-CLT UCL (-	0.688				-	(MVUE) UCL				
84 85				ed-t UCL (Jol	,						(MVUE) UCL				
86															
87			Gamma Dis	tribution Tes	t				Data D	Distribution					
88				k star (bia	s corrected)	0.443	Data do not follow a Discernable Distribution (0.05)								
89					Theta Star	0.845									
90				N	ILE of Mean	0.374									
91			М	LE of Standa	rd Deviation	0.562									
92					nu star	12.39									
93			Approximat	te Chi Square	e Value (.05)	5.486			Nonparam	etric Statistic	cs				
94			Adjus	sted Level of	Significance	0.0312				9	5% CLT UCL	0.626			
95			Ad	djusted Chi S	quare Value	4.889				95% J	ackknife UCL	0.645			
96									959	% Standard B	ootstrap UCL	0.617			
97				son-Darling 1							otstrap-t UCL				
98				Darling 5% C							ootstrap UCL				
99				ov-Smirnov 1					95%		ootstrap UCL				
100			Kolmogorov-S								ootstrap UCL				
101	D	ata not Gam	ıma Distribut	ed at 5% Sig	nificance Le	evel				• `	ean, Sd) UCL				
102										• ,	ean, Sd) UCL				
103		As	ssuming Gam						99% (Chebyshev(M	ean, Sd) UCL	1.898			
104				opproximate C											
105			95	% Adjusted C	amma UCL	0.947									
106			Dotortic!!	IIOI to lies			1		Hea 000/ O	hohyohe: /f4	oon 64/1101	1 000			
107			rotential t	UCL to Use	ommondo-l	IICI avaaa	ds the maxin			nebysnev (M	ean, Sd) UCL	1.098			
108				rec	Jumenuea	OCL EXCEE	TINE THE THE	num opserv	auvil						
109	No	te: Suggest	ions renerdin	na the selecti	on of a 05%	IICI ara n	rovided to he	In the user	to select th	e most appro	nriate 05% I	ICI			
110						<u> </u>	imulation stu	-			-				
444					•					t a statisticia		-,			
111 112															

	A B C D E	F	G H I J K	L
113	o?n. ou1. total poho			
114	c2n_eu1_total pcbs			
115		General	Statistics	
116 117	Number of Valid Data	14	Number of Detected Data	7
118	Number of Distinct Detected Data	7	Number of Non-Detect Data	7
119			Percent Non-Detects	50.00%
120			1	
121	Raw Statistics		Log-transformed Statistics	
122	Minimum Detected	0.0435	Minimum Detected	-3.135
123	Maximum Detected	171.3	Maximum Detected	5.143
124	Mean of Detected	27.46	Mean of Detected	0.187
125	SD of Detected	63.67	SD of Detected	3.096
126	Minimum Non-Detect	0.0375	Minimum Non-Detect	-3.283
127	Maximum Non-Detect	0.047	Maximum Non-Detect	-3.058
128	Natar Data have sculting Disc. Has of I/M Mathad is recomme		Number treated as Non-Detect	0
129	Note: Data have multiple DLs - Use of KM Method is recomme For all methods (except KM, DL/2, and ROS Methods),	enaea		8
130	Observations < Largest ND are treated as NDs		Number treated as Detected Single DL Non-Detect Percentage	57.14%
131	Observations > Largest ND are treated as NDs		Single DE Non-Detect Fercentage	57.14 /0
132	Warning: There	are only 7 I	Detected Values in this data	
133	_	· ·	pootstrap may be performed on this data set	
134			reliable enough to draw conclusions	
135 136				
137	It is recommended to have 10-15 or m	nore distinct	observations for accurate and meaningful results.	
138				
139				
140		UCL St	atistics	
141	Normal Distribution Test with Detected Values On	nly	Lognormal Distribution Test with Detected Values Or	ıly
142	Shapiro Wilk Test Statistic	0.516	Shapiro Wilk Test Statistic	0.925
143	5% Shapiro Wilk Critical Value	0.803	5% Shapiro Wilk Critical Value	0.803
144	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
145				
146	Assuming Normal Distribution		Assuming Lognormal Distribution	
147	DL/2 Substitution Method		DL/2 Substitution Method	
148	Mean	13.74	Mean	-1.862
149	SD	45.54	SD (11 C+++ (D1 (2) 11C)	2.992 3616
150	95% DL/2 (t) UCL	35.3	95% H-Stat (DL/2) UCL	3010
151	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
152	MLE yields a negative mean	14// (Mean in Log Scale	-4.161
153			SD in Log Scale	5.063
154 155			Mean in Original Scale	13.73
156			SD in Original Scale	45.54
157			95% t UCL	35.29
158			95% Percentile Bootstrap UCL	36.93
159			95% BCA Bootstrap UCL	50.63
160				
161	Gamma Distribution Test with Detected Values Or	nly	Data Distribution Test with Detected Values Only	
162	k star (bias corrected)	0.227	Data appear Gamma Distributed at 5% Significance Le	evel
163	Theta Star	121.1		
164	nu star	3.175		
165				
166	A-D Test Statistic	0.559	Nonparametric Statistics	
167	5% A-D Critical Value	0.81	Kaplan-Meier (KM) Method	•
168	K-S Test Statistic	0.81	Mean	13.75
169	5% K-S Critical Value	0.34	SD	43.88
170	Data appear Gamma Distributed at 5% Significance	Level	SE of Mean	12.67
171	Accuming Commo Distribution		95% KM (t) UCL	36.19
172	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	34.59 35.3
173	Gamma ROS Statistics using Extrapolated Data Minimum	1E-12	95% KM (Jackknire) UCL	717.4
174	Maximum	1E-12 171.3	95% KM (BCA) UCL	37.04
175	Mean	16.46	95% KM (Percentile Bootstrap) UCL	37.04
176	Median	1.054	95% KM (Chebyshev) UCL	68.97
177	SD	45	97.5% KM (Chebyshev) UCL	92.86
178	k star	0.147	99% KM (Chebyshev) UCL	139.8
179	Theta star	111.6	(2.02),5.021, 332	
180 181	Nu star		Potential UCLs to Use	
	i i a otai			

TABLE I-3

Pro-UCL Outputs - Primary COPCs, 0-4 Ft BGS

	Α	В	С	D	E	F	G	Н	1	J	K	L
182					AppChi2	0.773				95%	KM (t) UCL	36.19
183			95% G	amma Appro	ximate UCL	87.91						
184				,	Gamma UCL	112.3						
185	Note: DL/2	is not a reco	ommended n	nethod.								
186												
187	Not	e: Suggestic	ons regardin	g the selecti	on of a 95%	UCL are pro	ovided to he	lp the user t	o select the	most approp	oriate 95% L	JCL.
188	Th	ese recomn	nendations a	re based up	on the resul	ts of the sim	ulation stud	ies summari	zed in Singl	n, Maichle, a	nd Lee (200	6).
189				For addi	tional insigh	t, the user m	nay want to	consult a sta	itistician.			

	A B C D E	F	G	Н		J	K	L
90								
91	eu1_mercury							
92		Genera	I Statistics					
93	Number of Valid Observations		ii Glatistics		Numbe	er of Distinct	Observations	52
94	Trainbol of valid Observations				rumbe	or Distinct		02
95 96	Raw Statistics			L	og-transfo	rmed Statist	tics	
07	Minimum	0.0293					m of Log Data	-3.532
98	Maximum	8.95				Maximu	m of Log Data	2.192
9	Mean	1.262				Me	an of log Data	-0.526
0	Median	0.59				5	SD of log Data	1.271
)1	SD	1.843						
2	Coefficient of Variation	1.461						
3	Skewness	2.607						
4								
5		Relevant U	JCL Statistics					
6	Normal Distribution Test	0.00=		Lo	ognormal D	Distribution 1		0.405
7	Lilliefors Test Statistic						Test Statistic	
8	Lilliefors Critical Value Data not Normal at 5% Significance Level	U. 122	-)ata annos:	Lognorma		Critical Value	
9	Data not Normal at 5% Significance Level		L	Data appear	Lognorma	ıı at 5% Sıgı	illicance Leve)
0	Assuming Normal Distribution			Δοςι	ımina I oan	normal Distri	ihution	
1	95% Student's-t UCL	1.686		7,000	g Logi		95% H-UCL	2.12
2	95% UCLs (Adjusted for Skewness)				95%	Chebyshev	(MVUE) UCL	
3	95% Adjusted-CLT UCL (Chen-1995)	1.775					(MVUE) UCL	
4 5	95% Modified-t UCL (Johnson-1978)					(MVUE) UCL		
6	<u> </u>						<u> </u>	
17	Gamma Distribution Test				Data D	istribution		
18	k star (bias corrected)	0.753	[Data appear	Lognorma	l at 5% Sigr	nificance Leve	l
9	Theta Star	1.676						
20	MLE of Mean	1.262						
21	MLE of Standard Deviation	1.454						
2	nu star							
3	Approximate Chi Square Value (.05)			l	Nonparame	etric Statisti		
4	Adjusted Level of Significance						95% CLT UCL	
5	Adjusted Chi Square Value	59.74			050		Jackknife UCL	
6	Andausan Davling Took Chakishin	1 005			95%		Bootstrap UCL	
7	Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value						ootstrap-t UCL Bootstrap UCL	
28	Kolmogorov-Smirnov Test Statistic						Bootstrap UCL	
.9	Kolmogorov-Smirnov 5% Critical Value				95 /0		Bootstrap UCL	
0	Data not Gamma Distributed at 5% Significance Le				95% C		lean, Sd) UCL	
1							lean, Sd) UCL	
32 33	Assuming Gamma Distribution						lean, Sd) UCL	
34	95% Approximate Gamma UCL	1.672				- `	•	
35	95% Adjusted Gamma UCL	1.685						
66								
7	Potential UCL to Use	Į.				Us	e 95% H-UCL	2.12
8								
9	ProUCL computes and output					•		
0	H-statistic often results in unstable (both high a	•			-		hnical Guide.	
1	It is therefore recommende							
2	Use of nonparametric methods are preferred to com-	pute UCL9	95 for skewed	data sets w	hich do no	t follow a ga	mma distribu	tion.
.3								
	Note: Suggestions regarding the selection of a 95%	UCL are p	provided to hel	p the user to	o select the	e most appr	opriate 95% l	JCL.
4	These recommendations are based upon the resi			-				•

	A B C D E	F	G	н	I J K	
247	A B C B E	ı	<u> </u>	11 1	1 1 3 1 10	
	c4n_eu1_total pcbs					
240		General	Statistics			
249	Number of Valid Data	53			Number of Detected Data	a 50
250	Number of Distinct Detected Data	50			Number of Non-Detect Data	
251	Number of Distinct Detected Data	30			Percent Non-Detects	
252					Percent Non-Detects	5.00%
253			1			
254	Raw Statistics			Lo	g-transformed Statistics	
255	Minimum Detected	0.043			Minimum Detected	-3.147
256	Maximum Detected	15.97			Maximum Detected	2.771
257	Mean of Detected	2.87			Mean of Detected	0.0628
258	SD of Detected	3.988			SD of Detected	1.5
	Minimum Non-Detect	0.0395			Minimum Non-Detec	t -3.231
259	Maximum Non-Detect	0.0415			Maximum Non-Detec	t -3.182
260	Waximan Hon Beleet	0.0410			Waximani Non Betee	0.102
261	Note: Data have multiple DLs - Use of KM Method is recomme	ndod			Number treated as Non-Detec	. 2
262	·	nueu				=
263	For all methods (except KM, DL/2, and ROS Methods),				Number treated as Detected	
264	Observations < Largest ND are treated as NDs				Single DL Non-Detect Percentage	5.66%
265						
266		UCL S	tatistics			
267	Normal Distribution Test with Detected Values On	ly	Log	normal Distri	bution Test with Detected Values	Only
268	Shapiro Wilk Test Statistic	0.707			Shapiro Wilk Test Statistic	0.956
	5% Shapiro Wilk Critical Value	0.947			5% Shapiro Wilk Critical Value	0.947
269	Data not Normal at 5% Significance Level	0.017		Data annear I	Lognormal at 5% Significance Leve	
270	Data not Normal at 0% digninicance Level		'	Jata appear i	Lognormal at 0 % Oignineance Lev	
271	According Manager Blood and an			A	olo a Laura anno I D'atributton	
272	Assuming Normal Distribution			Assur	ming Lognormal Distribution	.1
273	DL/2 Substitution Method				DL/2 Substitution Method	
274	Mean	2.709			Mear	
275	SD	3.928			SE	1.724
276	95% DL/2 (t) UCL	3.613			95% H-Stat (DL/2) UCL	8.161
277						
278	Maximum Likelihood Estimate(MLE) Method				Log ROS Method	1
	Mean	2.571			Mean in Log Scale	
279	SD	4.054			SD in Log Scale	
280					<u> </u>	
281	95% MLE (t) UCL	3.503			Mean in Original Scale	
282	95% MLE (Tiku) UCL	3.436			SD in Original Scale	
283					95% t UCL	
284					95% Percentile Bootstrap UCL	3.604
285					95% BCA Bootstrap UCL	3.692
286						
287	Gamma Distribution Test with Detected Values Or	nly	ı	Data Distribut	tion Test with Detected Values On	ly
288	k star (bias corrected)	0.596		Data appear I	Lognormal at 5% Significance Leve	el
	Theta Star	4.814				
289	nu star	59.62				
290	ind olds	00.02				
291	A.D. Tarak Oktabia	1 005		N.	lammanamatria Otatiatiaa	
292	A-D Test Statistic	1.805		N	Ionparametric Statistics	
293	5% A-D Critical Value	0.804			Kaplan-Meier (KM) Method	
294	K-S Test Statistic	0.804			Mear	
295	5% K-S Critical Value	0.131			SE	3.89
296	Data not Gamma Distributed at 5% Significance Le	vel			SE of Mear	0.54
297					95% KM (t) UCL	3.614
298	Assuming Gamma Distribution				95% KM (z) UCL	3.598
	Gamma ROS Statistics using Extrapolated Data				95% KM (jackknife) UCL	
299	Minimum	1E-12			95% KM (bootstrap t) UCL	
300	·				, , ,	
301	Maximum	15.97			95% KM (BCA) UCL	
302	Mean	2.708		!	95% KM (Percentile Bootstrap) UCL	
303	Median	0.665			95% KM (Chebyshev) UCL	
304	SD	3.929			97.5% KM (Chebyshev) UCL	6.081
305	k star	0.276			99% KM (Chebyshev) UCL	8.081
306	Theta star	9.819				
	Nu star	29.23			Potential UCLs to Use	1
307	AppChi2	17.89			97.5% KM (Chebyshev) UCL	6.081
308	95% Gamma Approximate UCL	4.425			2.2.2 (332)51131) 301	+ 3.30 1
309	95% Adjusted Gamma UCL	4.423				-
310	-	4.48/				
311	Note: DL/2 is not a recommended method.		1		T T	
312						
313	Note: Suggestions regarding the selection of a 95%	=		-	• • •	
314	These recommendations are based upon the result	ts of the sim	nulation stud	ies summariz	ed in Singh, Maichle, and Lee (20	J6).
315	For additional insight	t, the user n	nay want to	consult a stat	istician.	
J 10						

	Α		В	С			D	Е		F	G	Н	I		J	K	L
316																	
317	c5n_eu1_	_mer	cury														
318																	
319											l Statistics						
320					Numb	per of '	Valid C	bservat	ions	12			Num	ber of	Distinct C	Observation	5 11
321																	
322				Ra	aw St	tatistic	cs						Log-transf				T = ==
323										0.038						of Log Data	
324								Maxin						ľ		of Log Data	
325										1.064						n of log Data O of log Data	
326								ivie		0.856					SL	J of log Data	1.02
327						Coo	fficient	of Varia									
328							molerit			-0.0451							
329								OKEWI	1033	-0.0431							
330										Relevant I	JCL Statistics	<u> </u>					
331				Normal	l Dist	ributio	n Test	h		- Tolovani c			Lognormal	Distril	bution Te	est	
332				11011114				est Stat	istic	0.865						Test Statistic	0.792
333								ritical V								Critical Value	
334		С	ata appe	ear Norn								Data not	Lognorma			ance Level	
335 336			•••														
337			As	ssuming	Norr	mal Di	stribut	ion				As	suming Log	gnorma	al Distrib	ution	
338								dent's-t l	JCL	1.507						95% H-UCI	14.43
339			95%	UCLs ((Adjus	sted fo	or Ske	wness)					95	% Che	ebyshev (MVUE) UCI	5.031
340				95% Ad	ljuste	d-CLT	UCL (Chen-19	995)	1.467			97.5	% Che	ebyshev (MVUE) UCI	6.535
341				95% M	lodifie	ed-t U0	CL (Joh	nnson-19	978)	1.507			99	% Che	ebyshev (MVUE) UCI	9.489
342																	-
343				Gamma	Dist	ributio	on Tes	t					Data	Distrib	oution		
344						k st	tar (bia	s correc	ted)	0.664		Data app	ear Norma	l at 5%	6 Signific	ance Level	
345								Theta	Star	1.602							
346								ILE of M									
347					ML	LE of S	Standa	rd Devia	ation	1.306							
348										15.94							
349								e Value (,				Nonparar	netric			
350				,				Significa								5% CLT UCI	
351					Ad	djusted	I Chi S	quare V	alue	7.07						ckknife UCI	
352													95			otstrap UCI	
353								est Stat								tstrap-t UCI	
354								ritical V					050			otstrap UCI	
355			L					est Stat					95			otstrap UCI	
356)ete	not Gam	Kolmogo									05%			an, Sd) UCI	
357		Jala	not Gaill	וופוט ביייו	. ibult	ou at t	, no oly	imicalic	o Le	701					•	an, Sd) UCI	
358			Δα	suming	Gam	ma D	istrihu	tion							,	an, Sd) UCI	
359			, 10					Gamma l	JCI	2.141			3070	J.100y	331(1110		
360								Gamma (
361						- /,											
362				Poter	ntial L	JCL to	Use							Use	95% Stu	dent's-t UCI	1.507
363																	
364	N	ote:	Suggesti	ons rea	ardin	g the	selecti	on of a	95%	UCL are p	rovided to he	lp the use	r to select t	he mo	st appro	priate 95%	UCL.
365											simulation stu					-	
366											nsight, the us						-
367					J •		J (-	-,- •				,					

	Α		В	С			D	Е		F	G	Н		I		J		K		L
368	-F																			
369	c5n_eu	ı_tota	pcbs																	
370										Conorol	Statistics									
371				N	lumh	oor of	Valid C	Observation	one		Statistics			Numb	or o	of Distinct (hear	vations	12	
372				IN	NUITIL	Jei oi	valiu C	Diservation	ons	12				Numb	ei c	DISTINCT C	Jusei	valions	12	
373				Pay	w Si	tatisti	ce						10	a_transfo	rme	ed Statistic				
374				ı va	W 0	lalioli		Minim	num	0.0565				y-transio	,,,,,,	Minimum		na Data	-2 87	
375								Maxim								Maximum				
376										3.829								ng Data		
377										1.205								ng Data		
378 379										6.477										
380						Co	efficient	of Variat	tion	1.692										
381								Skewn	ess	2.591										-
382																				
383									I	Relevant U	CL Statistics	3								
384				Normal	Dist	ributi	on Tes	t					Log	gnormal [Dist	ribution Te	est			
385					S	hapir	o Wilk 1	Test Stati	stic	0.638					Sha	apiro Wilk	Test S	Statistic	0.923	,
386					SI	hapiro	Wilk C	Critical Va	alue	0.859				;	Sha	apiro Wilk (Critica	l Value	0.859	i
387			Data no	t Normal	at 5	% Si	gnifica	nce Leve	el			Data appe	ar I	ognorma	al at	t 5% Signi	ficand	ce Leve	el	-
388																				
389			A:	ssuming	Norr	mal D	istribut	ion				As	ssur	ming Logr	nori	mal Distrib	ution			
390		95% Student's 95% UCLs (Adjusted for Skewnes								7.186								H-UCL		
391			95%					·-								hebyshev (•	•		
392				95% Adj				•	´							hebyshev (•			
393				95% Mc	odifie	ed-t U	CL (Jol	nnson-19	78)	7.419				99%	6 CI	nebyshev (MVUI	E) UCL	37.36	1
394																				
395				Gamma	Dist				١ ١	0.20	Dete		١			ribution) le		Laural	
396						KS	star (bia	s correct Theta S	•		Data	appear G	aam	ma Distri	Dute	ed at 5% s	igniti	cance	Levei	
397								I neta s ILE of Me												
398					N/II	I E of		rd Deviat												
399					IVII	LL UI	Stariua			9.356										
400				Annrox	imat	e Chi	Square	Value (.					N	onnaram	etri	c Statistic				
401								Significa						Опрагат				_T UCL	6 904	
402					•			quare Va								95% Ja				
403						,		1						95%	% S	tandard Bo				
404 405				An	nders	son-D	arling 1	Test Stati	stic	0.354						95% Boo	tstrar	-t UCL	14.29)
406				Anders	son-l	Darlir	ng 5% C	Critical Va	alue	0.796					959	% Hall's Bo	otstra	ap UCL	19.26	;
407				Kolmo	ogoro	ov-Sr	nirnov 1	Test Stati	stic	0.172				95%	δ Ре	ercentile Bo	otstra	ap UCL	7.044	
408			ŀ	Kolmogoro	ov-S	mirno	ov 5% C	Critical Va	alue	0.26					95	5% BCA Bo	otstra	ap UCL	8.79	
409	D	ata ap	pear Ga	mma Dis	stribu	uted a	at 5% S	ignifican	ice L	_evel				95% C	Chel	byshev(Me	an, S	d) UCL	11.98	,
410														97.5% C	Chel	byshev(Me	an, S	d) UCL	15.5	
411			As	ssuming (Gam	ıma C	Distribu	tion						99% C	Chel	byshev(Me	an, S	d) UCL	22.43	j
412				95				Gamma L												
413					959	% Adj	usted (Gamma L	JCL	11.87										
414																				
415				Potent	tial (JCL t	o Use							Use 9	95%	Adjusted (Gamn	na UCL	11.87	
416																				
417										=	rovided to he	=					-			
418		The	se recor					-			imulation stu				_	_		ci (200	2)	
419				and Sin	igh a	and S	ingh (2	:003). F	or a	dditional in	sight, the us	er may wa	nt t	o consult	tas	statistician	•			
420																				

	A B C	D E	F	GIHIIJIKI	1
1	A D O	General UCL Statistic			
2	User Selected Options	_			
3	From File	WorkSheet.wst			
<u>4</u> 5	Full Precision Confidence Coefficient	OFF 95%			
	Number of Bootstrap Operations	2000			
7		1-000			
8					
	Total PCBs-EU1				
10 11			General S	totistics	
12		Number of Valid Data	15	Number of Detected Data	10
13	Number of	Distinct Detected Data	10	Number of Non-Detect Data	5
14				Percent Non-Detects	33.33%
15 16	Dow St	tatistics		Log transfermed Chatlatics	
17	Raw S	Minimum Detected	0.11	Log-transformed Statistics Minimum Detected	-2.212
18		Maximum Detected	126.5	Maximum Detected	4.84
19		Mean of Detected	32.02	Mean of Detected	1.084
20		SD of Detected	50.85	SD of Detected	2.736
21 22		Minimum Non-Detect Maximum Non-Detect	0.0415	Minimum Non-Detect Maximum Non-Detect	-3.182 -3.124
23		Maximum Non-Detect	0.044	iviaxiiTiuTT NOTI-Detect	-5.124
24	Note: Data have multiple DLs - Us		nmended	Number treated as Non-Detect	5
25	For all methods (except KM, DL/2,			Number treated as Detected	10
26	Observations < Largest ND are tre	eated as NDs		Single DL Non-Detect Percentage	33.33%
27 28			UCL Sta	itistics	
29	Normal Distribution Test v	with Detected Values C		Lognormal Distribution Test with Detected Values	Only
30	Sha	apiro Wilk Test Statistic	0.673	Shapiro Wilk Test Statistic	0.889
31		apiro Wilk Critical Value	0.842	5% Shapiro Wilk Critical Value	0.842
32	Data not Normal at 5	5% Significance Level		Data appear Lognormal at 5% Significance Lev	el
33	Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
35		L/2 Substitution Method		DL/2 Substitution Method	
36		Mean	21.35	Mean	-0.562
37		SD	43.66	SD	3.258
38		95% DL/2 (t) UCL	41.21	95% H-Stat (DL/2) UCL	55229
39 40	Maximum Likelihood	Estimate(MLE) Method		Log ROS Method	
41	Maximum Emolinosa	Mean	7.366	Mean in Log Scale	-1.169
42		SD	55.82	SD in Log Scale	3.98
43		95% MLE (t) UCL	32.75	Mean in Original Scale	21.35
44 45		95% MLE (Tiku) UCL	34.41	SD in Original Scale 95% t UCL	43.66 41.2
46				95% Percentile Bootstrap UCL	40.12
47				95% BCA Bootstrap UCL	44.9
48				95% H UCL	7948039
49	Commo Diotribution Toot	with Detected Volume () mb.	Data Distribution Test with Datastad Values On	h.
50 51	Gamma Distribution Test	k star (bias corrected)	0.27	Data Distribution Test with Detected Values On Data appear Gamma Distributed at 5% Significance	
52		Theta Star	118.4	_ all appear during blothbulou at 070 digitillodilloe	
53		nu star	5.406		
54		A.D.T. (C.)	: -		
55 56		A-D Test Statistic 5% A-D Critical Value	0.749 0.817	Nonparametric Statistics Kaplan-Meier (KM) Method	
57		K-S Test Statistic	0.817	Kapian-Meier (KM) Method Mean	21.38
58		5% K-S Critical Value	0.288	SD	42.16
59	Data appear Gamma Distribu	uted at 5% Significance	Level	SE of Mean	11.48
60	A 1 A	ne Dictelle de		95% KM (t) UCL	41.59
61 62	Assuming Gam Gamma ROS Statistics u	nma Distribution		95% KM (z) UCL 95% KM (jackknife) UCL	40.26 41.21
63	Ganiina NOO SidiisiiCS U	Minimum	0.000001	95% KM (bootstrap t) UCL	60.57
64		Maximum	126.5	95% KM (BCA) UCL	42.49
65		Mean	21.34	95% KM (Percentile Bootstrap) UCL	40.31
66		Median	0.257	95% KM (Chebyshev) UCL	71.4
67 68		SD k star	43.66 0.136	97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	93.05 135.6
69		Theta star	156.5	33 % (Alvi (Chebyshev) OCL	133.0
70		Nu star	4.091	Potential UCLs to Use	
71		AppChi2	0.758	95% KM (BCA) UCL	42.49
72	95% Gamma Approximate U		115.2		
73 74	95% Adjusted Gamma l		144.8		
75	110.0. DELZ 13 HOL & TECOHIHIEHUE	a mound.			
76				vided to help the user to select the most appropriate 95	
77	These recommendations are			lation studies summarized in Singh, Maichle, and Lee (2006).
78		For additional insight,	the user ma	ay want to consult a statistician.	

	A B C D E	F I	G H I J K	
79 Tc	otal PCBs-EU2	<u>' 1</u>	9 11 1 1 0 1 11	
80				
81		General S	Statistics	
82	Number of Valid Data	45	Number of Detected Data	44
83	Number of Distinct Detected Data	43	Number of Non-Detect Data	1
84			Percent Non-Detects	2.22%
85	D. Order		Landau Constitution	
86	Raw Statistics	0.0715	Log-transformed Statistics	2.020
87 88	Minimum Detected Maximum Detected	0.0715 89.5	Minimum Detected Maximum Detected	-2.638 4.494
89	Mean of Detected	11.34	Mean of Detected	1.555
90	SD of Detected	17.37	SD of Detected	1.495
91	Minimum Non-Detect	0.039	Minimum Non-Detect	-3.244
92	Maximum Non-Detect	0.039	Maximum Non-Detect	-3.244
93		0.000		
94				
95		UCL St	atistics	
96	Normal Distribution Test with Detected Values C	nly	Lognormal Distribution Test with Detected Values C	nly
97	Shapiro Wilk Test Statistic	0.616	Shapiro Wilk Test Statistic	0.959
98	5% Shapiro Wilk Critical Value	0.944	5% Shapiro Wilk Critical Value	0.944
99	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Leve	I
100				
101	Assuming Normal Distribution		Assuming Lognormal Distribution	
102	DL/2 Substitution Method		DL/2 Substitution Method	
103	Mean	11.09	Mean	1.433
104	SD	17.25	SD	1.689
105	95% DL/2 (t) UCL	15.41	95% H-Stat (DL/2) UCL	39.91
106				
107	Maximum Likelihood Estimate(MLE) Method	10.05	Log ROS Method	4 474
108	Mean	10.85	Mean in Log Scale	1.471
109 110	SD 059/ MLF (4) LIGH	17.33 15.19	SD in Log Scale Mean in Original Scale	1.581 11.09
111	95% MLE (t) UCL 95% MLE (Tiku) UCL	14.81	SD in Original Scale	17.25
112	95% MILE (TIKU) OCL	14.01	95% t UCL	15.41
113			95% Percentile Bootstrap UCL	15.41
114			95% BCA Bootstrap UCL	16.9
115			95% H UCL	31.79
116			00 % 11 002	01.70
117	Gamma Distribution Test with Detected Values C	Only	Data Distribution Test with Detected Values Only	
118	k star (bias corrected)	0.661	Data appear Lognormal at 5% Significance Leve	
119	Theta Star	17.16		
120	nu star	58.14		
121				
122	A-D Test Statistic	0.824	Nonparametric Statistics	
123	5% A-D Critical Value	0.795	Kaplan-Meier (KM) Method	
124	K-S Test Statistic	0.795	Mean	11.09
125	5% K-S Critical Value	0.139	SD	17.06
126	Data not Gamma Distributed at 5% Significance L	.evel	SE of Mean	2.572
127 128	Acquiring Commo Distribution		95% KM (t) UCL 95% KM (z) UCL	15.41
128	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	15.32 15.41
130	Gamma ROS Statistics using Extrapolated Data Minimum	0.000001	95% KM (Jackknife) UCL 95% KM (bootstrap t) UCL	17.88
131	Minimum Maximum	89.5	95% KM (BOOISTIAP I) UCL	15.65
132	Mean	11.09	95% KM (Percentile Bootstrap) UCL	15.33
133	Median	6.11	95% KM (Chebyshev) UCL	22.3
134	SD	17.25	97.5% KM (Chebyshev) UCL	27.15
135	k star	0.508	99% KM (Chebyshev) UCL	36.68
136	Theta star	21.84	22.2.2.2.4.(2.122)2.1.2.7 2.22	
137	Nu star	45.69	Potential UCLs to Use	
138	AppChi2	31.19	95% KM (Chebyshev) UCL	22.3
139	95% Gamma Approximate UCL (Use when n >= 40)	16.25	()	
140	95% Adjusted Gamma UCL (Use when n < 40)	16.46		-
	ote: DL/2 is not a recommended method.		<u> </u>	-
142				
143			vided to help the user to select the most appropriate 95%	
144			ulation studies summarized in Singh, Maichle, and Lee (2	006).
145	For additional insight,	the user m	ay want to consult a statistician.	

	A B C D E	F	G	Н	I		.1	T	K	ı		
146	Total PCBs-EU3									_		
147												
148		General	Statistics									
149	Number of Valid Observations				Numbe	r of Dis	tinct C)bserv	ations	12		
150	Transport of Traile Observations	1-			TTUTTIO	01 010	riniot C	- 50011	41.0110			
151	Raw Statistics		Log-transformed Statistics									
152	Minimum	0 165	Minimum of Log Data -1.802									
153	Maximum						ximum					
154	Mean					ivia		n of log				
155	Geometric Mean							of log				
156	Median							01 108	, Data	1.000		
157		13.87						-				
158	Std. Error of Mean											
159	Coefficient of Variation											
160	Skewness											
161	ckomioso	1.001										
162	F	Relevant U	CL Statistics	<u> </u>								
163	Normal Distribution Test				gnormal l	Distrib	ution 7	est				
164	Shapiro Wilk Test Statistic	0.732				hapiro			atistic	0.927		
165	Shapiro Wilk Critical Value					hapiro						
166	Data not Normal at 5% Significance Level		Da	ta appear								
167												
168	Assuming Normal Distribution			Assui	ming Log	norma	l Distri	butior	1			
169	95% Student's-t UCL	16.76	95% H-UCL 342.2									
170	95% UCLs (Adjusted for Skewness)				95%	Cheby						
171	95% Adjusted-CLT UCL (Chen-1995)	18.23			97.5%							
172	95% Modified-t UCL (Johnson-1978)					Cheby						
173		1							,			
174	Gamma Distribution Test				Data [Distribu	ution					
175	k star (bias corrected)	0.409	Data a	pear Gam	ma Distri	buted	at 5%	Signif	icance	e Level		
176	Theta Star	23.38		•								
177	MLE of Mean	9.57										
178	MLE of Standard Deviation	14.96										
179	nu star	9.823										
180	Approximate Chi Square Value (.05)	3.831		N	lonparam	etric S	Statisti	cs				
181	Adjusted Level of Significance							% CL				
182	Adjusted Chi Square Value	3.281					5% Ja					
183					95%	Standa						
184	Anderson-Darling Test Statistic	0.39			· ·		% Boo					
185	Anderson-Darling 5% Critical Value	0.79				5% Ha						
186	Kolmogorov-Smirnov Test Statistic					Percen						
187	Kolmogorov-Smirnov 5% Critical Value					95% B						
188	Data appear Gamma Distributed at 5% Significance	Level			95% Ch							
189					97.5% Ch							
190	Assuming Gamma Distribution	T			99% Ch	ebysh	ev(Mea	an, Sd) UCL	49.42		
191	95% Approximate Gamma UCL (Use when n >= 40)											
192	95% Adjusted Gamma UCL (Use when n < 40)	28.65										
193												
194	Potential UCL to Use			ı	Use 95	% Adju	isted C	<u>amma</u>	a UCL	28.65		
195												
196	Note: Suggestions regarding the selection of a 95%											
197	These recommendations are based upon the resu								laci (2002)		
198	and Singh and Singh (2003). For a	dditional in	sight, the us	er may war	nt to cons	ult a s	tatistic	cian.				

	ABCDE	F	G H I J K	1
199	Total PCBs-EU4	·		_
200				
201	Novebour of Volid Date	General		
202	Number of Valid Data Number of Distinct Detected Data	14 7	Number of Detected Data Number of Non-Detect Data	7
203	Number of distinct detected data	,	Percent Non-Detects	50.00%
205			1 Groom Non Botosto	00.0070
206	Raw Statistics		Log-transformed Statistics	
207	Minimum Detected	0.054	Minimum Detected	-2.919
208	Maximum Detected	4.63	Maximum Detected	1.533
209	Mean of Detected SD of Detected	1.885 1.809	Mean of Detected SD of Detected	-0.149 1.691
211	Minimum Non-Detect	0.0405	Minimum Non-Detect	-3.206
212	Maximum Non-Detect	0.047	Maximum Non-Detect	-3.058
213				
	Note: Data have multiple DLs - Use of KM Method is recor	mmended	Number treated as Non-Detect	7
	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	7
216	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	50.00%
217	Mouning, Thous	b. 7 I	Datastad Valuas in this data	
218 219			Detected Values in this data pootstrap may be performed on this data set	
220			reliable enough to draw conclusions	
221	and recurring earleand and the	may not be	Tollable elleagif to aran collegeles	
222	It is recommended to have 10-15 or mo	ore distinct	observations for accurate and meaningful results.	
223				
224				
225	Name of Distribution Test with Date at all Values C	UCL St		-1
226 227	Normal Distribution Test with Detected Values C Shapiro Wilk Test Statistic	עוחק 0.898	Lognormal Distribution Test with Detected Values On Shapiro Wilk Test Statistic	0.895
228	5% Shapiro Wilk Critical Value	0.803	5% Shapiro Wilk Critical Value	0.803
229	Data appear Normal at 5% Significance Leve		Data appear Lognormal at 5% Significance Level	0.000
230		-		
231	Assuming Normal Distribution		Assuming Lognormal Distribution	
232	DL/2 Substitution Method		DL/2 Substitution Method	
233	Mean	0.953	Mean	-1.988
234	SD OF (CRITICAL HOLE)	1.564		2.227
235 236	95% DL/2 (t) UCL	1.693	95% H-Stat (DL/2) UCL	39.1
237	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
238	MLE yields a negative mean	14/71	Mean in Log Scale	-2.408
239	,		SD in Log Scale	2.631
240			Mean in Original Scale	0.948
241			SD in Original Scale	1.567
242			95% t UCL	1.689
243 244			95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	1.635 1.846
245			95% H-UCL	224.1
246			307011 002	227.1
247	Gamma Distribution Test with Detected Values C	Only	Data Distribution Test with Detected Values Only	
248	k star (bias corrected)	0.531	Data appear Normal at 5% Significance Level	
249	Theta Star	3.548		
250	nu star	7.437		
251 252	A-D Test Statistic	0.273	Nonparametric Statistics	
253	5% A-D Test Statistic	0.273	Kaplan-Meier (KM) Method	
254	K-S Test Statistic	0.736	Mean	0.969
255	5% K-S Critical Value	0.323	SD	1.497
256	Data appear Gamma Distributed at 5% Significance		SE of Mean	0.432
257			95% KM (t) UCL	1.735
258	Assuming Gamma Distribution		95% KM (z) UCL	1.68
259	Gamma ROS Statistics using Extrapolated Data Minimum	0.000001	95% KM (jackknife) UCL	1.677 2.097
			95% KM (bootstrap t) UCL 95% KM (BCA) UCL	2.116
260		21 h 3		1.875
260 261	Maximum	4.63 0.942	95% KM (Percentile Bootstrap) LICI	
260		0.942 0.027	95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	2.853
260 261 262 263 264	Maximum Mean	0.942 0.027 1.571	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	2.853 3.668
260 261 262 263 264 265	Maximum Mean Median SD k star	0.942 0.027 1.571 0.138	95% KM (Chebyshev) UCL	2.853
260 261 262 263 264 265 266	Maximum Mean Median SD k star Theta star	0.942 0.027 1.571 0.138 6.823	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	2.853 3.668
260 261 262 263 264 265 266 267	Maximum Mean Median SD k star Theta star Nu star	0.942 0.027 1.571 0.138 6.823 3.867	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCLs to Use	2.853 3.668 5.269
260 261 262 263 264 265 266 267 268	Maximum Mean Median SD k star Theta star Nu star AppChi2	0.942 0.027 1.571 0.138 6.823 3.867 0.67	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCLs to Use 95% KM (t) UCL	2.853 3.668 5.269 1.735
260 261 262 263 264 265 266 267 268 269	Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40)	0.942 0.027 1.571 0.138 6.823 3.867 0.67 5.44	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCLs to Use	2.853 3.668 5.269
260 261 262 263 264 265 266 267 268 269 270	Maximum Mean Median SD k star Theta star Nu star AppChi2	0.942 0.027 1.571 0.138 6.823 3.867 0.67	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCLs to Use 95% KM (t) UCL	2.853 3.668 5.269 1.735
260 261 262 263 264 265 266 267 268 269	Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40) 95% Adjusted Gamma UCL (Use when n < 40) Note: DL/2 is not a recommended method.	0.942 0.027 1.571 0.138 6.823 3.867 0.67 5.44 7.022	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCLs to Use 95% KM (t) UCL 95% KM (Percentile Bootstrap) UCL	2.853 3.668 5.269 1.735 1.875
260 261 262 263 264 265 266 267 268 269 270 271 272 273	Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40) 95% Adjusted Gamma UCL (Use when n < 40) Note: DL/2 is not a recommended method.	0.942 0.027 1.571 0.138 6.823 3.867 0.67 5.44 7.022	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCLs to Use 95% KM (t) UCL 95% KM (Percentile Bootstrap) UCL ovided to help the user to select the most appropriate 95%	2.853 3.668 5.269 1.735 1.875
260 261 262 263 264 265 266 267 268 269 270 271 272	Maximum Mean Median SD k star Theta star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40) 95% Adjusted Gamma UCL (Use when n < 40) Note: DL/2 is not a recommended method. Note: Suggestions regarding the selection of a 95% These recommendations are based upon the results	0.942 0.027 1.571 0.138 6.823 3.867 0.67 5.44 7.022	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCLs to Use 95% KM (t) UCL 95% KM (Percentile Bootstrap) UCL	2.853 3.668 5.269 1.735 1.875

	A B C D E	F	G H I J K	L
276	Total PCBs-EU5		G 11 1 0 1 K	
277				
278		General	Statistics	
279	Number of Valid Data	22	Number of Detected Data	18
280	Number of Distinct Detected Data	18	Number of Non-Detect Data	4
281			Percent Non-Detects	18.18%
282	- - - - - - - - - -			
283	Raw Statistics	0.051	Log-transformed Statistics Minimum Detected	0.070
284 285	Minimum Detected Maximum Detected	0.051 16.25	Maximum Detected Maximum Detected	-2.976 2.788
286	Mean of Detected	2.231	Mean of Detected	-0.483
287	SD of Detected	3.992	SD of Detected	1.733
288	Minimum Non-Detect	0.0395	Minimum Non-Detect	-3.231
289	Maximum Non-Detect	0.0425	Maximum Non-Detect	-3.158
290				
291	Note: Data have multiple DLs - Use of KM Method is recor	mmended	Number treated as Non-Detect	4
292	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	18
293	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	18.18%
294		1101.01	. 15.15	
295	Nowal Distribution Test with Detected Values C	UCL St		Only
296 297	Normal Distribution Test with Detected Values C Shapiro Wilk Test Statistic	0.595	Lognormal Distribution Test with Detected Values Shapiro Wilk Test Statistic	0.953
298	5% Shapiro Wilk Critical Value	0.595	5% Shapiro Wilk Critical Value	0.953
299	Data not Normal at 5% Significance Level	0.037	Data appear Lognormal at 5% Significance Leve	
300	Data not normal at 0 % organication 20 to		Data appour regiment of organical section	
301	Assuming Normal Distribution		Assuming Lognormal Distribution	
302	DL/2 Substitution Method		DL/2 Substitution Method	
303	Mean	1.829	Mean	-1.103
304	SD	3.696	SD	2.06
305	95% DL/2 (t) UCL	3.185	95% H-Stat (DL/2) UCL	19.02
306				
307	Maximum Likelihood Estimate(MLE) Method	1 01	Log ROS Method	1 000
308 309	Mean SD	1.31 4.131	Mean in Log Scale SD in Log Scale	-1.208 2.216
310	95% MLE (t) UCL	2.825	Mean in Original Scale	1.827
311	95% MLE (t) OGE	2.779	SD in Original Scale	3.697
312	30% INEE (Tita) 33E	2.770	95% t UCL	3.183
313			95% Percentile Bootstrap UCL	3.153
314			95% BCA Bootstrap UCL	3.917
315			95% H UCL	31.6
316				
317	Gamma Distribution Test with Detected Values C		Data Distribution Test with Detected Values On	
318	k star (bias corrected)	0.449	Data appear Gamma Distributed at 5% Significance	Level
319	Theta Star	4.963		
320 321	nu star	16.18		
322	A-D Test Statistic	0.667	Nonparametric Statistics	
323	5% A-D Critical Value	0.801	Kaplan-Meier (KM) Method	
324	K-S Test Statistic	0.801	Mean	1.834
325	5% K-S Critical Value	0.215	SD	3.608
326	Data appear Gamma Distributed at 5% Significance	Level	SE of Mean	0.792
327			95% KM (t) UCL	3.196
328	Assuming Gamma Distribution		95% KM (z) UCL	3.136
329	Gamma ROS Statistics using Extrapolated Data	0.000001	95% KM (jackknife) UCL	3.188
330	Minimum Maximum	0.000001	95% KM (bootstrap t) UCL	5.28
331 332	Maximum Mean	16.25 1.825	95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	3.254 3.223
333	Median	0.213	95% KM (Chebyshev) UCL	5.285
334	SD	3.698	97.5% KM (Chebyshev) UCL	6.778
335	k star	0.21	99% KM (Chebyshev) UCL	9.71
336	Theta star	8.679	())	
337	Nu star	9.252	Potential UCLs to Use	
338	AppChi2	3.48	95% KM (Chebyshev) UCL	5.285
339	95% Gamma Approximate UCL (Use when n >= 40)	4.852		
340	95% Adjusted Gamma UCL (Use when n < 40)	5.245		
341	Note: DL/2 is not a recommended method.			
342	Note: Cuggestions regarding the selection of - 050/1	UOL ara ara	evided to help the uper to select the most engaged to 20'	2/ LICI
343 344			ovided to help the user to select the most appropriate 95° ulation studies summarized in Singh, Maichle, and Lee (
345			nay want to consult a statistician.	
<u> </u>	7 or additional moight	, 4001 11	ay to contain a diametrialin	

	A B C D E	F I	G H I J K	
346	Total PCBs-EU13	' '	G III I J K I	L
347				
348		General S	Statistics	
349	Number of Valid Data	14	Number of Detected Data	7
350	Number of Distinct Detected Data	7	Number of Non-Detect Data	7
351 352			Percent Non-Detects	50.00%
353	Raw Statistics		Log-transformed Statistics	
354	Minimum Detected	0.0435	Minimum Detected	-3.135
355	Maximum Detected	0.246	Maximum Detected	-1.404
356	Mean of Detected	0.131	Mean of Detected	-2.221
357	SD of Detected	0.0796	SD of Detected	0.704
358	Minimum Non-Detect	0.0355	Minimum Non-Detect	-3.338
359	Maximum Non-Detect	0.039	Maximum Non-Detect	-3.244
360 361	Note: Data have multiple DLs - Use of KM Method is recor	nmandad	Number treated as Non-Detect	7
362	For all methods (except KM, DL/2, and ROS Methods),	imenaea	Number treated as Non-Detect Number treated as Detected	7
363	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	50.00%
364	24.9001.12 4.0 1.04.04 40 1.20		5g.s 22 115 2 51551 1 51551ags	00.0070
365	Warning: There	are only 7 D	Detected Values in this data	
366			ootstrap may be performed on this data set	
367	the resulting calculations	may not be	reliable enough to draw conclusions	
368				
369	It is recommended to have 10-15 or mo	ore distinct (observations for accurate and meaningful results.	
370 371				
372		UCL Sta	atistics	
373	Normal Distribution Test with Detected Values C		Lognormal Distribution Test with Detected Values O	nlv
374	Shapiro Wilk Test Statistic	0.919	Shapiro Wilk Test Statistic	0.899
375	5% Shapiro Wilk Critical Value	0.803	5% Shapiro Wilk Critical Value	0.803
376	Data appear Normal at 5% Significance Leve		Data appear Lognormal at 5% Significance Level	
377				
378	Assuming Normal Distribution		Assuming Lognormal Distribution	
379	DL/2 Substitution Method	0.0740	DL/2 Substitution Method	2 105
380 381	Mean SD	0.0749 0.0797	Mean SD	-3.105 1.034
382	95% DL/2 (t) UCL	0.0797	95% H-Stat (DL/2) UCL	0.173
383	33 % DL/2 (i) OCL	0.113	33% TI-Stat (BE/Z) GGE	0.173
384	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
385	Mean	0.0375	Mean in Log Scale	-3.206
386		0.119	SD in Log Scale	1.147
387	95% MLE (t) UCL	0.0937	Mean in Original Scale	0.0735
388	95% MLE (Tiku) UCL	0.107	SD in Original Scale	0.0809
389			95% t UCL	0.112
390 391			95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	0.109 0.115
392			95% BCA Boolstrap GCL	0.113
393			33 % 11 662	0.200
394	Gamma Distribution Test with Detected Values C	Only	Data Distribution Test with Detected Values Only	,
395	k star (bias corrected)	1.678	Data appear Normal at 5% Significance Level	
396	Theta Star	0.0783		
397	nu star	23.49		
398		0.000	N	
399	A-D Test Statistic	0.332 0.713	Nonparametric Statistics Kaplan Major (KM) Method	
400 401	5% A-D Critical Value K-S Test Statistic	0.713	Kaplan-Meier (KM) Method Mean	0.0874
401	5% K-S Critical Value	0.713	SD	0.0682
			SE of Mean	0.0002
403	Data appear Gamma Distributed at 5% Significance		95% KM (t) UCL	0.122
403 404	Data appear Gamma Distributed at 5% Significance			
404 405	Assuming Gamma Distribution		95% KM (z) UCL	
404 405 406	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	0.121
404 405 406 407	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum	0.000001	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	0.121 0.132
404 405 406 407 408	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum	0.246	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL	0.121 0.132 0.137
404 405 406 407 408 409	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean	0.246 0.0657	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.121 0.132 0.137 0.132
404 405 406 407 408 409 410	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median	0.246 0.0657 0.0218	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.121 0.132 0.137 0.132 0.173
404 405 406 407 408 409 410 411	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD	0.246 0.0657 0.0218 0.087	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.132 0.173 0.21
404 405 406 407 408 409 410 411 412	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median	0.246 0.0657 0.0218	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.121 0.132 0.137 0.132 0.173 0.21
404 405 406 407 408 409 410 411	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star	0.246 0.0657 0.0218 0.087 0.162	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.121 0.132 0.137 0.132 0.173 0.21
404 405 406 407 408 409 410 411 412 413	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star AppChi2	0.246 0.0657 0.0218 0.087 0.162 0.405 4.54 0.946	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.121 0.132 0.137 0.132 0.173 0.21 0.283
404 405 406 407 408 409 410 411 412 413 414 415 416	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40)	0.246 0.0657 0.0218 0.087 0.162 0.405 4.54 0.946 0.315	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.121 0.132 0.137 0.132 0.173 0.21 0.283
404 405 406 407 408 409 410 411 412 413 414 415 416 417	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40) 95% Adjusted Gamma UCL (Use when n < 40)	0.246 0.0657 0.0218 0.087 0.162 0.405 4.54 0.946	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.121 0.132 0.137 0.132 0.173 0.21 0.283
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40) 95% Adjusted Gamma UCL (Use when n < 40)	0.246 0.0657 0.0218 0.087 0.162 0.405 4.54 0.946 0.315	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.121 0.132 0.137 0.132 0.173 0.21 0.283
404 405 406 407 408 410 411 412 413 414 415 416 417 418	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40) 95% Adjusted Gamma UCL (Use when n < 40) Note: DL/2 is not a recommended method.	0.246 0.0657 0.0218 0.087 0.162 0.405 4.54 0.946 0.315 0.397	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCLs to Use 95% KM (Percentile Bootstrap) UCL	0.121 0.132 0.137 0.132 0.173 0.21 0.283 0.122 0.132
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40) 95% Adjusted Gamma UCL (Use when n < 40) Note: DL/2 is not a recommended method.	0.246 0.0657 0.0218 0.087 0.162 0.405 4.54 0.946 0.315 0.397	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.121 0.132 0.137 0.132 0.173 0.21 0.283 0.122 0.132
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419	Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40) 95% Adjusted Gamma UCL (Use when n < 40) Note: DL/2 is not a recommended method.	0.246 0.0657 0.0218 0.087 0.162 0.405 4.54 0.946 0.315 0.397	95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCLs to Use 95% KM (Percentile Bootstrap) UCL	0.121 0.132 0.137 0.132 0.173 0.21 0.283 0.122 0.132

	A B C D E	F	G H I J K	1
423	Total PCBs-EU14	1 1	d II I I I K	L
424				
425		General S	tatistics	
426	Number of Valid Data	17	Number of Detected Data	7
427	Number of Distinct Detected Data	7	Number of Non-Detect Data	10
428			Percent Non-Detects	58.82%
429	Dow Chatlatian		Las transformed Ctatistics	
430	Raw Statistics Minimum Detected	0.0415	Log-transformed Statistics Minimum Detected	-3.182
432	Maximum Detected	0.0415	Maximum Detected	-1.537
433	Mean of Detected	0.101	Mean of Detected	-2.475
434	SD of Detected	0.0692	SD of Detected	0.624
435	Minimum Non-Detect	0.035	Minimum Non-Detect	-3.352
436	Maximum Non-Detect	0.0405	Maximum Non-Detect	-3.206
437				
438	Note: Data have multiple DLs - Use of KM Method is recon	nmended	Number treated as Non-Detect	10
439	For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	7
440	Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	58.82%
441 442	Warning: Thoro	oro only 7 D	stacted Values in this date	
442			etected Values in this data potstrap may be performed on this data set	
444			reliable enough to draw conclusions	
445	the resulting calculations	iliay flot be	chable chough to draw conclusions	
446	It is recommended to have 10-15 or mo	ore distinct o	bservations for accurate and meaningful results.	
447				
448				
449		UCL Sta		
450	Normal Distribution Test with Detected Values C		Lognormal Distribution Test with Detected Values O	
451	Shapiro Wilk Test Statistic	0.784	Shapiro Wilk Test Statistic	0.881
452	5% Shapiro Wilk Critical Value	0.803	5% Shapiro Wilk Critical Value	0.803
453	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
454 455	Assuming Normal Distribution		Assuming Lognormal Distribution	
456	DL/2 Substitution Method		DL/2 Substitution Method	
457	Mean Mean	0.0527	Mean	-3.35
458	SD	0.0593	SD	0.848
459	95% DL/2 (t) UCL	0.0778	95% H-Stat (DL/2) UCL	0.084
460	()		,	
461	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
462	Mean	0.0137	Mean in Log Scale	-3.617
463		0.0967	SD in Log Scale	1.075
464		0.0546	Mean in Original Scale	0.000
	95% MLE (t) UCL	0.0546		0.0488
465	95% MLE (t) UCL 95% MLE (Tiku) UCL	0.0708	SD in Original Scale	0.0617
465 466			SD in Original Scale 95% t UCL	0.0617 0.0749
465 466 467			SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	0.0617 0.0749 0.0734
465 466 467 468			SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	0.0617 0.0749 0.0734 0.0824
465 466 467 468 469			SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	0.0617 0.0749 0.0734
465 466 467 468		0.0708 Only	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	0.0617 0.0749 0.0734 0.0824 0.101
465 466 467 468 469 470 471 472	95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values C k star (bias corrected)	0.0708 Only 1.779	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL	0.0617 0.0749 0.0734 0.0824 0.101
465 466 467 468 469 470 471 472 473	95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values C	0.0708 Only 1.779 0.0566	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only	0.0617 0.0749 0.0734 0.0824 0.101
465 466 467 468 469 470 471 472 473	95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values C k star (bias corrected)	0.0708 Only 1.779	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only	0.0617 0.0749 0.0734 0.0824 0.101
465 466 467 468 469 470 471 472 473 474	95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star	0.0708 Only 1.779 0.0566 24.91	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L	0.0617 0.0749 0.0734 0.0824 0.101
465 466 467 468 469 470 471 472 473 474 475 476	95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic	0.0708 Only 1.779 0.0566 24.91 0.617	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics	0.0617 0.0749 0.0734 0.0824 0.101
465 466 467 468 469 470 471 472 473 474 475 476	95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value	0.0708 Only 1.779 0.0566 24.91 0.617 0.712	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method	0.0617 0.0749 0.0734 0.0824 0.101
465 466 467 468 469 470 471 472 473 474 475 476 477	95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	0.0708 Only 1.779 0.0566 24.91 0.617 0.712 0.712	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean	0.0617 0.0749 0.0734 0.0824 0.101
465 466 467 468 469 470 471 472 473 474 475 476 477 478	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD	0.0617 0.0749 0.0734 0.0824 0.101 v.evel 0.0659 0.0504
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480	95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean	0.0617 0.0749 0.0734 0.0824 0.101 .evel 0.0659 0.0504 0.0132
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL	0.0617 0.0749 0.0734 0.0824 0.101 .evel 0.0659 0.0504 0.0132 0.0889
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean	0.0617 0.0749 0.0734 0.0824 0.101 .evel 0.0659 0.0504 0.0132
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 0.4000001	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL	0.0617 0.0749 0.0734 0.0824 0.101 .evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 0.4 Level 0.000001 0.215	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL	0.0617 0.0749 0.0734 0.0824 0.101 .evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132 0.0999
465 466 467 468 469 470 471 472 473 474 475 476 477 478 480 481 482 483 484 485	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 Level 0.000001 0.215 0.0415	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL	0.0617 0.0749 0.0734 0.0824 0.101 .evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132 0.0999 0.0946
465 466 467 468 469 470 471 472 473 474 475 476 477 478 480 481 482 483 484 485 486 487	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 Level 0.000001 0.215 0.0415 0.000001	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.0617 0.0749 0.0734 0.0824 0.101 .evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132 0.0999 0.0946
465 466 467 468 469 470 471 472 473 474 475 476 477 478 480 481 482 483 484 485 486 487	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 Level 0.000001 0.215 0.0415 0.00001 0.0664	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.0617 0.0749 0.0734 0.0824 0.101 evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132 0.0999 0.0946 0.123 0.148
465 466 467 468 469 470 471 472 473 474 475 476 477 478 480 481 482 483 484 485 486 487	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 Level 0.000001 0.215 0.0415 0.00001 0.0664 0.147	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.0617 0.0749 0.0734 0.0824 0.101 .evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132 0.0999 0.0946
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 Level 0.000001 0.215 0.0415 0.000001 0.0664 0.147 0.281	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.0617 0.0749 0.0734 0.0824 0.101 evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132 0.0999 0.0946 0.123 0.148
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 Level 0.000001 0.215 0.0415 0.000001 0.0664 0.147 0.281 5.011	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.0617 0.0749 0.0734 0.0824 0.101 evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132 0.0999 0.0946 0.123 0.148 0.197
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star AppChi2	0.0708 Dolly 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 Level 0.000001 0.215 0.0415 0.00001 0.0664 0.147 0.281 5.011 1.157	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.0617 0.0749 0.0734 0.0824 0.101 evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132 0.0999 0.0946 0.123 0.148
465 466 467 468 469 470 471 472 473 474 475 476 477 480 481 482 483 484 485 486 487 488 489 490 491 492 493	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40)	0.0708 Dolly 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 Level 0.000001 0.215 0.0415 0.00001 0.0664 0.147 0.281 5.011 1.157 0.18	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.0617 0.0749 0.0734 0.0824 0.101 evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132 0.0999 0.0946 0.123 0.148 0.197
465 466 467 468 469 470 471 472 473 474 475 476 477 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40) 95% Adjusted Gamma UCL (Use when n < 40)	0.0708 Dolly 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 Level 0.000001 0.215 0.0415 0.00001 0.0664 0.147 0.281 5.011 1.157	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.0617 0.0749 0.0734 0.0824 0.101 evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132 0.0999 0.0946 0.123 0.148 0.197
465 466 467 468 469 470 471 472 473 474 475 476 477 480 481 482 483 484 485 486 487 488 489 490 491 492 493	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40)	0.0708 Dolly 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 Level 0.000001 0.215 0.0415 0.00001 0.0664 0.147 0.281 5.011 1.157 0.18	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.0617 0.0749 0.0734 0.0824 0.101 evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132 0.0999 0.0946 0.123 0.148 0.197
465 466 467 468 469 470 471 472 473 474 475 476 477 480 481 482 483 484 485 486 487 488 489 490 491 492 493	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40) 95% Adjusted Gamma UCL (Use when n < 40) Note: DL/2 is not a recommended method.	0.0708 0.0708 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 Level 0.000001 0.215 0.0415 0.00001 0.0664 0.147 0.281 5.011 1.157 0.18 0.213	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.0617 0.0749 0.0734 0.0824 0.101 evel 0.0659 0.0504 0.0132 0.0889 0.0876 0.0853 0.132 0.0999 0.0946 0.123 0.148 0.197
465 466 467 468 469 470 471 472 473 474 475 476 477 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496	Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star AppChi2 95% Gamma Approximate UCL (Use when n >= 40) 95% Adjusted Gamma UCL (Use when n < 40) Note: DL/2 is not a recommended method.	0.0708 Dolly 1.779 0.0566 24.91 0.617 0.712 0.712 0.314 Level 0.000001 0.215 0.0415 0.00001 0.0664 0.147 0.281 5.011 1.157 0.18 0.213	SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.0617 0.0749 0.0734 0.0824 0.101 0.0659 0.0504 0.0889 0.0876 0.0853 0.132 0.0999 0.0946 0.123 0.148 0.197

	A B C D E F	G H I J K L								
500	Mercury-EU1									
501	•									
502		al Statistics								
503	Number of Valid Observations 15	Number of Distinct Observations 14								
504										
505	Raw Statistics	Log-transformed Statistics								
506	Minimum 0.0305	Minimum of Log Data -3.49								
507	Maximum 18.85	Maximum of Log Data 2.937								
508	Mean 3.3	Mean of log Data -0.886								
509	Median 0.23	SD of log Data 2.259								
510	SD 6.289									
511	Std. Error of Mean 1.624									
512	Coefficient of Variation 1.906									
513 514	Skewness 2.153									
515	Polovent I	UCL Statistics								
516	Normal Distribution Test	Lognormal Distribution Test								
517	Shapiro Wilk Test Statistic 0.574	Shapiro Wilk Test Statistic 0.886								
518	Shapiro Wilk Critical Value 0.881	Shapiro Wilk Critical Value 0.881								
519	Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level								
520	Data not not mand at 0 % organico 2010.	Data appear agricultural at 0 /0 o igninication actor.								
521	Assuming Normal Distribution	Assuming Lognormal Distribution								
522	95% Student's-t UCL 6.159	95% H-UCL 113.2								
523	95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL 13.29								
524	95% Adjusted-CLT UCL (Chen-1995) 6.935	97.5% Chebyshev (MVUE) UCL 17.57								
525	95% Modified-t UCL (Johnson-1978) 6.31	99% Chebyshev (MVUE) UCL 25.96								
526										
527	Gamma Distribution Test	Data Distribution								
528	k star (bias corrected) 0.306	Data appear Lognormal at 5% Significance Level								
529	Theta Star 10.78									
530	MLE of Mean 3.3									
531	MLE of Standard Deviation 5.965									
532	nu star 9.179									
533	Approximate Chi Square Value (.05) 3.435	Nonparametric Statistics								
534	Adjusted Level of Significance 0.0324	95% CLT UCL 5.97								
535	Adjusted Chi Square Value 3.016	95% Jackknife UCL 6.159								
536	Andorses Devline Test Obstictic 4 470	95% Standard Bootstrap UCL 5.874 95% Bootstrap-t UCL 13.15								
537 538	Anderson-Darling Test Statistic 1.176 Anderson-Darling 5% Critical Value 0.83	95% Bootstrap-t UCL 13.15 95% Hall's Bootstrap UCL 19.19								
538	Kolmogorov-Smirnov Test Statistic 0.279	95% Percentile Bootstrap UCL 6.049								
540	Kolmogorov-Smirnov 19st Statistic 0.279 Kolmogorov-Smirnov 5% Critical Value 0.239	95% BCA Bootstrap UCL 6.869								
541	Data not Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL 10.38								
	2 a.a not damina Diotributou di 070 diginilicano E6761	97.5% Chebyshev(Mean, Sd) UCL 13.44								
	· · · · · · · · · · · · · · · · · · ·									
542	Assuming Gamma Distribution									
542 543	Assuming Gamma Distribution 95% Approximate Gamma UCL 8.816	99% Chebyshev(Mean, Sd) UCL 19.46								
542 543 544	Assuming Gamma Distribution 95% Approximate Gamma UCL 8.816 95% Adjusted Gamma UCL 10.04									
542 543	95% Approximate Gamma UCL 8.816									
542 543 544 545	95% Approximate Gamma UCL 8.816									
542 543 544 545 546	95% Approximate Gamma UCL 8.816 95% Adjusted Gamma UCL 10.04 Potential UCL to Use	99% Chebyshev(Mean, Sd) UCL 19.46								
542 543 544 545 546 547	95% Approximate Gamma UCL 8.816 95% Adjusted Gamma UCL 10.04 Potential UCL to Use	99% Chebyshev (Mean, Sd) UCL 19.46 Use 99% Chebyshev (Mean, Sd) UCL 19.46								
542 543 544 545 546 547 548	95% Approximate Gamma UCL 8.816 95% Adjusted Gamma UCL 10.04 Potential UCL to Use Recommended UCL exceet Note: Suggestions regarding the selection of a 95% UCL are processed to the selection of a	99% Chebyshev(Mean, Sd) UCL 19.46 Use 99% Chebyshev (Mean, Sd) UCL 19.46 eds the maximum observation provided to help the user to select the most appropriate 95% UCL.								
542 543 544 545 546 547 548 549	95% Approximate Gamma UCL 8.816 95% Adjusted Gamma UCL 10.04 Potential UCL to Use Recommended UCL exceet Note: Suggestions regarding the selection of a 95% UCL are processed to the selection of the selection	Use 99% Chebyshev (Mean, Sd) UCL 19.46 Use 99% Chebyshev (Mean, Sd) UCL 19.46 eds the maximum observation								

	АВ	С	D	Е	F	G	Н	ı	J	K	L
553	Mercury-EU10	<u> </u>			1		L				L.
554											
555 556		Number	of Valid C	bservations		Statistics		Number	of Distinct C)haan (ation)	. E
557		Number	oi valiu C	bservations	3			Number	OI DISTINCT C	bservations	5 3
558		Raw Sta	atistics				L	og-transfor	med Statist	tics	
559				Minimum	0.031				Minimum	of Log Data	
560				Maximum						of Log Data	
561					0.607					of log Data	
562 563				Median	0.33				SL	of log Data	1.682
564			Std F	rror of Mean							
565		(of Variation							
566				Skewness							
567											•
568											
569	Warning: A sam	ple size of 'n'	= 5 may r	not adequate	e enough to	compute m	neaningful a	and reliable	e test statis	tics and est	timates!
570 571		It is sugge	eted to co	ollect at leas	et 9 to 10 ok	nearyatione	ueina thee	a etatietica	l mothodel		
572	If noss	sible compute	and colle	ect Data Qua	ality Ohiecti	ves (DOO)	hased sam	nle size ar	nd analytica	Lresults	
573	pooc	ibio compato	dila conc	or Data qui	unity Objecti	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Daooa Jam	pro orzo ur	ia analytica	rroounor	
574											
575				Warning: 1	There are or	nly 5 Values	in this dat	a			
576	No	te: It should								a set,	
577		the	resulting	calculations	may not be	e reliable en	ough to dra	w conclus	sions		
578 579	The	literature sug	geete to I	ica hootetra	n methode	on data set	e having m	ore than 10	15 observ	atione	
580	THE	illerature sug	gesis io i	ise Doolsii a	p memous	OII uata Set	s naving in	ore man re	J-13 0DSGIV	ations.	
581					Relevant U	CL Statistic	 S				
582		Normal Distri		st					istribution 1		
583				est Statistic					napiro Wilk T		
584				Critical Value		_	_		apiro Wilk C		
585	Data appe	ar Normal at	5% Signif	icance Leve	el	Da	ata appear	Lognorma	l at 5% Sigr	nificance Le	evel
586 587	Δα	suming Norm	al Dietrih	ution			Δεειι	mina Loan	ormal Distri	ibution	
		Summing 140mm		dent's-t UCL	1.224		7,330	illing Logii		95% H-UCI	862.3
588								95% C	Chebyshev (
588 589		UCLs (Adjus		(ewness)					niebysniev (i	MVUE) UCI	_ 2.703
589 590	95%	5% Adjusted-0	ted for Sk	(Chen-1995)				97.5% C	Chebyshev (MVUE) UCI	3.57
589 590 591	95%		ted for Sk	(Chen-1995)				97.5% C		MVUE) UCI	3.57
589 590 591 592	95% 99 9	5% Adjusted-0 95% Modified-	ted for Sk CLT UCL (t UCL (Joh	(Chen-1995) nnson-1978)				97.5% C 99% C	Chebyshev (Chebyshev (MVUE) UCI	3.57
589 590 591 592 593	95% 99 9	5% Adjusted-0 95% Modified- Gamma Distr	ted for Sk CLT UCL (t UCL (Joh ribution Te	(Chen-1995) nnson-1978) est	1.235		Data annes	97.5% C 99% C	Chebyshev (I Chebyshev (I istribution	MVUE) UCI MVUE) UCI	3.57 5.273
589 590 591 592 593 594	95% 99 9	5% Adjusted-0 95% Modified- Gamma Distr	ted for Sk CLT UCL (t UCL (Joh ribution Te	(Chen-1995) nnson-1978) est is corrected)	0.422		Data appea	97.5% C 99% C	Chebyshev (Chebyshev (MVUE) UCI MVUE) UCI	3.57 5.273
589 590 591 592 593	95% 99 9	5% Adjusted-0 95% Modified- Gamma Distr	ted for Sk CLT UCL (t UCL (Joh ribution Te k star (bia	(Chen-1995) nnson-1978) est	0.422 1.438		Data appea	97.5% C 99% C	Chebyshev (I Chebyshev (I istribution	MVUE) UCI MVUE) UCI	3.57 5.273
589 590 591 592 593 594 595 596 597	95% 99 9	5% Adjusted-(55% Modified- Gamma Distr	ted for Sk CLT UCL (t UCL (Joh ribution Te k star (bia	(Chen-1995) hnson-1978) est is corrected) Theta Star MLE of Mean rd Deviation	0.422 1.438 0.607 0.934		Data appea	97.5% C 99% C	Chebyshev (I Chebyshev (I istribution	MVUE) UCI MVUE) UCI	3.57 5.273
589 590 591 592 593 594 595 596 597 598	95% 99 99	5% Adjusted-(95% Modified- Gamma Distr MLE	ted for Sk CLT UCL (t UCL (Joh ribution Te k star (bia M of Standa	(Chen-1995) Innson-1978) Innson-1978) Innson-1978) Innson-1978) Innson-1978 In	0.422 1.438 0.607 0.934 4.223			97.5% C 99% C Data D ar Normal a	Chebyshev (I Chebyshev (I Stribution at 5% Signif	MVUE) UCI MVUE) UCI icance Lev	3.57 5.273
589 590 591 592 593 594 595 596 597 598 599	95% 99 99	5% Adjusted-05% Modified-05% Modified-05% Modified-05% MLE	ted for Sk CLT UCL (t UCL (Joh ribution Te k star (bia M of Standa	(Chen-1995) Innson-1978) Innson-1978) Innson-1978 Inns	0.422 1.438 0.607 0.934 4.223 0.812			97.5% C 99% C Data D ar Normal a	Chebyshev (I Chebyshev (I Stribution at 5% Signif	MVUE) UCI MVUE) UCI icance Lev	_ 3.57 _ 5.273
589 590 591 592 593 594 595 596 597 598 599 600	95% 99 99	5% Adjusted-05% Modified-05% Modified-05% Modified-05% MLE	ted for Sk CLT UCL (t UCL (Joh ribution Te k star (bia M of Standa Chi Square d Level of	(Chen-1995) Innson-1978) Innson-1978) Innson-1978 Is corrected) Theta Star MLE of Mean Ind Deviation Ind Star Value (.05) Significance	0.422 1.438 0.607 0.934 4.223 0.812 0.0086			97.5% C 99% C Data D ar Normal a	Chebyshev (I Chebyshev (I Stribution at 5% Signification etric Statisties	MVUE) UCI MVUE) UCI icance Lev cs % CLT UCI	_ 3.57 _ 5.273 el
589 590 591 592 593 594 595 596 597 598 599 600 601	95% 99 99	5% Adjusted-05% Modified-05% Modified-05% Modified-05% MLE	ted for Sk CLT UCL (t UCL (Joh ribution Te k star (bia M of Standa Chi Square d Level of	(Chen-1995) Innson-1978) Innson-1978) Innson-1978) Innson-1978) Innson-1978 In	0.422 1.438 0.607 0.934 4.223 0.812 0.0086			97.5% C 99% C Data D ar Normal a	chebyshev (ichebyshev (ichebys	MVUE) UCI MVUE) UCI icance Lev cs % CLT UCI ckknife UCI	3.57 5.273 el
589 590 591 592 593 594 595 596 597 598 599 600	95% 99 99	5% Adjusted-05% Modified-05% Modified-05% Modified-05% MLE MLE Approximate C Adjusted Adju	ted for Sk CLT UCL (t UCL (Joh ribution Te k star (bia	(Chen-1995) Innson-1978) Sest Is corrected) Theta Star MLE of Mean Ind Deviation In u star Value (.05) Significance quare Value	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344			97.5% C 99% C Data D ar Normal a	chebyshev (ichebyshev (ichebys	MVUE) UCI MVUE) UCI icance Lev cs % CLT UCI ckknife UCI	3.57 5.273 el 1.083 1.224 1.024
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603	95% 99 99	5% Adjusted-05% Modified-05% Modified-05% Modified-05% MLE Approximate C Adjusted Adjusted Adjusted Addrson-Da	ted for Sk CLT UCL (t UCL (Joh ribution Tek k star (bia Mof Standa Chi Square d Level of sted Chi S n-Darling T rling 5% C	est Securected) Theta Star MLE of Mean rd Deviation nu star e Value (.05) Significance quare Value Test Statistic	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344 0.355			97.5% C 99% C Data D ar Normal a Nonparame	chebyshev (in the chebyshev (i	MVUE) UCI MVUE) UCI icance Lev cs % CLT UCI ckknife UCI otstrap UCI tstrap-t UCI otstrap UCI	= 3.57 = 5.273 el = 1.083 = 1.224 = 1.024 = 2.513 = 7.304
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605	95% 99 99	5% Adjusted-05% Modified-15% Modified-15% Modified-15% MLE Approximate C	ted for Sk CLT UCL (t UCL (Joh ribution Tek k star (bia Mof Standa Chi Square d Level of sted Chi S n-Darling T rling 5% C Smirnov T	est Inscription In	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344 0.355 0.7			97.5% C 99% C Data D ar Normal a Nonparame 95% S 95	chebyshev (ichebyshev (ichebys	MVUE) UCI MVUE) UCI icance Lev cs % CLT UCI ckknife UCI otstrap UCI otstrap UCI otstrap UCI otstrap UCI	= 3.57 = 5.273 el = 1.083 = 1.224 = 1.024 = 2.513 = 7.304 = 1.066
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606	95% 99 99 99 99 90 90 90 90 90 90 90 90 90	5% Adjusted-05% Modified-05% Modified-05% Modified-05% MLE Approximate C Adjusted-05% Adjusted-	ted for Sk CLT UCL (t UCL (Job ribution Tek k star (bia Mof Standa Chi Square d Level of sted Chi S n-Darling T rling 5% C Smirnov T	est Inscription In	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344 0.355 0.7 0.248 0.367			97.5% C 99% C Data D Ar Normal a Nonparame 95% S 95% P	chebyshev (ichebyshev (ichebys	icance Lev CS CK CLT UCI Ckknife UCI Otstrap UCI	= 3.57 = 5.273 el = 1.083 = 1.224 = 1.024 = 2.513 = 7.304 = 1.066 = 1.086
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606	95% 99 99	5% Adjusted-05% Modified-05% Modified-05% Modified-05% MLE Approximate C Adjusted-05% Adjusted-	ted for Sk CLT UCL (t UCL (Job ribution Tek k star (bia Mof Standa Chi Square d Level of sted Chi S n-Darling T rling 5% C Smirnov T	est Inscription In	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344 0.355 0.7 0.248 0.367		ı	97.5% C 99% C Data D ar Normal a Nonparame 95% S 95% P 995% Che	chebyshev (ichebyshev (ichebys	icance Lev CS % CLT UCI ckknife UCI otstrap UCI	= 3.57 = 5.273 el = 1.083 = 1.224 = 1.024 = 2.513 = 7.304 = 1.066 = 1.086 = 1.868
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607	95% 99 90 90 90 90 90 90 90 90 90 90 90 90	5% Adjusted-05% Modified-05% Modified-05% Modified-05% Modified-05% MLE Approximate C Adjusted-05% Adjusted-	ted for Sk CLT UCL (t UCL (Job ribution Tek star (bia Of Standa Chi Square d Level of sted Chi S n-Darling T rling 5% C Smirnov T rnov 5% C ted at 5%	est s corrected) Theta Star MLE of Mean rd Deviation nu star Value (.05) Significance quare Value Fest Statistic Critical Value Significance	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344 0.355 0.7 0.248 0.367		ı	97.5% C 99% C Data D ar Normal a Nonparame 95% S 95% P 95% Che 97.5% Che	chebyshev (ichebyshev (ichebys	icance Lev CS % CLT UCI ckknife UCI otstrap UCI an, Sd) UCI an, Sd) UCI	= 3.57 = 5.273 el = 1.083 = 1.224 = 1.024 = 2.513 = 7.304 = 1.066 = 1.086 = 1.868 = 2.413
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608	95% 99 90 90 90 90 90 90 90 90 90 90 90 90	5% Adjusted-05% Modified-05% Modified-05% Modified-05% Modified-05% MLE Approximate C Adjusted-05% Adjusted-05% Adjusted-05% Adjusted-05% Adjusted-05% Adjusted-05% Adjusted-05% Anderson-Da Kolmogorov-Smima Distributesuming Gamr	ted for Sk CLT UCL (t UCL (Job ribution Tek star (bia An of Standa Chi Square d Level of sted Chi S n-Darling Tring 5% Common Ternov 5% Comm	chen-1995) chnson-1978) est sis corrected) Theta Star MLE of Mean rd Deviation nu star e Value (.05) Significance quare Value Test Statistic Critical Value Significance value Significance	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344 0.355 0.7 0.248 0.367 e Level		ı	97.5% C 99% C Data D ar Normal a Nonparame 95% S 95% P 95% Che 97.5% Che	chebyshev (ichebyshev (ichebys	icance Lev CS % CLT UCI ckknife UCI otstrap UCI an, Sd) UCI an, Sd) UCI	= 3.57 = 5.273 el = 1.083 = 1.224 = 1.024 = 2.513 = 7.304 = 1.066 = 1.086 = 1.868 = 2.413
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607	95% 99 90 90 90 90 90 90 90 90 90 90 90 90	5% Adjusted-05% Modified-15% Modified-15% Modified-15% MLE Approximate C Adjusted-A	ted for Sk CLT UCL (t UCL (Job ibution Tek k star (bia Mof Standa Chi Square d Level of sted Chi S In-Darling Tek ring 5% Coordinate (School) Smirnov Tek to at 5% The Distribution of Sk The Distribution	est s corrected) Theta Star MLE of Mean rd Deviation nu star Value (.05) Significance quare Value Fest Statistic Critical Value Significance	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344 0.355 0.7 0.248 0.367 e Level		ı	97.5% C 99% C Data D ar Normal a Nonparame 95% S 95% P 95% Che 97.5% Che	chebyshev (ichebyshev (ichebys	icance Lev CS % CLT UCI ckknife UCI otstrap UCI an, Sd) UCI an, Sd) UCI	= 3.57 = 5.273 el = 1.083 = 1.224 = 1.024 = 2.513 = 7.304 = 1.066 = 1.086 = 1.868 = 2.413
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612	95% 99 90 90 90 90 90 90 90 90 90 90 90 90	5% Adjusted-05% Modified-15% Modified-15% Modified-15% Modified-15% MLE Approximate C Adjusted-Adjusted-Adjusted-Adjusted-Adjusted-15% Adjusted-15%	ted for Sk CLT UCL (t UCL (Job ibution Tek k star (bia Mof Standa Chi Square d Level of sted Chi S In-Darling Tek ring 5% Coordinate Chi Smirnov Tek ted at 5% ma Distrib roximate Chi Adjusted Chi	est sis corrected) Theta Star MLE of Mean rd Deviation nu star e Value (.05) Significance quare Value Fest Statistic Critical Value Significance significance critical Value Significance sution Gamma UCL Gamma UCL	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344 0.355 0.7 0.248 0.367 e Level		ı	97.5% C 99% C Data D ar Normal a Nonparame 95% S 95% P 95% Che 97.5% Che 99% Che	chebyshev (ichebyshev (ichebys	icance Lev CS % CLT UCI ckknife UCI otstrap UCI otstrap UCI otstrap UCI otstrap UCI otstrap UCI otstrap UCI an, Sd) UCI an, Sd) UCI	= 3.57 = 5.273 el = 1.083 = 1.224 = 1.024 = 2.513 = 7.304 = 1.066 = 1.086 = 1.868 = 2.413 = 3.484
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613	95% 99 90 90 90 90 90 90 90 90 90 90 90 90	5% Adjusted-05% Modified-15% Modified-15% Modified-15% MLE Approximate C Adjusted-A	ted for Sk CLT UCL (t UCL (Job ibution Tek k star (bia Mof Standa Chi Square d Level of sted Chi S In-Darling Tek ring 5% Coordinate Chi Smirnov Tek ted at 5% ma Distrib roximate Chi Adjusted Chi	est sis corrected) Theta Star MLE of Mean rd Deviation nu star e Value (.05) Significance quare Value Fest Statistic Critical Value Significance significance critical Value Significance sution Gamma UCL Gamma UCL	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344 0.355 0.7 0.248 0.367 e Level		ı	97.5% C 99% C Data D ar Normal a Nonparame 95% S 95% P 95% Che 97.5% Che 99% Che	chebyshev (ichebyshev (ichebys	icance Lev CS % CLT UCI ckknife UCI otstrap UCI otstrap UCI otstrap UCI otstrap UCI otstrap UCI otstrap UCI an, Sd) UCI an, Sd) UCI	= 3.57 = 5.273 el = 1.083 = 1.224 = 1.024 = 2.513 = 7.304 = 1.066 = 1.086 = 1.868 = 2.413 = 3.484
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614	95% 99 90 90 90 90 90 90 90 90 90 90 90 90	5% Adjusted-65% Modified-65% Modified-65% Modified-65% Modified-65% Modified-65% Modified-65% Modified-65% Adjusted Adju	ted for Sk CLT UCL (t UCL (Job ribution Tek k star (bia Mof Standa Chi Square d Level of sted Chi S Tring 5% Coording 17 Trov 5% Coording 17 Trov 5% Coording 18 Trov 18 Tro	est sis corrected) Theta Star MLE of Mean rd Deviation nu star e Value (.05) Significance quare Value Fest Statistic Critical Value Significance significance critical Value Significance critical Value Significance sution Samma UCL Samma UCL	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344 0.355 0.7 0.248 0.367 e Level		N	97.5% C 99% C Data D ar Normal a Nonparame 95% S 95% P 95% Che 97.5% Che 99% Che	chebyshev (ichebyshev (ichebys	icance Lev icance Lev cs % CLT UCI ckknife UCI otstrap UCI otstrap UCI otstrap UCI otstrap UCI an, Sd) UCI an, Sd) UCI an, Sd) UCI	= 3.57 = 5.273 el = 1.083 = 1.224 = 1.024 = 2.513 = 7.304 = 1.066 = 1.086 = 1.868 = 2.413 = 3.484
589 590 591 592 593 594 595 596 597 598 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615	95% 99 95 95 Kol Data appear Gal As	Adjusted- Son Adjusted- Son Modified- Son Modified- Son Modified- Son Modified- MLE Approximate Condition Adjusted Anderson-Da Kolmogorov-Smima Distribution Bostribution Son Appi 95%	ted for Sk CLT UCL (t UCL (Job ibution Tek k star (bia Mof Standa Chi Square d Level of sted Chi S m-Darling T rling 5% C Smirnov T rnov 5% C ted at 5% ma Distrib roximate C Adjusted C CL to Use	est sis corrected) Theta Star MLE of Mean rd Deviation nu star Value (.05) Significance quare Value Fest Statistic Critical Value Significance sution Gamma UCL Gamma UCL Gamma UCL	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344 0.355 0.7 0.248 0.367 e Level	ovided to he	elp the use	97.5% C 99% C Data D ar Normal a Nonparame 95% S 95% P 95% Che 97.5% Che 99% Che	chebyshev (ichebyshev (ichebys	icance Lev icance Lev cs % CLT UCI ckknife UCI otstrap UCI otstrap UCI otstrap UCI an, Sd) UCI an, Sd) UCI an, Sd) UCI an, Sd) UCI	= 3.57 = 5.273 el = 1.083 = 1.224 = 1.024 = 2.513 = 7.304 = 1.066 = 1.086 = 1.868 = 2.413 = 3.484 = 1.224 = 1.224
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614	95% 99 95 95 Note: Suggestions These recomme	Adjusted- Son Adjusted- Son Modified- Son Modified- Son Modified- Son Modified- MLE Approximate Condition Adjusted Anderson-Da Kolmogorov-Smima Distribution Bostribution Son Appi 95%	ted for Sk CLT UCL (t UCL (Job t UCL (Job t UCL (Job t Standa Chi Square d Level of sted Chi S chin-Darling Tring 5% Common T	est sis corrected) Theta Star MLE of Mean rd Deviation nu star Value (.05) Significance quare Value Fest Statistic Critical Value Fest Statistic Critical Value Significance oution Gamma UCL Gamma UCL Gamma UCL Gon of a 95% pon of a 95% con the resu	0.422 1.438 0.607 0.934 4.223 0.812 0.0086 0.344 0.355 0.7 0.248 0.367 e Level	ovided to he	elp the use	97.5% C 99% C Pata D The Normal at the Nor	chebyshev (ichebyshev (ichebys	icance Lev icance Lev cs % CLT UCI ckknife UCI otstrap UCI otstrap UCI otstrap UCI an, Sd) UCI	= 3.57 = 5.273 el = 1.083 = 1.224 = 1.024 = 2.513 = 7.304 = 1.066 = 1.086 = 1.868 = 2.413 = 3.484 = 1.224 = 1.224

	Α	В		С	D		Ε	F	G	Н	1		J		K		L
	Mercury-El	U12				•		•									
619																	
620 621				Numbe	r of Vali	d Oba	ervations		I Statistics		Numbe	or of D	Distinct C)hoon	otiono	E	
622				Numbe	ei oi vaii	u Obs	ervations	5 3			Numbe	el Ol L	JISTIFICE C	Jusein	alions	5	
623				Raw S	tatistics					L	.og-transf	forme	d Statist	tics			
624							Minimum	n 0.017				N	/linimum	of Lo			
625							Maximum					М	laximum				
626								n 0.0574							g Data		
627 628								n 0.038 0 0.0531					SL) of lo	g Data	0.798	8
629					Std	Frro	r of Mear										
630							Variation										
631							Skewness										
632									'							•	
633																	
634	Warnir	ng: A san	nple si	ze of 'n	ı' = 5 ma	y not	adequat	te enough t	o compute n	neaningful	and reliat	ble te	st statist	tics a	nd est	imate	s!
635 636			- 14	lo ouga	ootod ta	s a a lle	et et lee	ot 9 to 10 c	boomistions	uning thes	o etetletic	aal ma	othodol				
637		If nos	IL seible (comput	e and co	ollect	Data Ou	st o to To t	bservations tives (DQO)	hased san	nnie size :	and a	nalytica	l resi	lte		
638		прос	SIDIC (compat	e and co	onect	Data Qu	idility Object	uves (DQO)	basea san	ipic size i	ana a	naly lica	11030			
639																	
640						W	arning:	There are o	nly 5 Values	in this da	ta						
641		N	lote: I						strap metho					a set,			
642				the	e resultir	ng cal	culations	s may not b	e reliable er	ough to dr	aw conclu	usions	S				
643		The	litoro				haatatus		on data ant	a havina m	ana dhan	10 15		a dia a			
644 645		The	ıntera	ture su	ggesis i	o use	DOOLSTR	ap memous	on data set	s naving ir	iore man	10-15	observ	auon	5.		
646								Relevant L	JCL Statistic	s							
647			Norn	nal Dist	ribution	Test					ognormal	Distri	ibution 1	Test			
648				Sh	apiro Wi	lk Tes	t Statistic	0.762					ro Wilk T		tatistic	0.949	9
649							ical Value						ro Wilk C				2
650		Data			• E0/ C:~	unifics	ince I av	ام		oto opposi	·Lognorm	!	EO/ Class	alfi a a s	100 l 0		
	•	Data app	ear No	Jilliai a	t 5% Sig	Jillio	IIICE LEV	CI	<u>u</u>	ata appeai	Logiloili	naı at	5% Sign	illical	ice Le	vei	
651								CI	, D							vei	
651 652					mal Dist	ributi	on				uming Log		nal Distri	ibutio	n		1
651		A	ssumi	ing Nor	mal Dist	ributio	on nt's-t UCL				uming Log	gnorm	nal Distri	ibutio 95%	n H-UCL	0.30	
651 652 653		95%	ssumi 6 UCL 95% A	ng Nor s (Adju djusted	mal Dist 95% S sted for -CLT UC	ribution Studer Skev	on nt's-t UCL vness) nen-1995	0.108			uming Log	gnorm	nal Distri	ibutio 95% MVUE	n H-UCL E) UCL	0.30	
651 652 653 654 655 656		95%	ssumi 6 UCL 95% A	ng Nor s (Adju djusted	mal Dist 95% S sted for -CLT UC	ribution Studer Skev	on nt's-t UCL vness)	0.108			uming Log 95% 97.5%	gnorm Chet	n al Distri Dyshev (I	ibutio 95% MVUE MVUE	n H-UCL E) UCL	0.30	6
651 652 653 654 655 656 657		95%	ASSUMI % UCL 95% A 95% N	ng Nor s (Adju djusted Modified	mal Dist 95% S sted for -CLT UC I-t UCL (cribution Studer Skew CL (Ch Johns	on nt's-t UCL vness) nen-1995 son-1978	0.108			95% 97.5% 99%	gnorm Cheb Cheb	nal Distri Dyshev (I Dyshev (I	ibutio 95% MVUE MVUE	n H-UCL E) UCL	0.30	6
651 652 653 654 655 656 657 658		95%	ASSUMI % UCL 95% A 95% N	ng Nor s (Adju djusted Modified	mal Dist 95% S sted for -CLT UC I-t UCL (Skew CL (Cr Johns	on nt's-t UCL vness) nen-1995 son-1978	0.108		Assı	95% 97.5% 99%	gnorm Cheb Cheb Cheb	pyshev (I byshev (I byshev (I bution	ibutio 95% MVUE MVUE MVUE	n H-UCL E) UCL E) UCL	0.30 0.14 0.176 0.248	6
651 652 653 654 655 656 657 658 659		95%	ASSUMI % UCL 95% A 95% N	ng Nor s (Adju djusted Modified	mal Dist 95% S sted for -CLT UC I-t UCL (Skev Skev CL (Ch Johns Test	on nt's-t UCL vness) nen-1995 son-1978	0.108			95% 97.5% 99%	gnorm Cheb Cheb Cheb	pyshev (I byshev (I byshev (I bution	ibutio 95% MVUE MVUE MVUE	n H-UCL E) UCL E) UCL	0.30 0.14 0.176 0.248	6
651 652 653 654 655 656 657 658 659 660		95%	ASSUMI % UCL 95% A 95% N	ng Nor s (Adju djusted Modified	mal Dist 95% S sted for -CLT UC I-t UCL (Skew CL (Ch Johns Test bias o	on nt's-t UCL vness) nen-1995 son-1978	0.108		Assı	95% 97.5% 99%	gnorm Cheb Cheb Cheb	pyshev (I byshev (I byshev (I bution	ibutio 95% MVUE MVUE MVUE	n H-UCL E) UCL E) UCL	0.30 0.14 0.176 0.248	6
651 652 653 654 655 656 657 658 659		95%	ASSUMI % UCL 95% A 95% N	ing Normalis (Adjusted Modified ma Dist	mal Dist 95% S sted for -CLT UC I-t UCL (tribution k star (Skew CL (Ch Johns Test bias o	on nt's-t UCL vness) nen-1995 son-1978	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574		Assı	95% 97.5% 99%	gnorm Cheb Cheb Cheb	pyshev (I byshev (I byshev (I bution	ibutio 95% MVUE MVUE MVUE	n H-UCL E) UCL E) UCL	0.30 0.14 0.176 0.248	6
651 652 653 654 655 656 657 658 660 661 662 663		95%	Ssumi W UCL 95% A 95% N	s (Adju s (Adju djusted Modified ma Dis	mal Dist 95% S sted for -CLT UC 1-t UCL (tribution k star (Skew CL (Cr Johns Test bias o	on ht's-t UCL vness) hen-1995 son-1978 corrected heta Sta of Mear Deviation nu sta	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123		Assi	95% 97.5% 99% Data ar Norma	gnorm Cheb Cheb Cheb Distri	pyshev (I pyshev (I pyshev (I pyshev (I bution % Signif	ibutio 95% MVUE MVUE	n H-UCL E) UCL E) UCL	0.30 0.14 0.176 0.248	6
651 652 653 654 655 656 657 658 659 660 661 662 663 664		95%	SSUMI 6 UCL 95% A 95% N Gam	s (Adjusted Modified Ma Dist	mal Dist 95% S sted for -CLT UC -CLT UC -tribution k star (Skew Skew CL (Ch Johns Test bias of MLE andard	on ht's-t UCI vness) hen-1995 son-1978 corrected heta Sta E of Mear Deviation nu sta alue (.05	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401		Assi	95% 97.5% 99%	gnorm Cheb Cheb Cheb Distri	pyshev (I pyshev (I pyshev (I bution % Signif	ibutio 95% MVUE MVUE	n H-UCL E) UCL E) UCL E) UCL	0.30° 0.14 0.176 0.248	6 8
651 652 653 654 655 656 657 658 659 660 661 662 663 664		95%	SSUMI 6 UCL 95% A 95% N Gam	s (Adjusted djusted Modified Ma Dist	mal Dist 95% § sted for -CLT UC	Skew CL (Ch Johns Test bias o MLE andard	on Int's-t UCL Int	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086		Assi	95% 97.5% 99% Data ar Norma	gnorm Cheb Cheb Cheb Cheb Chet I at 59	pyshev (I pyshev (I pyshev (I bution % Signif	ibutio 95% MVUE MVUE ficanc	n H-UCL E) UCL E) UCL E) UCL	0.30° 0.14 0.176 0.248	65
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666		95%	SSUMI 6 UCL 95% A 95% N Gam	s (Adjusted djusted Modified Ma Dist	mal Dist 95% § sted for -CLT UC	Skew CL (Ch Johns Test bias o MLE andard	on ht's-t UCI vness) hen-1995 son-1978 corrected heta Sta E of Mear Deviation nu sta alue (.05	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086		Assi	95% 97.5% 99% Data ar Norma	gnorm Chek Chek Chek Distri	pyshev (I pyshev (I pyshev (I bution % Signif s Statistic 95 95% Jac	ibutio 95% MVUE MVUE MVUE	n H-UCL E) UCL E) UCL E) UCL e Leve	0.30° 0.14 0.176 0.248 0.096 0.108	65 8
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666		95%	Ssumi 6 UCL 95% A 95% N Gam	s (Adju djusted Modified ma Disi MLE oximate Adjuste	mal Dist 95% § sted for -CLT UC -It UCL (tribution k star (Cribution Skew CL (Cripon Skew CL (Cripon Skew CL (Cripon Skew Classes Cripon Skew Classes Cripon Skew Classes Cripon Skew Cri	on Int's-t UCL Int	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086 e 2.064		Assi	95% 97.5% 99% Data ar Norma	gnorm Cheb Cheb Cheb Cheb Distri	pyshev (I pyshev (I pyshev (I bution % Signif s Statistic 95 95% Jandard Bo	ibutio 95% MVUE MVUE MVUE icanc	n H-UCL E) UCL E) UCL E) UCL E Leve	0.30° 0.14 0.176 0.248 0.096 0.108 0.096	65 8 25
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666		95%	Assumi We UCL 95% A 95% N Gam	s (Adju djusted Modified ma Dist MLE oximate Adjuste Adjuste	mal Dist 95% § sted for -CLT UC -tribution k star (of Star Chi Squ ed Level usted Ch on-Darlin	skew Skew Skew Skew Skew Skew Skew Skew S	on Int's-t UCL Int	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086 e 2.064		Assi	95% 97.5% 99% Data ar Normal	gnorm Cheb Cheb Cheb Cheb Distri	pyshev (I pyshev (I pyshev (I bution % Signif s Statistic 95 95% Jac	ibutio 95% MVUE MVUE MVUE iicanc	T UCL Fe UCL Fe UCL Fe UCL Fe UCL Fe UCL Fe UCL Fe UCL Fe UCL Fe UCL	0.30° 0.14 0.176 0.248 0.096 0.108 0.092 0.218	65 8 25 8
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668		959 (Appro	s (Adju djusted Modified ma Dist MLE eximate Adjuste Adjuste Adjuste Anderso erson-D	mal Dist 95% § sted for -CLT UC -tribution k star (chi Squ ed Level usted Ch on-Darlin arling 5% y-Smirno	Skew Skew Skew Skew Skew Skew Skew Skew	on nt's-t UCL vness) nen-1995 corrected Theta Sta E of Mear Deviation nu sta alue (.05 gnificance are Value at Statistic ical Value at Statistic	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086 e 2.064 c 0.406 e 0.685 c 0.278		Assi	95% 97.5% 99% Data ar Normal	gnorm Cheb Cheb Cheb Distri	pyshev (I pyshev (I pyshev (I pyshev (I bution % Signif Signif 95% Jandard Bo 15% Boothall's Boentile Bo	ibutio 95% MVUE MVUE MVUE icanc cs % CL ckknitt otstrap otstrap	T UCL fe UCL p UCL p UCL	. 0.30° . 0.14 . 0.176 . 0.248 . 0.096 . 0.096 . 0.096 . 0.218 . 0.29° . 0.099	65 8 25 8 1 98
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670		959	Appro	s (Adjusted Modified Male Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Anderson December 2007 Mogorov Smorov -	mal Dist 95% § sted for -CLT UC -tribution k star (Chi Squ ed Level usted Ch on-Darlin arling 5% v-Smirnov 5%	Skew Skew CL (Cr Skew Test Dias C Test MLE MLE Gritis Grit Grit Grit Grit Grit Grit Grit Grit	corrected Theta Sta E of Mear Deviation nu sta alue (.05 gnificance are Value at Statistic ical Value at Statistic ical Value	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086 e 2.064 c 0.406 e 0.685 c 0.278 e 0.361		Assi	95% 97.5% 99% Data ar Normal Nonparan 95%	gnorm Cheb Cheb Cheb Cheb Cheb Stari	pyshev (I pyshev (I pyshev (I pyshev (I bution % Signif Signif 95% Jandard Bo 15% Boothall's Boentile Bo BCA Bo	ibutio 95% MVUE MVUE MVUE icanc cs % CL ckknitt otstrap otstrap otstrap otstran	T UCL fe UCL p UCL p UCL p UCL	. 0.30° . 0.14 . 0.176 . 0.248 . 0.096 . 0.108 . 0.092 . 0.218 . 0.29° . 0.098 . 0.108	65 8 65 8 25 8 1 98 6
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671		959 (Appro	s (Adjusted Modified Male Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Anderson December 2007 Mogorov Smorov -	mal Dist 95% § sted for -CLT UC -tribution k star (Chi Squ ed Level usted Ch on-Darlin arling 5% v-Smirnov 5%	Skew Skew CL (Cr Skew Test Dias C Test MLE MLE Gritis Grit Grit Grit Grit Grit Grit Grit Grit	corrected Theta Sta E of Mear Deviation nu sta alue (.05 gnificance are Value at Statistic ical Value at Statistic ical Value	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086 e 2.064 c 0.406 e 0.685 c 0.278 e 0.361		Assi	95% 97.5% 99% Data ar Normal Nonparan 95% 95%	gnorm Cheb Cheb Cheb Distri I at 59 Metric Stan 9 95% H Perce 95% Chebys	pyshev (I pyshev (I pyshev (I pyshev (I pyshev (I bution % Signif 95% Jandard Bo 15% Boot Hall's Bo entile Bo BCA Bo shev(Mea	ibutio 95% MVUE MVUE MVUE icanc cs 6% CL ckknit otstra tstrap otstra otstra an, So	T UCL Fe UCL p UCL p UCL p UCL p UCL	0.30° 0.14 0.176 0.248 0.096 0.108 0.092 0.218 0.29° 0.096 0.106 0.106	65 8 25 8 1 98 6 1
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673		A 959 959	Appro Ande Kolrolmogo	ing Nori s (Adju djusted Modified ma Dist MLE eximate Adjuste Adjuste Adjuste Andersc erson-D mogorov prov-Sm Distribu	mal Dist 95% § sted for -CLT UC -tribution k star (on-Darlin arling 59 y-Smirno nirnov 59 uted at 5	Skew CL (Cr Skew) Cl (Cr Skew Cl (Cr Skew Cl (Cr Skew) Cl (Cr Skew) Cl (Cr Skew) Cl (Cr Skew Cl (Cr Skew) Cl (C	on nt's-t UCL vness) nen-1995 corrected Theta Sta of Mear Deviation nu sta alue (.05 gnificance are Value at Statistic ical Value gnificance	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086 e 2.064 c 0.406 e 0.685 c 0.278 e 0.361		Assi	95% 97.5% 99% Data ar Normal 95% 95% 95% 95% C 97.5% C	gnorm Cheb Cheb Cheb Distri I at 59 Metric Stan 9 95% H Perce 95% Chebys Chebys Chebys	pyshev (I pyshev (I pyshev (I pyshev (I bution % Signif statisti 95 95% Jandard Bo 15% Boothall's Bo entile Bo BCA Bo shev(Mea	ibutio 95% MVUE MVUE MVUE icanc cs ckinitiotstra testrap otestra otestra an, So an, So an, So	T UCL E UCL P UCL	0.30° 0.14 0.176 0.248 0.096 0.108 0.092 0.218 0.29° 0.099 0.106 0.106 0.206	65 8 25 8 1 98 6 1 6
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673		A 959 959	Appro Ande Kolrolmogo amma	ing Nori s (Adju djusted- Modified ma Dist MLE eximate Adjuste Adjuste Adjuste Andersc erson-D mogorov prov-Sm Distribu ng Gam	mal Dist 95% § sted for -CLT UC -tribution k star (on-Darlin arling 59 y-Smirno nirnov 59 uted at 5	Skew CL (Cr. Skew) Cl (Cr. Skew) Cl (Cr. Skew Cl (Cr. Skew) Cl (Cr. Skew	on nt's-t UCL vness) nen-1995 corrected Theta Sta of Mear Deviation nu sta alue (.05 gnificance are Value at Statistic ical Value gnificance on	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086 e 2.064 c 0.406 e 0.685 c 0.278 e 0.361 ce Level		Assi	95% 97.5% 99% Data ar Normal 95% 95% 95% 95% C 97.5% C	gnorm Cheb Cheb Cheb Distri I at 59 Metric Stan 9 95% H Perce 95% Chebys Chebys Chebys	pyshev (I pyshev (I pyshev (I pyshev (I pyshev (I bution % Signif 95% Jandard Bo 15% Boot Hall's Bo entile Bo BCA Bo shev(Mea	ibutio 95% MVUE MVUE MVUE icanc cs ckinitiotstra testrap otestra otestra an, So an, So an, So	T UCL E UCL P UCL	0.30° 0.14 0.176 0.248 0.096 0.108 0.092 0.218 0.29° 0.099 0.106 0.106 0.206	65 8 25 8 1 98 6 1 6
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674		A 959 959	Appro Ande Kolrolmogo amma	s (Adjusted-Modified MLE Adjusted-Anderson-D Mogorov-Sm Distribution B Gam B S Apple	mal Dist 95% § sted for -CLT UC -tribution k star (on-Darlin arling 59 y-Smirno nirnov 59 uted at 5 mma Dist proximat	Skew CL (Cr Skew CL (Cr Test bias c TMLE MALE MALE GAR	corrected Theta Sta Statistic ical Value on mma UCL	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086 e 2.064 c 0.406 e 0.685 c 0.278 e 0.361 ce Level		Assi	95% 97.5% 99% Data ar Normal 95% 95% 95% 95% C 97.5% C	gnorm Cheb Cheb Cheb Distri I at 59 Metric Stan 9 95% H Perce 95% Chebys Chebys Chebys	pyshev (I pyshev (I pyshev (I pyshev (I bution % Signif statisti 95 95% Jandard Bo 15% Boothall's Bo entile Bo BCA Bo shev(Mea	ibutio 95% MVUE MVUE MVUE icanc cs ckinitiotstra testrap otestra otestra an, So an, So an, So	T UCL E UCL P UCL	0.30° 0.14 0.176 0.248 0.096 0.108 0.092 0.218 0.29° 0.099 0.106 0.106 0.206	65 8 25 8 1 98 6 1 6
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673		A 959 959	Appro Ande Kolrolmogo amma	s (Adjusted-Modified MLE Adjusted-Anderson-D Mogorov-Sm Distribution B Gam B S Apple	mal Dist 95% § sted for -CLT UC -tribution k star (on-Darlin arling 59 y-Smirno nirnov 59 uted at 5 mma Dist proximat	Skew CL (Cr Skew CL (Cr Test bias c TMLE MALE MALE GAR	on nt's-t UCL vness) nen-1995 corrected Theta Sta of Mear Deviation nu sta alue (.05 gnificance are Value at Statistic ical Value gnificance on	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086 e 2.064 c 0.406 e 0.685 c 0.278 e 0.361 ce Level		Assi	95% 97.5% 99% Data ar Normal 95% 95% 95% 95% C 97.5% C	gnorm Cheb Cheb Cheb Distri I at 59 Metric Stan 9 95% H Perce 95% Chebys Chebys Chebys	pyshev (I pyshev (I pyshev (I pyshev (I bution % Signif statisti 95 95% Jandard Bo 15% Boothall's Bo entile Bo BCA Bo shev(Mea	ibutio 95% MVUE MVUE MVUE icanc cs ckinitiotstra testrap otestra otestra an, So an, So an, So	T UCL E UCL P UCL	0.30° 0.14 0.176 0.248 0.096 0.108 0.092 0.218 0.29° 0.099 0.106 0.106 0.206	65 8 25 8 1 98 6 1 6
651 652 653 654 655 656 657 658 669 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676		A 959 959	Appro Ande Kolrolmogo amma	MLE Distribution S (Adjusted- Modified MALE Distribution MLE Adjusted-	mal Dist 95% § sted for -CLT UC -tribution k star (on-Darlin arling 59 y-Smirno nirnov 59 uted at 5 mma Dist proximat	ribution Skev Skev Skev CL (Cr The state of Signature of	corrected Theta Sta Statistic ical Value on mma UCL	0.108) 0.119) 0.112) 0.912 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086 e 2.064 c 0.406 e 0.685 c 0.278 e 0.361 ce Level		Assi	95% 97.5% 99% Data ar Normal Nonparan 95% 95% 95% 95% Ci 97.5% Ci 99% Ci	gnorm Cheb Cheb Cheb Cheb Cheb Cheb Cheb Cheb	pyshev (I pyshev (I pyshev (I pyshev (I bution % Signif statisti 95 95% Jandard Bo 15% Boothall's Bo entile Bo BCA Bo shev(Mea	ibutio 95% MVUE MVUE MVUE CS CS CKNificanc Ckknificotstrap otstrap otstra otstrap otstra an, Sc an, Sc an, Sc	H-UCLE) UCLES UCLE	0.30° 0.14 0.176 0.248 0.096 0.108 0.092 0.218 0.099 0.106 0.206 0.206 0.294	65 8 8 25 8 1 98 6 1 6 4
651 652 653 654 655 656 657 658 669 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677	Data a	A 959	Appro Ande Kolrolmogo amma	MLE Distribution ME Anderso Anderso Distribution MS App 95% App 95% App 4 App 4 App 4 App 4 App 4 App 4 App 5 App 6 App 7 App 7 App 7 App 8 App 8 App 9 S Man 8	mal Dist 95% § sted for -CLT UC -tribution k star (ribution Skev Skev Skev Skev Skev Skev Skev Skev	corrected Theta Sta Berry Statistic It Stati	0.108) 0.119) 0.112 r 0.0629 n 0.0574 n 0.0601 r 9.123) 3.401 e 0.0086 e 2.064 c 0.406 e 0.685 c 0.278 e 0.361 ce Level		Assi	95% 97.5% 99% Data ar Normal Nonparan 95% 95% 95% 95% Cl 97.5% Cl	gnorm Cheb Cheb Cheb Cheb Cheb Cheb Cheb Cheb	pyshev (I pyshev	ibutio 95% MVUE MVUE MVUE Cs S% CL ckkniti otstrap otstra otstrap otstra an, Sc an, Sc dent's	H-UCL DUCL DUCL DUCL DUCL DUCL DUCL DUCL D	0.30° 0.14 0.176 0.248 0.096 0.108 0.092 0.218 0.099 0.106 0.206 0.294	65 8 65 8 25 8 1 98 6 1 6 4
651 652 653 654 655 656 657 658 669 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678	Data a	A 959 Koppear Ga	Appro Ande Kolrolmogo amma Ssumii	MLE Distribution Manual Service of the service of	mal Dist 95% § sted for -CLT UCL -tribution k star (on-Darlin arling 59 y-Smirno nirnov 59 uted at § mma Dist proximat Adjuste the select	ribution Skev Skev Skev CL (Cr Johns Test Test MLE bias C T MLE of Sig is Squ are V Critic Test Critic Skev Test Sig	corrected Theta Sta Deviation nu sta alue (.05 gnificance at Statistic ical Value gnificance on mma UCL	0.108 0.119 0.112 0.912 0.0629 0.0574 0.0601 1.23 0.0086 0.0086 0.0406 0.685 0.278 0.361 0.0254 0.254 0.254	rovided to h	Assi Data appe	95% 97.5% 99% Data ar Normal Nonparan 95% 95% 95% Ci 97.5% Ci 99% Ci	gnorm Cheb Cheb Cheb Cheb Cheb Cheb Cheb Cheb	pyshev (I pyshev	ibutio 95% MVUE MVUE MVUE icano cs cs ckniii cotstra cotstra cotstra an, Sc an, Sc dent's	H-UCL D UCL C UCL D UCL	0.30° 0.14 0.176 0.248 0.096 0.108 0.092 0.218 0.099 0.106 0.206 0.294	65 8 65 8 25 8 1 98 6 1 6 4
651 652 653 654 655 656 657 658 669 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677	Data a	A 959 Koppear Ga	Appro Ande Kolrolmogo amma Ssumii	MLE MADISTER MADISTER MLE DISTINUTE OF THE PROPERTY OF THE	mal Dist 95% § sted for -CLT UCL -tribution k star (ribution Skev Skev Skev CL (Cr Johns Test Test bias c T MLE of Sig is Squ are V Critical Crit	corrected Theta Sta Berry Statistic Ical Value Stat	0.108 0.119 0.112 0.112 0.112 0.0629 0.0574 0.0601 0.0574 0.0086 0.0086 0.0086 0.0406 0.685 0.278 0.361 0.0254 0.154 0.254 0.02		Assi Data appe	95% 97.5% 99% Data ar Normal Nonparan 95% 95% 95% Ci 97.5% Ci 99% Ci	gnorm Cheb Cheb Cheb Cheb Cheb Cheb Cheb Cheb	pyshev (I pyshev	ibutio 95% MVUE MVUE MVUE MVUE icano cs cs cknift cotstra cotstra cotstra an, Sc an, Sc an, Sc dent's	H-UCL D UCL C UCL D UCL	0.30° 0.14 0.176 0.248 0.096 0.108 0.092 0.218 0.099 0.106 0.206 0.294	65 8 65 8 25 8 1 98 6 1 6 4

	A E	3	С	D	E	F	G	Н	I	J	K	L
	Mercury-EU14								•			
684						0	0 1 - 1					
685 686			Numbe	er of Valid (Observations		Statistics		Number	of Distinct C	heervations	6
687			Nullibe	ei Oi Vallu (Jusei valions	5 0			Number	OI DISHIICE C	observations	5 0
688			Raw S	statistics				L	og-transfo	rmed Statist	tics	
689					Minimum						of Log Data	
690					Maximum						of Log Data	
691 692					Mean Median	0.107					n of log Data D of log Data	
693						0.077				- SL	or log Date	0.703
694				Std. E	Frror of Mean							
695				Coefficien	t of Variation							
696					Skewness	1.365						
697												
698 699	Warning: A	eamnle	eize of 'r	n' = 6 may	not adequat	e enough to	o compute m	eaningful s	and reliabl	a taet etatie	tice and set	timatael
700	Waiting. A	Sample	SIZE OF I	i – O iliay	not auequat	e enough to	compute ii	icaningiai i	and renabi	e lest statis	lics and es	umates:
701			It is sugg	gested to c	ollect at leas	st 8 to 10 ol	servations	using thes	e statistica	al methods!		
702	If	possib	le comput	te and colle	ect Data Qua	ality Object	ives (DQO)	based sam	ple size a	nd analytica	l results.	
703												
704 705					Worning: 7	Thoro oro o	alv 6 Values	in this dat	•			
705		Note	· It should	d he noted	that even th		nly 6 Values			on this data	a set	
707		11010			calculations							
708				_								
709		The lite	erature su	iggests to	use bootstra	p methods	on data set	s having m	ore than 1	0-15 observ	ations.	
710						Dalawant II	Ol Otatiatia					
711 712		N	ormal Die	tribution Te		Relevant U	CL Statistic		anormal F	Distribution 7	Teet	
713		110			Test Statistic	0.858				hapiro Wilk 1		0.955
714					Critical Value					napiro Wilk C		
715	Data a	appear	Normal a	t 5% Signi	ficance Leve	əl	D	ata appear	Lognorma	ıl at 5% Sigr	nificance Le	evel
716												
		A	NI								44. 44	
717		Assu	ıming Nor	mal Distrib		0 178		Assu	ming Logr	normal Distr		0.37
717 718				95% Stu	ident's-t UCL	0.178		Assu	_		95% H-UCI	
717		95% U	CLs (Adju	95% Stu sted for S	ident's-t UCL			Assu	95% (95% H-UCI MVUE) UCI	0.251
717 718 719 720 721		95% U 95%	CLs (Adju	95% Stu Isted for S I-CLT UCL	ident's-t UCL kewness)	0.186		Assu	95% (97.5% (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI	0.251
717 718 719 720 721 722		95% U 95% 95%	CLs (Adju Adjusted Modified	95% Stu Isted for S I-CLT UCL I-t UCL (Jo	ident's-t UCL kewness) (Chen-1995) hnson-1978)	0.186		Assu	95% (97.5% (99% (Chebyshev (Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI	0.251
717 718 719 720 721 722 723		95% U 95% 95%	CLs (Adju Adjusted Modified	95% Stuusted for SII-CLT UCL d-t UCL (Jo	ident's-t UCL kewness) (Chen-1995) hnson-1978) est	0.186			95% (97.5% (99% (Chebyshev (Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI	0.251 0.314 0.437
717 718 719 720 721 722 723 724		95% U 95% 95%	CLs (Adju Adjusted Modified	95% Stuusted for SII-CLT UCL d-t UCL (Jo	ident's-t UCL kewness) (Chen-1995) hnson-1978) est as corrected)	0.186			95% (97.5% (99% (Chebyshev (Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI	0.251 0.314 0.437
717 718 719 720 721 722 723		95% U 95% 95%	CLs (Adju Adjusted Modified	95% Stuusted for Sil-CLT UCL d-t UCL (Joetribution Tik star (bia	ident's-t UCL kewness) (Chen-1995) hnson-1978) est	0.186 0.181 1.148 0.0927			95% (97.5% (99% (Chebyshev (Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI	0.251 0.314 0.437
717 718 719 720 721 722 723 724 725 726 727		95% U 95% 95%	CLs (Adjusted Modified	95% Stu usted for Si I-CLT UCL I-t UCL (Jo stribution To k star (bia	dent's-t UCL kewness) (Chen-1995) hhnson-1978) est as corrected) Theta Star MLE of Mean ard Deviation	0.186 0.181 1.148 0.0927 0.107 0.0994			95% (97.5% (99% (Chebyshev (Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI	0.251 0.314 0.437
717 718 719 720 721 722 723 724 725 726 727 728		95% U 95% 95% Ga	CLs (Adjusted Modified	95% Stu usted for Si I-CLT UCL d-t UCL (Jo utribution To k star (bia	kewness) (Chen-1995) (Chen-1995) (Chen-1978) est as corrected) Theta Star MLE of Mean ard Deviation nu star	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78		Data appea	95% (97.5% (99% (Data D	Chebyshev (Chebyshev (Chebyshev (Distribution at 5% Signif	95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI	0.251 0.314 0.437
717 718 719 720 721 722 723 724 725 726 727 728 729		95% U 95% 95% Ga	CLs (Adjusted Modified ML)	95% Stu sted for S I-CLT UCL d-t UCL (Jo stribution T k star (bia	dent's-t UCL kewness) (Chen-1995) (chen-19	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421		Data appea	95% (97.5% (99% (Data D	Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI ficance Lev	0.251 0.314 0.437
717 718 719 720 721 722 723 724 725 726 727 728 729 730		95% U 95% 95% Ga	CLs (Adjusted Adjusted Modified Modified ML Proximate Adjusted Adj	95% Stu usted for S I-CLT UCL d-t UCL (Jo ustribution T k star (bia E of Standa	dent's-t UCL kewness) (Chen-1995) (hnson-1978) est as corrected) Theta Star MLE of Mean ard Deviation nu star e Value (.05) Significance	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122		Data appea	95% (97.5% (99% (Data D	Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI ficance Lev	0.251 0.314 0.437
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731		95% U 95% 95% Ga	CLs (Adjusted Adjusted Modified Modified ML Proximate Adjusted Adj	95% Stu usted for S I-CLT UCL d-t UCL (Jo ustribution T k star (bia E of Standa	dent's-t UCL kewness) (Chen-1995) (chen-19	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122		Data appea	95% (97.5% (99% (Data D ar Normal	Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI ficance Lev cs 6% CLT UCI ckknife UCI	0.251 0.314 0.437 el
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733		95% U 95% 95% Ga	CLs (Adjusted Adjusted Modified Modified Modified ML) ML proximate Adjuste Adjuste Adjuste	95% Stu usted for S I-CLT UCL d-t UCL (Jo etribution T k star (bia E of Standa e Chi Squar ed Level of usted Chi S	dent's-t UCL kewness) (Chen-1995) (hnson-1978) est as corrected) Theta Star MLE of Mean ard Deviation nu star e Value (.05) Significance	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726		Data appea	95% (97.5% (99% (Data D ar Normal (Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI ficance Lev cs % CLT UCI ckknife UCI otstrap UCI tstrap-t UCI	= 0.251 = 0.314 = 0.437 el = 0.165 = 0.178 = 0.16 = 0.256
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733		95% U 95% 95% Ga Ap	CLs (Adjusted Adjusted Adjuste	95% Stu sted for Si -CLT UCL d-t UCL (Jo stribution To k star (bia E of Standa Chi Squar ed Level of usted Chi Si on-Darling oarling 5% (www.edent's-t UCL kewness) (Chen-1995) (Chen-1978) est as corrected) Theta Star MLE of Mean and Deviation nu star e Value (.05) Significance Square Value Test Statistic Critical Value	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726		Data appea	95% (97.5% (99% (Data D Ar Normal (Nonparame	Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI icance Lev cs i% CLT UCI ckknife UCI otstrap UCI otstrap UCI	0.251 0.314 0.437 el 0.165 0.16 0.256 0.462
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735		95% U 95% 95% Ga Ap	CLs (Adjusted Adjusted Adjuste	95% Stu sted for Si -CLT UCL d-t UCL (Jo stribution T k star (bia E of Standa Chi Squar ed Level of usted Chi S on-Darling Oarling 5% (v-Smirnov	est as corrected) Theta Star MLE of Mean ard Deviation nu star e Value (.05) Significance Equare Value Test Statistic Critical Value Test Statistic	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726		Data appea	95% (97.5% (99% (97.5% (99% (99% (99% (99% (99% (99% (99% (9	Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI GENERAL SERVICE	- 0.251 - 0.314 - 0.437 el - 0.165 - 0.178 - 0.16 - 0.256 - 0.462 - 0.166
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736		95% U 95% 95% Ga Ap Ar Kolmo	CLs (Adjusted Adjusted Adjuste	95% Stu sted for Si -CLT UCL d-t UCL (Jo stribution T k star (bia E of Standa Chi Squar ed Level of usted Chi S on-Darling oarling 5% (v-Smirnov nirnov 5% (est as corrected) Theta Star MLE of Mean ard Deviation nu star e Value (.05) Significance Equare Value Test Statistic Critical Value Critical Value	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726 0.277 0.704 0.196 0.336		Data appea	95% (97.5% (99% (Data D Ar Normal (Nonparame 95% (95% F	Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI MVUE) UCI icance Lev cs i% CLT UCI ckknife UCI otstrap UCI otstrap UCI otstrap UCI otstrap UCI otstrap UCI otstrap UCI	- 0.251 - 0.314 - 0.437 el - 0.165 - 0.178 - 0.16 - 0.256 - 0.462 - 0.166 - 0.171
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737	Data appear	95% U 95% 95% Ga Ap Ar Kolmo	CLs (Adjusted Adjusted Adjuste	95% Stu sted for Si -CLT UCL d-t UCL (Jo stribution T k star (bia E of Standa Chi Squar ed Level of usted Chi S on-Darling oarling 5% (v-Smirnov nirnov 5% (est as corrected) Theta Star MLE of Mean ard Deviation nu star e Value (.05) Significance Equare Value Test Statistic Critical Value Critical Value	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726 0.277 0.704 0.196 0.336		Data appea	95% (97.5% (99% (97.5% (99% (99.5% (9	Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI MVUE) UCI CES 6% CLT UCI ckknife UCI cotstrap UCI	el 0.251 0.314 0.437 el 0.165 0.178 0.16 0.256 0.462 0.166 0.171 0.26
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737		95% U 95% 95% Ga Ap Ar Kolmor Gamn	CLs (Adjusted Adjusted Adjuste	95% Stu sted for Si I-CLT UCL d-t UCL (Jo stribution T k star (bia E of Standa Chi Squar ed Level of usted Chi S on-Darling barling 5% (v-Smirnov nirnov 5% (uted at 5%	est as corrected) Theta Star MLE of Mean ard Deviation nu star e Value (.05) Significance Gquare Value Test Statistic Critical Value Significance Significance	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726 0.277 0.704 0.196 0.336		Data appea	95% (97.5% (99% (97.5% (99% (97.5% (99% (97.5% (97.	Chebyshev (Chebys	95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI MVUE) UCI GENERAL STANCOLOGIC	- 0.251 - 0.314 - 0.437 el - 0.165 - 0.178 - 0.16 - 0.256 - 0.462 - 0.166 - 0.171 - 0.26 - 0.327
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737		95% U 95% 95% Ga Ap Ar Kolmor Gamn	CLs (Adjusted Adjusted Adjuste	95% Stu usted for Si I-CLT UCL d-t UCL (Jo stribution T k star (bia E of Standa Chi Squar ed Level of usted Chi S on-Darling or-Darling 5% (v-Smirnov nirnov 5% (uted at 5% nma Distrib	est as corrected) Theta Star MLE of Mean ard Deviation nu star e Value (.05) Significance Gquare Value Test Statistic Critical Value Significance Significance	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726 0.277 0.704 0.196 0.336 e Level		Data appea	95% (97.5% (99% (97.5% (99% (97.5% (99% (97.5% (97.	Chebyshev (Chebyshev (95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI MVUE) UCI GENERAL STANCOLOGIC	- 0.251 - 0.314 - 0.437 el - 0.165 - 0.178 - 0.16 - 0.256 - 0.462 - 0.166 - 0.171 - 0.26 - 0.327
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740		95% U 95% 95% Ga Ap Ar Kolmor Gamn	CLs (Adjusted Adjusted Adjuste	95% Stu sted for Si I-CLT UCL d-t UCL (Jo stribution T k star (bia e Chi Squar ed Level of usted Chi S on-Darling oarling 5% (v-Smirnov nirnov 5% (uted at 5% nma Distrib proximate (s)	est as corrected) Theta Star MLE of Mean ard Deviation e Value (.05) Significance Guare Value Test Statistic Critical Value Test Statistic Critical Value Significance Significance Significance Significance Critical Value	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726 0.277 0.704 0.196 0.336 e Level		Data appea	95% (97.5% (99% (97.5% (99% (97.5% (99% (97.5% (97.	Chebyshev (Chebys	95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI MVUE) UCI GENERAL STANCOLOGIC	- 0.251 - 0.314 - 0.437 el - 0.165 - 0.178 - 0.16 - 0.256 - 0.462 - 0.166 - 0.171 - 0.26 - 0.327
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741		95% U 95% 95% Ga Ap Ar K Kolmor Gamn	CLs (Adjusted Adjusted Adjuste	95% Stu sted for Si I-CLT UCL d-t UCL (Jo stribution T k star (bia c Chi Squar ed Level of usted Chi S on-Darling origina 5% (v-Smirnov nirnov 5% (uted at 5% nma Distrit proximate (o Adjusted (dent's-t UCL kewness) (Chen-1995) chnson-1978) est as corrected) Theta Star MLE of Mean ard Deviation nu star e Value (.05) significance Equare Value Test Statistic Critical Value Test Statistic Critical Value Significance Significance Significance Critical Value Critical Value Significance Critical Value Critical Value Critical Value Significance Critical Value	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726 0.277 0.704 0.196 0.336 e Level		Data appea	95% (97.5% (99% (1	Chebyshev (Chebys	95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI MVUE) UCI GENERAL SERVINE SER	el 0.251 0.314 0.437 el 0.165 0.178 0.16 0.256 0.462 0.166 0.171 0.26 0.327 0.457
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741		95% U 95% 95% Ga Ap Ar K Kolmor Gamn	CLs (Adjusted Adjusted Adjuste	95% Stu sted for Si I-CLT UCL d-t UCL (Jo stribution T k star (bia e Chi Squar ed Level of usted Chi S on-Darling oarling 5% (v-Smirnov nirnov 5% (uted at 5% nma Distrib proximate (s)	dent's-t UCL kewness) (Chen-1995) chnson-1978) est as corrected) Theta Star MLE of Mean ard Deviation nu star e Value (.05) significance Equare Value Test Statistic Critical Value Test Statistic Critical Value Significance Significance Significance Critical Value Critical Value Significance Critical Value Critical Value Critical Value Significance Critical Value	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726 0.277 0.704 0.196 0.336 e Level		Data appea	95% (97.5% (99% (1	Chebyshev (Chebys	95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI MVUE) UCI GENERAL SERVINE SER	el 0.251 0.314 0.437 el 0.165 0.178 0.16 0.256 0.462 0.166 0.171 0.26 0.327 0.457
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743	Data appear	95% U 95% 95% 95% Ga Ap	CLs (Adjusted Adjusted Adjuste	95% Stu sted for Si I-CLT UCL d-t UCL (Jo stribution T k star (bia c Chi Squar ed Level of usted Chi S on-Darling or-Darling or-Darling 5% (v-Smirnov nirnov 5% (uted at 5% mma Distrib proximate (s) Adjusted () UCL to Us	dent's-t UCL kewness) (Chen-1995) chnson-1978) est as corrected) Theta Star MLE of Mean ard Deviation nu star e Value (.05) significance Equare Value Test Statistic Critical Value Test Statistic Critical Value Significance Significance Critical Value	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726 0.277 0.704 0.196 0.336 e Level		Data appea	95% (97.5% (99% (97.5% (99% (97.5% (99% (97.5% (99% (97.5% (99% (99% (99% (99% (99% (99% (99% (9	Chebyshev (Chebys	95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI MVUE) UCI GENERAL SENSION SENS	el 0.251 0.314 0.437 el 0.165 0.178 0.16 0.256 0.462 0.166 0.171 0.26 0.327 0.457
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745	Data appear	95% U 95% U 95% 95% Ga Ap Ar K Kolmor Gamn Assu	CLs (Adjusted Adjusted Adjuste	95% Stu sted for Si I-CLT UCL I-t UCL (Jo stribution T k star (bia Chi Squar ed Level of usted Chi S on-Darling or-Darling 5% (v-Smirnov nirnov 5% (uted at 5% nma Distrib proximate (b) Adjusted (c) UCL to Use the selecti	dent's-t UCL kewness) (Chen-1995) chnson-1978) est as corrected) Theta Star MLE of Mean ard Deviation nu star e Value (.05) Significance Square Value Test Statistic Critical Value Test Statistic Critical Value Significance Support Statistic Critical Value Significance Critical Value Critical Value Significance Critical Value	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726 0.277 0.704 0.196 0.336 e Level	rovided to he	Data appea	95% (97.5% (99% (97.5% (99% (97.5% (99% (97.5% (99% (99% (99% (99% (99% (99% (99% (9	Chebyshev (Chebys	95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI MVUE) UCI MVUE) UCI Cost Cost Cost Cost Cost Cost Cost Cost	el 0.251 0.314 0.437 el 0.165 0.178 0.16 0.256 0.166 0.171 0.26 0.327 0.457
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743	Data appear	95% U 95% U 95% 95% 95% Ga Ap Ar K Kolmor Gamn Assu	CLs (Adjusted Adjusted Adjuste	95% Stu sted for Si I-CLT UCL d-t UCL (Jo stribution T k star (bia Chi Squar ed Level of usted Chi S on-Darling or-Darling 5% (v-Smirnov nirnov 5% (uted at 5% uted at 5% UCL to Use the selecti re based u	dent's-t UCL kewness) (Chen-1995) chnson-1978) est as corrected) Theta Star MLE of Mean ard Deviation nu star e Value (.05) significance Equare Value Test Statistic Critical Value Test Statistic Critical Value Significance Significance Critical Value	0.186 0.181 1.148 0.0927 0.107 0.0994 13.78 6.421 0.0122 4.726 0.277 0.704 0.196 0.336 e Level 0.229 0.31	rovided to he imulation st	Data appea	95% (97.5% (99% (97.5% (99% (97.5% (99% (97.5% (99% (99% (99% (99% (99% (99% (99% (9	Chebyshev (Chebyshev (Chebyshev (Chebyshev (Chebyshev (Chebyshev (Chebyshev (Chebyshev (Statisting 195%) Standard Boyon (Standard Boyon (Stand	95% H-UCI MVUE) UCI MVUE) UCI MVUE) UCI MVUE) UCI MVUE) UCI Cost Cost Cost Cost Cost Cost Cost Cost	el 0.251 0.314 0.437 el 0.165 0.178 0.16 0.256 0.166 0.171 0.26 0.327 0.457

	Α	В	С	1	D		E		F	G		Н	1	ı	Т	J		K	T	ı
748	Mercury-El			-					<u> </u>	<u> </u>				•				- 11		_
749																				
750								Ge	neral	Statistics	;									
751			Numb	oer of	Valid (Obse	ervations	45					Νι	ımber	of [Distinc	t Obs	ervation	s 39	
752																				
753			Raw	Stati	stics							L	.og-tr	ansfo	rme	d Stat	istics			
754						N	Minimum	n 0.064	1 5									Log Dat	a -2.	741
755						N	laximum	11.45	5									Log Dat		
756							Mear	2.439	9									log Dat		
757							Mediar	1.99									SD of	log Dat	a 1.1	68
758							SD	2.496	3									_		
759					Std. E	rror	of Mear	n 0.372	2											
760				Со	efficien	t of \	√ariation	1.023	3											
761						Sł	kewness	2.278	3											
762																				
763								Relev	ant U	CL Statist	tics	3								
764			Normal Dis									Lo	ogno			ributio				
765							Statistic											t Statisti		
766							al Value	0.945	5									cal Valu		45
767		Data not	Normal at	5%	Signific	anc	e Level					Data not L	ogno	rmal a	at 5	% Sig	nifica	nce Lev	rel	
768																				
769		As	suming No									Assu	ıming	J Logr	norr	nal Dis				
770							's-t UCL	3.064	1									% H-UC		
771			UCLs (Adj															UE) UC		
772		95	5% Adjuste	d-CL	T UCL	(Che	en-1995)	3.186	3									UE) UC		
773		9	5% Modifie	ed-t U	ICL (Jo	hnsc	on-1978)	3.085	5	99% Chebyshev (MVUE) UCL 8.							L 8.8	13		
774	-																			
775		(Gamma Di	strib	ution T	est										ibutior				
776				k s	star (bia		orrected			Data	a ap	ppear Gar	nma	Distril	bute	ed at 5	% Sig	gnifican	ce L	evel
777							neta Sta													
778							of Mear	_												
779			MI	LE of	Standa	ard D	eviation													
780							nu sta		3											
781			Approximat									l	Nonp	aram	etric	c Stati				
782							nificance											CLT UC		
783			Ad	djuste	d Chi S	Squa	re Value	73.27	7									nife UC		
784														95%				trap UC		
785							Statistic											ap-t UC		
786			Anderson-l															trap UC		
787			Kolmogoro															trap UC		
788			mogorov-S															trap UC		
789	Data a	ppear Gar	nma Distril	bute	d at 5%	Sig	nificano	e Lev	el									Sd) UC		
790																		Sd) UC		
791		Ass	suming Ga					1					99	% Ch	eby	shev(N	/lean,	Sd) UC	L 6.1	41
792							ma UCL		_											
793			959	% Ad	justed (Gam	ma UCL	3.17	7										1	
794																				_
795			Potential	UCL	to Us	e						l	Jse 9	5% Ap	ppro	oximate	e Gan	nma UC	L 3.1	5
796										L			1							
797			regarding																	
798	These		endations a																(200	2)
799		ar	nd Singh a	nd S	ingh (2	003)	. For a	additio	nal ins	sight, the	use	er may wa	int to	cons	ult a	a statis	sticia	า.		

	Α	В	С	Т	D	T	E		F	G	1	Н		ı	Г	J	Т	K		1
800	Mercury-El									u	- 1		ı		-	<u> </u>		- 11	-	
801																				
802								Ge	neral	Statistics										
803			Numb	er of	Valid 0	Obse	rvations						Nur	nber c	of Dis	stinct	Obse	rvation	s 12	
804																				
805			Raw	Statis	stics							L	og-tra	nsfor	med	Statis	stics			
806						N	/linimum	n 0.177	7									og Dat	a -1.7	732
807						N	laximum	n 9.15										og Dat		
808							Mear	2.602	2									log Data		
809							Mediar	1.415	5							S	D of	log Data	a 1.2	51
810							SD	2.815	5											
811					Std. E	rror	of Mear	0.813	3											
812				Coe	efficien	t of \	/ariatior	1.082	2											
813						Sł	cewness	1.397	7											
814								•												
815								Releva	ant U	CL Statisti	ics									
816			Normal Dis	stribu	ition Te	est						Lo	gnorn	nal Di	strib	ution	Test			
817			S	hapir	o Wilk	Test	Statistic	0.829)				_					Statisti	c 0.9	73
818			Sł	hapiro	Wilk (Critic	al Value	0.859)									al Valu		59
819		Data not	Normal at	5% 5	Signific	anc	e Level	•			Data	appear	Logno	ormal	at 5	% Sig	nifica	ance Le	evel	
820																				
821		As					Assu	ming	Logno	orma	I Dist	ributi	on							
822		Assuming Normal Distribution 95% Student's-t UCL																H-UC		
823		95%	UCLs (Adj	usted	d for SI	kewi	ness)						9	5% C	heby	/shev	(MVL	JE) UC	L 7.4	94
824			% Adjuste															JE) UC		
825		9	5% Modifie	ed-t U	CL (Jo	hnsc	n-1978)	4.117	7				9	9% C	heby	/shev	(MVL	JE) UC	L 13.	56
826																				
827			Gamma Di	stribu	ution Te	est							Da	ita Dis	strib	ution				
828				k s	star (bia		orrected)			Data	app	ear Gan	nma D	istrib	uted	at 5%	6 Sig	nifican	ce Le	vel
829							eta Sta													
830					N	MLE	of Mear	2.602	2											
831			ML	LE of	Standa	ard D	eviation	2.989	9											
832							nu sta													
833		F	Approximate									ľ	Nonpa	rame	tric S					
834							nificance											LT UC		
835			Ad	ljuste	d Chi S	Squa	re Value	8.587	7									nife UC		
836													g	95% S				rap UC		
837							Statistic											p-t UC		
838			Anderson-I															rap UC		
839			Kolmogoro										95					rap UC		
840			mogorov-S															rap UC		
841	Data a	ppear Gar	nma Distril	buted	l at 5%	Sig	nificano	e Leve	əl									Sd) UC		
842																		Sd) UC		
843		Ass	suming Ga										99%	6 Chel	bysh	ev(Me	ean, S	Sd) UC	L 10.	69
844							ma UCL													
845			959	% Adj	usted (Gam	ma UCL	5.513	3											
846																				
847			Potential	UCL	to Use	е						L	Jse 95	% App	prox	imate	Gam	ma UC	4.9	68
848																				
849			regarding																	
850	These		endations a																(200	2)
851		ar	nd Singh a	nd Si	ngh (2	003)	. For a	dditio	nal ins	ight, the ι	user	may wa	nt to c	consu	lt a s	statist	ician			

1	ABCDEF	G H I J K L
852	Mercury-EU4	
853	•	
854		Statistics
855	Number of Valid Observations 14	Number of Distinct Observations 14
856		
857	Raw Statistics	Log-transformed Statistics
858	Minimum 0.015	Minimum of Log Data -4.2
859	Maximum 2.3	Maximum of Log Data 0.833
860	Mean 0.499	Mean of log Data -1.928
861	Median 0.0785	SD of log Data 1.766
862	SD 0.697	
863	Std. Error of Mean 0.186	
864	Coefficient of Variation 1.398	
865	Skewness 1.601	
866		
867		CL Statistics
868	Normal Distribution Test	Lognormal Distribution Test
869	Shapiro Wilk Test Statistic 0.737 Shapiro Wilk Critical Value 0.874	Shapiro Wilk Test Statistic 0.881 Shapiro Wilk Critical Value 0.874
870 871	Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level
871	Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level
873	Assuming Normal Distribution	Assuming Lognormal Distribution
874	95% Student's-t UCL 0.829	95% H-UCL 5.435
875	95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL 1.839
876	95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 0.89	97.5% Chebyshev (MVUE) UCL 2.396
877	95% Modified-t UCL (Johnson-1978) 0.842	99% Chebyshev (MVUE) UCL 3.489
878	3070 Modified (302 (001110011 1070) 0.042	55% Chebyshev (MVCE) CCE C.405
879	Gamma Distribution Test	Data Distribution
880	k star (bias corrected) 0.451	Data appear Lognormal at 5% Significance Level
881	Theta Star 1.105	
882	MLE of Mean 0.499	
883	MLE of Standard Deviation 0.742	
883 884		
	MLE of Standard Deviation 0.742	Nonparametric Statistics
884	MLE of Standard Deviation 0.742 nu star 12.63	95% CLT UCL 0.805
884 885	MLE of Standard Deviation 0.742 nu star 12.63 Approximate Chi Square Value (.05) 5.645	95% CLT UCL 0.805 95% Jackknife UCL 0.829
884 885 886 887 888	MLE of Standard Deviation 0.742 nu star 12.63 Approximate Chi Square Value (.05) 5.645 Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799
884 885 886 887 888 889	MLE of Standard Deviation 0.742 nu star 12.63 Approximate Chi Square Value (.05) 5.645 Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989
884 885 886 887 888 889	MLE of Standard Deviation 0.742 nu star 12.63 Approximate Chi Square Value (.05) 5.645 Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861
884 885 886 887 888 889 890	MLE of Standard Deviation 0.742 nu star 12.63 Approximate Chi Square Value (.05) 5.645 Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819
884 885 886 887 888 889 890 891	MLE of Standard Deviation 0.742 nu star 12.63 Approximate Chi Square Value (.05) 5.645 Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266 Kolmogorov-Smirnov 5% Critical Value 0.241	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819 95% BCA Bootstrap UCL 0.893
884 885 886 887 888 889 890 891 892 893	MLE of Standard Deviation 0.742 nu star 12.63 Approximate Chi Square Value (.05) 5.645 Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819 95% BCA Bootstrap UCL 0.893 95% Chebyshev(Mean, Sd) UCL 1.311
884 885 886 887 888 890 891 892 893 894	MLE of Standard Deviation nu star 12.63 Approximate Chi Square Value (.05) 5.645 Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266 Kolmogorov-Smirnov 5% Critical Value 0.241 Data not Gamma Distributed at 5% Significance Level	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819 95% BCA Bootstrap UCL 0.893 95% Chebyshev(Mean, Sd) UCL 1.311 97.5% Chebyshev(Mean, Sd) UCL 1.662
884 885 886 887 888 889 890 891 892 893 894	MLE of Standard Deviation nu star 12.63 Approximate Chi Square Value (.05) 5.645 Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266 Kolmogorov-Smirnov 5% Critical Value 0.241 Data not Gamma Distributed at 5% Significance Level Assuming Gamma Distribution	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819 95% BCA Bootstrap UCL 0.893 95% Chebyshev(Mean, Sd) UCL 1.311
884 885 886 887 888 889 890 891 892 893 894 895	MLE of Standard Deviation nu star 12.63 Approximate Chi Square Value (.05) 5.645 Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266 Kolmogorov-Smirnov 5% Critical Value 0.241 Data not Gamma Distributed at 5% Significance Level Assuming Gamma Distribution 95% Approximate Gamma UCL 1.116	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819 95% BCA Bootstrap UCL 0.893 95% Chebyshev(Mean, Sd) UCL 1.311 97.5% Chebyshev(Mean, Sd) UCL 1.662
884 885 886 887 888 890 891 892 893 894 895 896	MLE of Standard Deviation nu star 12.63 Approximate Chi Square Value (.05) 5.645 Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266 Kolmogorov-Smirnov 5% Critical Value 0.241 Data not Gamma Distributed at 5% Significance Level Assuming Gamma Distribution	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819 95% BCA Bootstrap UCL 0.893 95% Chebyshev(Mean, Sd) UCL 1.311 97.5% Chebyshev(Mean, Sd) UCL 1.662
884 885 886 887 888 890 891 892 893 894 895 896 897	MLE of Standard Deviation nu star 12.63 Approximate Chi Square Value (.05) Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266 Kolmogorov-Smirnov 5% Critical Value 0.241 Data not Gamma Distributed at 5% Significance Level Assuming Gamma Distribution 95% Approximate Gamma UCL 1.116 95% Adjusted Gamma UCL 1.25	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819 95% BCA Bootstrap UCL 0.893 95% Chebyshev(Mean, Sd) UCL 1.311 97.5% Chebyshev(Mean, Sd) UCL 1.662 99% Chebyshev(Mean, Sd) UCL 2.353
884 885 886 887 888 890 891 892 893 894 895 896 897 898	MLE of Standard Deviation nu star 12.63 Approximate Chi Square Value (.05) Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266 Kolmogorov-Smirnov 5% Critical Value 0.241 Data not Gamma Distributed at 5% Significance Level Assuming Gamma Distribution 95% Approximate Gamma UCL 1.116 95% Adjusted Gamma UCL 1.25	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819 95% BCA Bootstrap UCL 0.893 95% Chebyshev(Mean, Sd) UCL 1.311 97.5% Chebyshev(Mean, Sd) UCL 1.662 99% Chebyshev(Mean, Sd) UCL 2.353
884 885 886 887 888 890 891 892 893 894 895 896 897 898 899	MLE of Standard Deviation nu star 12.63 Approximate Chi Square Value (.05) Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266 Kolmogorov-Smirnov 5% Critical Value 0.241 Data not Gamma Distributed at 5% Significance Level Assuming Gamma Distribution 95% Approximate Gamma UCL 1.116 95% Adjusted Gamma UCL 1.25	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819 95% BCA Bootstrap UCL 0.893 95% Chebyshev(Mean, Sd) UCL 1.311 97.5% Chebyshev(Mean, Sd) UCL 1.662 99% Chebyshev(Mean, Sd) UCL 2.353
884 885 886 887 888 890 891 892 893 894 895 896 897 898 899 900	MLE of Standard Deviation nu star 12.63 Approximate Chi Square Value (.05) Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266 Kolmogorov-Smirnov 5% Critical Value 0.241 Data not Gamma Distributed at 5% Significance Level Assuming Gamma Distribution 95% Approximate Gamma UCL 1.116 95% Adjusted Gamma UCL 1.25 Potential UCL to Use Recommended UCL exceed	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819 95% BCA Bootstrap UCL 0.893 95% Chebyshev(Mean, Sd) UCL 1.311 97.5% Chebyshev(Mean, Sd) UCL 1.662 99% Chebyshev(Mean, Sd) UCL 2.353 Use 99% Chebyshev (Mean, Sd) UCL 2.353 ds the maximum observation
884 885 886 887 888 890 891 892 893 894 895 896 897 898 899 900	MLE of Standard Deviation nu star 12.63 Approximate Chi Square Value (.05) Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266 Kolmogorov-Smirnov 5% Critical Value 0.241 Data not Gamma Distributed at 5% Significance Level Assuming Gamma Distribution 95% Approximate Gamma UCL 1.116 95% Adjusted Gamma UCL 1.25 Potential UCL to Use Recommended UCL exceed Note: Suggestions regarding the selection of a 95% UCL are principle.	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819 95% BCA Bootstrap UCL 0.893 95% Chebyshev(Mean, Sd) UCL 1.311 97.5% Chebyshev(Mean, Sd) UCL 1.662 99% Chebyshev(Mean, Sd) UCL 2.353 Use 99% Chebyshev (Mean, Sd) UCL 2.353 ds the maximum observation
884 885 886 887 888 890 891 892 893 894 895 896 897 898 899 900	MLE of Standard Deviation nu star 12.63 Approximate Chi Square Value (.05) Adjusted Level of Significance 0.0312 Adjusted Chi Square Value 5.039 Anderson-Darling Test Statistic 0.916 Anderson-Darling 5% Critical Value 0.792 Kolmogorov-Smirnov Test Statistic 0.266 Kolmogorov-Smirnov 5% Critical Value 0.241 Data not Gamma Distributed at 5% Significance Level Assuming Gamma Distribution 95% Approximate Gamma UCL 1.116 95% Adjusted Gamma UCL 1.25 Potential UCL to Use Recommended UCL exceed Note: Suggestions regarding the selection of a 95% UCL are properties.	95% CLT UCL 0.805 95% Jackknife UCL 0.829 95% Standard Bootstrap UCL 0.799 95% Bootstrap-t UCL 0.989 95% Hall's Bootstrap UCL 0.861 95% Percentile Bootstrap UCL 0.819 95% BCA Bootstrap UCL 0.893 95% Chebyshev(Mean, Sd) UCL 1.311 97.5% Chebyshev(Mean, Sd) UCL 1.662 99% Chebyshev(Mean, Sd) UCL 2.353 Use 99% Chebyshev (Mean, Sd) UCL 2.353 ds the maximum observation

	Α	В		С	D	Е	F	G	Н	I		J		K		L
	Mercury-El	J5	•			•	•	•	•	•					•	
906								al Statistics								
907				Numbe	er of Valid (Observation	ons 22			Numbe	r of	Distinct (Obse	rvation	s 22	
908																
909				Raw St	tatistics				L	og-transfo	orm	ed Statis	tics			
910							um 0.037					Minimum				
911							um 4.25					Maximum				
912							ean 0.971							log Data		
913							lian 0.35					SI	D of	log Data	a 1.5	07
914 915					0.1		SD 1.295 ean 0.276									
915					Coefficien											
917					Coemicien		ess 1.491									
917						Skewii	ess 1.491									
919							Relevant	UCL Statistic	e							=
920			Norn	nal Diet	ribution To	aet	Relevant	OCE Statistic		gnormal	Diet	ribution	Taei	·		
921			140111		apiro Wilk		stic 0 721					oiro Wilk			c 0 9	42
922					apiro Wilk (oiro Wilk (
923		Data n	ot Norr		5% Signific			D	ata appear							
924					70 G.g.				пи прроц							
925		Α	Assumi	ng Nori	mal Distrib	ution			Assu	ming Log	nor	mal Disti	ribut	ion		
926							JCL 1.446							6 H-UCI	L 3.4	95
927		959	% UCL	s (Adju	sted for S	kewness))			95%	Che	ebyshev (
928					-CLT UCL							ebyshev (
929			95% N	/lodified	l-t UCL (Jo	hnson-19	78) 1.46			99%	Che	ebyshev ((MVI	JE) UC	L 5.1	32
930																
931			Gam	ma Dist	tribution T							ribution				
932					k star (bia		ed) 0.582	Data Foll	ow Appr. G	amma Di	strit	oution at	5%	Signific	ance	Level
933							Star 1.666									
934							ean 0.971									
935				MLE	of Standa											
936							star 25.62									
937							05) 15.09		<u> </u>	lonparam	netri					0.5
938							nce 0.0386							CLT UCI		
939				Aajı	usted Chi S	square va	ilue 14.49			0E9/	Cto	95% Ja andard Bo		nife UCI		
940				\ ndorco	n-Darling	Toot Stati	ctic 0.705			95%		95% Boo				
942					arling 5% (Hall's Bo				
943					/-Smirnov							centile Bo				
944		K			nirnov 5% (6 BCA Bo				
945	Data follo						ficance Level					/shev(Me				
946	2 3 3 1 5 11 0							-		97.5% Ch						
947		Α	ssumii	ng Gam	nma Distril	oution	1					/shev(Me				
948							JCL 1.648									-
949							JCL 1.717									
950																
951			Pot	tential (JCL to Us	е			U	se 95% A	Appr	oximate (Gam	ma UC	L 1.6	48
952		<u> </u>		·												
953								provided to h								
954	These							simulation st							(200	2)
955			and Si	ngh and	d Singh (2	003). Fo	or additional i	nsight, the us	ser may wa	nt to cons	sult	a statisti	ician	1.		

	Α	В	С		D		E		F	G		Н			T	J			K		1
956	Mercury-El									<u> </u>		- ''		'	_	- 0			- 13		
957																					
958								Ge	eneral	Statistics											
959			Numb	er of \	Valid (Obse	rvations				-		- 1	Numbe	r of	Distin	ct Ol	bsei	vation	s 11	
960																					
961			Raw	Statist	tics							L	Log-	transfo	orm	ed Sta	atisti	cs			
962						N	/linimum	1 0.02	95										og Dat	a -3.	525
963						М	laximum	1 0.37	5										og Dat		
964							Mear	า 0.08	34										og Dat		
965							Mediar	า 0.05	2										og Dat		
966							SD	0.09	94												
967					Std. E	rror	of Mear	า 0.03													
968				Coe	fficien	t of \	/ariatior	า 1.19	3												
969						Sk	ewness	s 3.01	5												
970	•									•											
971								Relev	ant U	CL Statis	tics	S									
972			Normal Dis	stribut	ion Te	est						L	.ogn	ormal	Dis	tributio	on To	est			
973			S	hapiro	Wilk	Test	Statistic	0.54	1										Statisti	c 0.8	22
974			Sł	napiro	Wilk (Critic	al Value	e 0.85						S	hap	oiro Wi	lk Cr	ritica	al Valu	e 0.8	5
975		Data not	Normal at	5% S	ignific	ance	e Level					Data not L	_ogr	ormal	at !	5% Sig	gnific	can	ce Lev	el	
976																					
977		As					Ass	umi	ng Log	nor	mal D	istrib	outio	on							
978			_ 0.13	8								ç	95%	H-UC	L 0.1	38					
979		95%	UCLs (Adj	usted	for SI	kewr	ness)	•						95%	Che	ebyshe	ev (N	/IVU	E) UC	L 0.1	5
980			% Adjuste											97.5%	Che	ebyshe	ev (N	/IVU	E) UC	L 0.1	82
981		9	5% Modifie	ed-t UC	CL (Jo	hnsc	n-1978)	0.14	2					99%	Che	ebyshe	ev (N	/IVU	E) UC	L 0.2	46
982																				·	
983		(Gamma Di	stribut	tion To	est								Data [Dist	ributio	n				
984				k st	tar (bia	as co	rrected) 1.28	2	[Dat	a do not f	ollo	w a Dis	sce	rnable	Dis	trib	ution (0.05)	
985						Th	eta Sta	r 0.06	5												
986					N	MLE	of Mear	า 0.08	34												
987			ML	LE of S	Standa	ard D	eviation	า 0.07	36												
988							nu sta														
989		A	Approximate	e Chi	Square	e Va	lue (.05)) 17.0	9				Nor	nparam	netr	ic Stat					
990			Adjus	ted Le	evel of	Sign	nificance	e 0.02	78										LT UC		
991			Ad	ljusted	I Chi S	Squa	re Value	e 15.6	9							95%	Jac	kkn	ife UC	L 0.1	38
992		·										·		95%	Sta				ap UC		
993		·					Statistic												p-t UC		
994		·	Anderson-l																ap UC		
995			Kolmogoro																ap UC		
996			mogorov-S																ap UC		
997	Data	not Gamr	na Distribu	ited at	5% S	Signif	ficance	Level						95% Ch							
998														.5% Cr							
999		Ass	suming Ga					1					Ç	99% Ch	neby	yshev(Mea	n, S	d) UC	L 0.3	82
1000							ma UCL														
1001			959	% Adju	usted (Gam	ma UCL	_ 0.15													
1002																					
1003			Potential	UCL	to Use	е						Us	se 9	5% Ch	eby	shev (Mea	n, S	d) UC	L 0.2	14
1004		·																			
1005			regarding																		
1006	These		endations a																	(200	2)
1007		aı	nd Singh a	nd Sin	igh (2	003)	. For a	additic	nal in	sight, the	us	er may wa	ant	to cons	sult	a stat	istic	ian.			

	Α	В	С	D	E	F	G	Н		J	K	L
1008	Mercury-E	U9										•
1009												
1010							Statistics					
1011			Numbe	r of Valid C)bservations	8			Number of	of Distinct O	oservations	8
1012			D 04	-41-41								
1013 1014			Raw St	atistics	Minimum	0.02		L	og-transfori	med Statisti	cs of Log Data	2.012
1014					Maximum						of Log Data	
1016						0.0999					of log Data	
1017					Median						of log Data	
1018						0.0535						
1019					rror of Mean							
1020				Coefficient	of Variation							
1021					Skewness	0.354						
1022												
1023 1024					Morning, 7	Thoro oro or	aly 9 Valuas	in this dat				
1024		Not	te: It should				nly 8 Values			on this data	eet	
1026		1401					e reliable en				361,	
1027				roouning	<u>odiodidilorio</u>	may not be	Tonable on	ough to un	an concide	0110		
1028		The I	iterature sug	gests to u	se bootstra	p methods	on data sets	s having m	ore than 10	-15 observa	ations.	
1029						•						
1030						Relevant U	CL Statistics					
1031			Normal Dist			T		Lo		stribution T		T
1032					est Statistic					apiro Wilk To		
1033		D-4			ritical Value					apiro Wilk C		
1034 1035		Data appea	ar Normal at	5% Signit	icance Leve)	Da	ata appear	Lognormai	at 5% Signi	ricance Le	vei
1035		Δεσ	suming Norr	nal Dietrib	ution			Δεει	ımina Loan	ormal Distril	nution	
1037		7.30	summy Non		dent's-t UCL	0.136		7330	illing Logic		95% H-UCL	0.218
1038		95%	UCLs (Adjus			0.100			95% C	hebyshev (N		
1039			5% Adjusted-			0.134				hebyshev (N		
1040		9:	5% Modified	t UCL (Job	nson-1978)	0.136			99% C	hebyshev (N	IVUE) UCL	0.359
1041												
1042			Gamma Dist			10011				stribution		
1043				k star (bia	s corrected)			Data appea	ar Normal a	t 5% Signifi	cance Leve)
1044 1045				N.	Theta Star							
1045			MI F		rd Deviation							
1047			IVILL	or otarida	nu star							
1048		Α	Approximate	Chi Square	Value (.05)	20.6			Vonparame	tric Statistic	s	
1049			Adjuste	d Level of	Significance	0.0195			-	959	% CLT UCL	0.131
1050			Adju	sted Chi S	quare Value	18.21					kknife UCL	
1051						2.21:			95% S	tandard Boo		
1052					est Statistic				05		strap-t UCL	
1053 1054			Anderson-Da Kolmogorov							% Hall's Boo		
1054			mogorov-Sm							ercentile Boo 5% BCA Boo		
1056	Data a		nma Distribu							byshev(Mea		
1057	2414	-pro- odi			gou.10					byshev(Mea		
1058		Ass	suming Gam	ma Distrib	ution	•				byshev(Mea		
1059			95% App	roximate C	amma UCL							
1060			95%	Adjusted C	Gamma UCL	0.179						
1061												
1062			Potential L	ICL to Use)				Us	e 95% Stud	ent's-t UCL	0.136
1063	Note: 0	ummacilar -	الاحداليومومون	- المحمد مط	OE0/	LICI ara	 	alm Alam vor s	l nao actaota	 		EN LICE
1064			regarding t									
1065 1066	ines		endations are nd Singh and									2002)
1000		di	ia onign and	ı oniyil (20	יטטן. ו־טומ	wannonai ili	agni, inc us	or may wa	int to consu	ห a อเลแอแบ	ium.	

APPENDIX J DIRECT CONTACT RAGS 7 TABLES

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcul	ations			Non-Cance	r Hazard Cald	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/	Unit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C1-EU2	Ingestion	Total PCBs	4.61E+01	mg/kg	6.3E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-06	4.4E-06	mg/kg-day	2.0E-05	mg/kg-day	0.2
			Ingestion Total								1E-06					0.2
			PCB Dioxin-like Co	ngener TEQ Ingestion	9.32E-05	mg/kg	1.3E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-07	8.8E-12	mg/kg-day	7.0E-10	mg/kg-day	0.01
			Dermal	Total PCBs	4.61E+01	mg/kg	2.7E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	5E-06	1.9E-05	mg/kg-day	2.0E-05	mg/kg-day	0.9
			Dermal Total								5E-06					0.9
			PCB Dioxin-like Co	ngener TEQ Dermal	9.32E-05	mg/kg	5.4E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-07	3.8E-11	mg/kg-day	7.0E-10	mg/kg-day	0.05
		C1-EU2 Total									7E-06					1
	•	Surface Soil at C2N-EU1	Ingestion	Total PCBs	1.63E+01	mg/kg	2.2E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-07	1.5E-06	mg/kg-day	2.0E-05	mg/kg-day	0.08
				Mercury	1.33E+00	mg/kg	6.0E-08	mg/kg-day	NA		NA	4.2E-07	mg/kg-day	3.0E-04	mg/kg-day	0.001
			Ingestion Total								4E-07					0.08
			PCB Dioxin-like Co	ngener TEQ Ingestion	3.29E-05	mg/kg	4.5E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-08	3.1E-12	mg/kg-day	7.0E-10	mg/kg-day	0.004
			Dermal	Total PCBs	1.63E+01	mg/kg	9.4E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-06	6.6E-06	mg/kg-day	2.0E-05	mg/kg-day	0.3
		,		Mercury	1.33E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-06					0.3
			PCB Dioxin-like Co	ngener TEQ Dermal	3.29E-05	mg/kg	1.9E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-07	1.3E-11	mg/kg-day	7.0E-10	mg/kg-day	0.02
		C2N-EU1 Total									3E-06					0.4
		Surface Soil at C3N-EU1	Ingestion	Total PCBs	2.32E+01	mg/kg	3.2E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	6E-07	2.2E-06	mg/kg-day	2.0E-05	mg/kg-day	0.1
		,		Mercury	3.32E+00	mg/kg	1.5E-07	mg/kg-day	NA		NA	1.1E-06	mg/kg-day	3.0E-04	mg/kg-day	0.004
			Ingestion Total								6E-07					0.1
			PCB Dioxin-like Co	ngener TEQ Ingestion	4.14E-05	mg/kg	5.6E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-08	3.9E-12	mg/kg-day	7.0E-10	mg/kg-day	0.006
			Dermal	Total PCBs	2.32E+01	mg/kg	1.3E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	3E-06	9.4E-06	mg/kg-day	2.0E-05	mg/kg-day	0.5
		,		Mercury	3.32E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								3E-06					0.5
			PCB Dioxin-like Co	ngener TEQ Dermal	4.14E-05	mg/kg	2.4E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-07	1.7E-11	mg/kg-day	7.0E-10	mg/kg-day	0.02
		C3N-EU1 Total									4E-06					0.6
		Surface Soil at C3N-EU2	Ingestion	Total PCBs	3.69E+01	mg/kg	5.0E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-06	3.5E-06	mg/kg-day	2.0E-05	mg/kg-day	0.2
		,		Mercury	4.62E+00	mg/kg	2.1E-07	mg/kg-day	NA		NA	1.5E-06	mg/kg-day	3.0E-04	mg/kg-day	0.005
			Ingestion Total								1E-06					0.2
]		ngener TEQ Ingestion	9.70E-05	mg/kg	1.3E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-07	9.2E-12	mg/kg-day	7.0E-10	mg/kg-day	0.01
			Dermal	Total PCBs	3.69E+01	mg/kg	2.1E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-06	1.5E-05	mg/kg-day	2.0E-05	mg/kg-day	0.7
		1		Mercury	4.62E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total		1			1		1	4E-06		, ,			0.7
			PCB Dioxin-like Co	ngener TEQ Dermal	9.70E-05	mg/kg	5.6E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-07	3.9E-11	mg/kg-day	7.0E-10	mg/kg-day	0.06
		C3N-EU2 Total									6E-06					1

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC	;		Cano	er Risk Calcula	itions			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Init Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C4N-EU1	Ingestion	Total PCBs	8.12E+00	mg/kg	1.1E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-07	7.7E-07	mg/kg-day	2.0E-05	mg/kg-day	0.04
		_		Mercury	2.28E+00	mg/kg	1.0E-07	mg/kg-day	NA		NA	7.2E-07	mg/kg-day	3.0E-04	mg/kg-day	0.002
			Ingestion Total								2E-07					0.04
			PCB Dioxin-like Co	ingener TEQ Ingestion	1.84E-05	mg/kg	2.5E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-08	1.7E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		•	Dermal	Total PCBs	8.12E+00	mg/kg	4.7E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	9E-07	3.3E-06	mg/kg-day	2.0E-05	mg/kg-day	0.2
		_		Mercury	2.28E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								9E-07					0.2
			PCB Dioxin-like Co	ingener TEQ Dermal	1.84E-05	mg/kg	1.1E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-07	7.4E-12	mg/kg-day	7.0E-10	mg/kg-day	0.01
		C4N-EU1 Total	•								1E-06					0.2
	,	Surface Soil at C4N-EU2	Ingestion	Total PCBs	8.50E+00	mg/kg	1.2E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-07	8.1E-07	mg/kg-day	2.0E-05	mg/kg-day	0.04
				Mercury	2.74E+00	mg/kg	1.2E-07	mg/kg-day	NA		NA	8.7E-07	mg/kg-day	3.0E-04	mg/kg-day	0.003
			Ingestion Total								2E-07					0.04
			PCB Dioxin-like Co	ingener TEQ Ingestion	1.79E-05	mg/kg	2.4E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-08	1.7E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		'	Dermal	Total PCBs	8.50E+00	mg/kg	4.9E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-06	3.4E-06	mg/kg-day	2.0E-05	mg/kg-day	0.2
				Mercury	2.74E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								1E-06					0.2
			PCB Dioxin-like Co	ngener TEQ Dermal	1.79E-05	mg/kg	1.0E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-07	7.2E-12	mg/kg-day	7.0E-10	mg/kg-day	0.01
		C4N-EU2 Total									1E-06					0.2
	·	Surface Soil at C4S-EU1	Ingestion	Total PCBs	1.63E+01	mg/kg	2.2E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-07	1.6E-06	mg/kg-day	2.0E-05	mg/kg-day	0.08
				Mercury	3.47E+00	mg/kg	1.6E-07	mg/kg-day	NA		NA	1.1E-06	mg/kg-day	3.0E-04	mg/kg-day	0.004
			Ingestion Total								4E-07					0.08
			PCB Dioxin-like Co	ngener TEQ Ingestion	3.98E-05	mg/kg	5.4E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-08	3.8E-12	mg/kg-day	7.0E-10	mg/kg-day	0.005
		•	Dermal	Total PCBs	1.63E+01	mg/kg	9.4E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-06	6.6E-06	mg/kg-day	2.0E-05	mg/kg-day	0.3
		,		Mercury	3.47E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total		•			•			2E-06		•	•		0.3
] ,		PCB Dioxin-like Co	ngener TEQ Dermal	3.98E-05		2.3E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-07	1.6E-11	mg/kg-day	7.0E-10	mg/kg-day	0.02
		C4S-EU1 Total									3E-06					0.4
	1	Surface Soil at C4S-EU2	Ingestion	Total PCBs	2.51E+00	mg/kg	3.4E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	7E-08	2.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	1.27E+00	mg/kg	5.7E-08	mg/kg-day	NA		NA	4.0E-07	mg/kg-day	3.0E-04	mg/kg-day	0.001
			Ingestion Total		•			•			7E-08		•	•		0.01
			PCB Dioxin-like Co	ngener TEQ Ingestion	5.12E-06	mg/kg	7.0E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-09	4.9E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0007
		·	Dermal	Total PCBs	2.51E+00	mg/kg	1.4E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	3E-07	1.0E-06	mg/kg-day	2.0E-05	mg/kg-day	0.05
				Mercury	1.27E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								3E-07					0.05
] ,		PCB Dioxin-like Co	ngener TEQ Dermal	5.12E-06	mg/kg	2.9E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-08	2.1E-12	mg/kg-day	7.0E-10	mg/kg-day	0.003
		C4S-EU2 Total									4E-07					0.07

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC	;		Cano	er Risk Calcula	ations			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure (Concentration	RfD	/RfC	Hanard
							Value	Units	Value	Units		Value	Units	Value	Units	Hazard Quotient
Soil	Surface Soil	Surface Soil at C4S-EU3	Ingestion	Total PCBs	5.50E+00	mg/kg	7.5E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-07	5.2E-07	mg/kg-day	2.0E-05	mg/kg-day	0.03
				Mercury	1.69E+00	mg/kg	7.6E-08	mg/kg-day	NA		NA	5.3E-07	mg/kg-day	3.0E-04	mg/kg-day	0.002
			Ingestion Total								1E-07					0.03
			PCB Dioxin-like Co	ingener TEQ Ingestion	1.11E-05	mg/kg	1.5E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	1.1E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		'	Dermal	Total PCBs	5.50E+00	mg/kg	3.2E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	6E-07	2.2E-06	mg/kg-day	2.0E-05	mg/kg-day	0.1
				Mercury	1.69E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								6E-07					0.1
			PCB Dioxin-like Co	ngener TEQ Dermal	1.11E-05	mg/kg	6.4E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	8E-08	4.5E-12	mg/kg-day	7.0E-10	mg/kg-day	0.006
		C4S-EU3 Total									9E-07					0.1
	·	Surface Soil at C5N-EU1	Ingestion	Total PCBs	6.05E+00	mg/kg	8.2E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-07	5.7E-07	mg/kg-day	2.0E-05	mg/kg-day	0.03
		,		Mercury	1.51E+00	mg/kg	6.8E-08	mg/kg-day	NA		NA	4.8E-07	mg/kg-day	3.0E-04	mg/kg-day	0.002
			Ingestion Total								2E-07					0.03
			PCB Dioxin-like Co	ngener TEQ Ingestion	1.22E-05	mg/kg	1.6E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	1.2E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		•	Dermal	Total PCBs	6.05E+00	mg/kg	3.5E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	7E-07	2.4E-06	mg/kg-day	2.0E-05	mg/kg-day	0.1
		,		Mercury	1.51E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								7E-07					0.1
	,		PCB Dioxin-like Co	ngener TEQ Dermal	1.22E-05	mg/kg	7.0E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-08	4.9E-12	mg/kg-day	7.0E-10	mg/kg-day	0.007
		C5N-EU1 Total									1E-06					0.2
		Surface Soil at C5S-EU1	Ingestion	Total PCBs	1.33E+00	mg/kg	1.8E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-08	1.3E-07	mg/kg-day	2.0E-05	mg/kg-day	0.006
				Mercury	8.86E-01	mg/kg	4.0E-08	mg/kg-day	NA		NA	2.8E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0009
			Ingestion Total								4E-08					0.007
			PCB Dioxin-like Co	ngener TEQ Ingestion	2.63E-06	mg/kg	3.6E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-09	2.5E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0004
			Dermal	Total PCBs	1.33E+00	mg/kg	7.7E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-07	5.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.03
				Mercury	8.86E-01	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-07					0.03
	,		PCB Dioxin-like Co	ngener TEQ Dermal	2.63E-06	mg/kg	1.5E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	1.1E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		C5S-EU1 Total								_	2E-07					0.04
		Surface Soil at C6N-EU1	Ingestion	Total PCBs	2.14E+00	mg/kg	2.9E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	6E-08	2.0E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	1.41E+00	mg/kg	6.4E-08	mg/kg-day	NA		NA	4.5E-07	mg/kg-day	3.0E-04	mg/kg-day	0.001
			Ingestion Total								6E-08					0.01
			PCB Dioxin-like Co	ngener TEQ Ingestion	4.14E-06	mg/kg	5.6E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-09	3.9E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0006
			Dermal	Total PCBs	2.14E+00	mg/kg	1.2E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-07	8.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.04
				Mercury	1.41E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-07					0.04
	1		PCB Dioxin-like Co	ngener TEQ Dermal	4.14E-06	mg/kg	2.4E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-08	1.7E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		C6N-EU1 Total									3E-07					0.06

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	ations			Non-Cance	r Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD)/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C6S-EU1	Ingestion	Total PCBs	2.88E+00	mg/kg	3.9E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	8E-08	2.7E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	2.95E+00	mg/kg	1.3E-07	mg/kg-day	NA		NA	9.3E-07	mg/kg-day	3.0E-04	mg/kg-day	0.003
			Ingestion Total								8E-08					0.02
			PCB Dioxin-like Co	ngener TEQ Ingestion	5.84E-06	mg/kg	7.9E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	5.5E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0008
		•	Dermal	Total PCBs	2.88E+00	mg/kg	1.7E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	3E-07	1.2E-06	mg/kg-day	2.0E-05	mg/kg-day	0.06
		,		Mercury	2.95E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								3E-07					0.06
			PCB Dioxin-like Co	ngener TEQ Dermal	5.84E-06	mg/kg	3.4E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-08	2.3E-12	mg/kg-day	7.0E-10	mg/kg-day	0.003
		C6S-EU1 Total									5E-07					0.08
		Surface Soil at C7S-EU1	Ingestion	Total PCBs	1.32E+00	mg/kg	1.8E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-08	1.3E-07	mg/kg-day	2.0E-05	mg/kg-day	0.006
		,		Mercury	6.77E-01	mg/kg	3.1E-08	mg/kg-day	NA		NA	2.1E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0007
			Ingestion Total								4E-08					0.007
			PCB Dioxin-like Co	ngener TEQ Ingestion	2.61E-06	mg/kg	3.5E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-09	2.5E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0004
			Dermal	Total PCBs	1.32E+00	mg/kg	7.6E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-07	5.3E-07	mg/kg-day	2.0E-05	mg/kg-day	0.03
		1		Mercury	6.77E-01	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-07					0.03
	,		PCB Dioxin-like Co	ngener TEQ Dermal	2.61E-06	mg/kg	1.5E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	1.1E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		C7S-EU1 Total									2E-07					0.04
		Surface Soil at C8N-EU1	Ingestion	Total PCBs	3.09E+00	mg/kg	4.2E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	8E-08	2.9E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	1.57E+00	mg/kg	7.1E-08	mg/kg-day	NA		NA	5.0E-07	mg/kg-day	3.0E-04	mg/kg-day	0.002
			Ingestion Total								8E-08					0.02
			PCB Dioxin-like Co	ngener TEQ Ingestion	7.22E-06	mg/kg	9.8E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	6.9E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
			Dermal	Total PCBs	3.09E+00	mg/kg	1.8E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-07	1.2E-06	mg/kg-day	2.0E-05	mg/kg-day	0.06
				Mercury	1.57E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								4E-07					0.06
	,		PCB Dioxin-like Co	ngener TEQ Dermal	7.22E-06	mg/kg	4.2E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-08	2.9E-12	mg/kg-day	7.0E-10	mg/kg-day	0.004
		C8N-EU1 Total									5E-07					0.08

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Can	cer Risk Calcula	tions			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/U	Init Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C1-EU2	Ingestion	Total PCBs	4.61E+01	mg/kg	1.2E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-06	2.8E-06	mg/kg-day	2.0E-05	mg/kg-day	0.1
			Ingestion Total								2E-06					0.1
			PCB Dioxin-like Co	ngener TEQ Ingestion	9.32E-05	mg/kg	2.4E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-07	5.7E-12	mg/kg-day	7.0E-10	mg/kg-day	0.008
			Dermal	Total PCBs	4.61E+01	mg/kg	8.0E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-06	1.9E-06	mg/kg-day	2.0E-05	mg/kg-day	0.09
			Dermal Total								2E-06					0.09
			PCB Dioxin-like Co	ngener TEQ Dermal	9.32E-05	mg/kg	1.6E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-07	3.8E-12	mg/kg-day	7.0E-10	mg/kg-day	0.005
		C1-EU2 Total									5E-06					0.2
	1	Surface Soil at C2N-EU1	Ingestion	Total PCBs	1.63E+01	mg/kg	4.3E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	9E-07	1.0E-06	mg/kg-day	2.0E-05	mg/kg-day	0.05
				Mercury	1.33E+00	mg/kg	1.2E-07	mg/kg-day	NA		NA	2.7E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0009
			Ingestion Total								9E-07					0.05
			PCB Dioxin-like Co	ngener TEQ Ingestion	3.29E-05	mg/kg	8.6E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-07	2.0E-12	mg/kg-day	7.0E-10	mg/kg-day	0.003
			Dermal	Total PCBs	1.63E+01	mg/kg	2.8E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	6E-07	6.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.03
				Mercury	1.33E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								6E-07					0.03
			PCB Dioxin-like Co	ngener TEQ Dermal	3.29E-05	mg/kg	5.7E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-08	1.3E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		C2N-EU1 Total									2E-06					0.09
	·	Surface Soil at C3N-EU1	Ingestion	Total PCBs	2.32E+01	mg/kg	6.1E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-06	1.4E-06	mg/kg-day	2.0E-05	mg/kg-day	0.07
				Mercury	3.32E+00	mg/kg	2.9E-07	mg/kg-day	NA		NA	6.8E-07	mg/kg-day	3.0E-04	mg/kg-day	0.002
			Ingestion Total								1E-06					0.07
			PCB Dioxin-like Co	ngener TEQ Ingestion	4.14E-05	mg/kg	1.1E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-07	2.5E-12	mg/kg-day	7.0E-10	mg/kg-day	0.004
			Dermal	Total PCBs	2.32E+01	mg/kg	4.0E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	8E-07	9.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.05
				Mercury	3.32E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								8E-07					0.05
	١,		PCB Dioxin-like Co	ngener TEQ Dermal	4.14E-05	mg/kg	7.1E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-08	1.7E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		C3N-EU1 Total									2E-06					0.1
	,	Surface Soil at C3N-EU2	Ingestion	Total PCBs	3.69E+01	mg/kg	9.6E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-06	2.2E-06	mg/kg-day	2.0E-05	mg/kg-day	0.11
				Mercury	4.62E+00	mg/kg	4.0E-07	mg/kg-day	NA		NA	9.4E-07	mg/kg-day	3.0E-04	mg/kg-day	0.003
			Ingestion Total								2E-06					0.1
			PCB Dioxin-like Cor	ngener TEQ Ingestion	9.70E-05	mg/kg	2.5E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-07	5.9E-12	mg/kg-day	7.0E-10	mg/kg-day	0.008
			Dermal	Total PCBs	3.69E+01	mg/kg	6.4E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-06	1.5E-06	mg/kg-day	2.0E-05	mg/kg-day	0.07
				Mercury	4.62E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								1E-06					0.07
] ,		PCB Dioxin-like Co	ngener TEQ Dermal	9.70E-05		1.7E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-07	3.9E-12	mg/kg-day	7.0E-10	mg/kg-day	0.006
		C3N-EU2 Total									4E-06					0.2

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Can	cer Risk Calcula	ations			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure 0	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C4N-EU1	Ingestion	Total PCBs	8.12E+00	mg/kg	2.1E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-07	5.0E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
				Mercury	2.28E+00	mg/kg	2.0E-07	mg/kg-day	NA		NA	4.6E-07	mg/kg-day	3.0E-04	mg/kg-day	0.002
			Ingestion Total								4E-07					0.03
			PCB Dioxin-like Co	ingener TEQ Ingestion	1.84E-05	mg/kg	4.8E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-08	1.1E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
			Dermal	Total PCBs	8.12E+00	mg/kg	1.4E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	3E-07	3.3E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
			1	Mercury	2.28E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								3E-07					0.02
			PCB Dioxin-like Co	ngener TEQ Dermal	1.84E-05	mg/kg	3.2E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-08	7.4E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
		C4N-EU1 Total									8E-07					0.05
		Surface Soil at C4N-EU2	Ingestion	Total PCBs	8.50E+00	mg/kg	2.2E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-07	5.2E-07	mg/kg-day	2.0E-05	mg/kg-day	0.03
				Mercury	2.74E+00	mg/kg	2.4E-07	mg/kg-day	NA		NA	5.6E-07	mg/kg-day	3.0E-04	mg/kg-day	0.002
			Ingestion Total								4E-07					0.03
			PCB Dioxin-like Co	ongener TEQ Ingestion	1.79E-05	mg/kg	4.7E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-08	1.1E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
			Dermal	Total PCBs	8.50E+00	mg/kg	1.5E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	3E-07	3.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
				Mercury	2.74E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								3E-07					0.02
] ,		PCB Dioxin-like Co	ongener TEQ Dermal	1.79E-05	mg/kg	3.1E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-08	7.2E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
		C4N-EU2 Total									8E-07					0.05
		Surface Soil at C4S-EU1	Ingestion	Total PCBs	1.63E+01	mg/kg	4.3E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	9E-07	1.0E-06	mg/kg-day	2.0E-05	mg/kg-day	0.05
				Mercury	3.47E+00	mg/kg	3.0E-07	mg/kg-day	NA		NA	7.1E-07	mg/kg-day	3.0E-04	mg/kg-day	0.002
			Ingestion Total								9E-07					0.05
			PCB Dioxin-like Co	ingener TEQ Ingestion	3.98E-05	mg/kg	1.0E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-07	2.4E-12	mg/kg-day	7.0E-10	mg/kg-day	0.003
			Dermal	Total PCBs	1.63E+01	mg/kg	2.8E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	6E-07	6.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.03
			1	Mercury	3.47E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								6E-07					0.03
			PCB Dioxin-like Co	ongener TEQ Dermal	3.98E-05	mg/kg	6.9E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-08	1.6E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		C4S-EU1 Total									2E-06					0.09
	1	Surface Soil at C4S-EU2	Ingestion	Total PCBs	2.51E+00	mg/kg	6.6E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-07	1.5E-07	mg/kg-day	2.0E-05	mg/kg-day	0.008
				Mercury	1.27E+00	mg/kg	1.1E-07	mg/kg-day	NA		NA	2.6E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0009
			Ingestion Total								1E-07					0.009
			PCB Dioxin-like Co	ongener TEQ Ingestion	5.12E-06	mg/kg	1.3E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	3.1E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0004
			Dermal	Total PCBs	2.51E+00	mg/kg	4.3E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	9E-08	1.0E-07	mg/kg-day	2.0E-05	mg/kg-day	0.005
				Mercury	1.27E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								9E-08					0.005
] ,		PCB Dioxin-like Co	ngener TEQ Dermal	5.12E-06	mg/kg	8.8E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	2.1E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0003
		C4S-EU2 Total									2E-07					0.01

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC)		Can	cer Risk Calcula	itions			Non-Cance	er Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD)/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C4S-EU3	Ingestion	Total PCBs	5.50E+00	mg/kg	1.4E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	3E-07	3.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
				Mercury	1.69E+00	mg/kg	1.5E-07	mg/kg-day	NA		NA	3.4E-07	mg/kg-day	3.0E-04	mg/kg-day	0.001
			Ingestion Total								3E-07					0.02
			PCB Dioxin-like Co	ngener TEQ Ingestion	1.11E-05	mg/kg	2.9E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-08	6.8E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
			Dermal	Total PCBs	5.50E+00	mg/kg	9.5E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-07	2.2E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	1.69E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-07					0.01
			PCB Dioxin-like Co	ngener TEQ Dermal	1.11E-05	mg/kg	1.9E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	4.5E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0006
		C4S-EU3 Total									5E-07					0.03
		Surface Soil at C5N-EU1	Ingestion	Total PCBs	6.05E+00	mg/kg	1.6E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	3E-07	3.7E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
				Mercury	1.51E+00	mg/kg	1.3E-07	mg/kg-day	NA		NA	3.1E-07	mg/kg-day	3.0E-04	mg/kg-day	0.001
			Ingestion Total								3E-07					0.02
			PCB Dioxin-like Co	ngener TEQ Ingestion	1.22E-05	mg/kg	3.2E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-08	7.4E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
			Dermal	Total PCBs	6.05E+00	mg/kg	1.0E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-07	2.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	1.51E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-07					0.01
			PCB Dioxin-like Co	ngener TEQ Dermal	1.22E-05	mg/kg	2.1E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-08	4.9E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0007
		C5N-EU1 Total									6E-07					0.03
		Surface Soil at C5S-EU1	Ingestion	Total PCBs	1.33E+00	mg/kg	3.5E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	7E-08	8.1E-08	mg/kg-day	2.0E-05	mg/kg-day	0.004
				Mercury	8.86E-01	mg/kg	7.7E-08	mg/kg-day	NA		NA	1.8E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0006
			Ingestion Total								7E-08					0.005
			PCB Dioxin-like Co	ngener TEQ Ingestion	2.63E-06	mg/kg	6.9E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-09	1.6E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
			Dermal	Total PCBs	1.33E+00	mg/kg	2.3E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	5E-08	5.4E-08	mg/kg-day	2.0E-05	mg/kg-day	0.003
				Mercury	8.86E-01	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								5E-08					0.003
			PCB Dioxin-like Co	ngener TEQ Dermal	2.63E-06	mg/kg	4.5E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-09	1.1E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
		C5S-EU1 Total									1E-07					0.008
		Surface Soil at C6N-EU1	Ingestion	Total PCBs	2.14E+00	mg/kg	5.6E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-07	1.3E-07	mg/kg-day	2.0E-05	mg/kg-day	0.007
				Mercury	1.41E+00	mg/kg	1.2E-07	mg/kg-day	NA		NA	2.9E-07	mg/kg-day	3.0E-04	mg/kg-day	0.001
			Ingestion Total								1E-07					0.007
			PCB Dioxin-like Co	ngener TEQ Ingestion	4.14E-06	mg/kg	1.1E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	2.5E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0004
			Dermal	Total PCBs	2.14E+00	mg/kg	3.7E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	7E-08	8.6E-08	mg/kg-day	2.0E-05	mg/kg-day	0.004
				Mercury	1.41E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								7E-08					0.004
			PCB Dioxin-like Co	ngener TEQ Dermal	4.14E-06	mg/kg	7.1E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-09	1.7E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
		C6N-EU1 Total	·	·		-					2E-07					0.01

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Potential Concern Value Units Value	Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	ations			Non-Cance	r Hazard Calc	ulations	
Soil Surface Soil at C85-EU1 Ingestion Total PCBs 2.88E+00 mpkg 7.5E-08 mpkg-day 2.0E+00 mgkg-day 1.8E-07 mgkg-day 2.0E+00 mgkg-					Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
Mercury 2.65E+00 mg/kg 2.6E+07 mg/kg-day NA								Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Impession Total	Soil	Surface Soil	Surface Soil at C6S-EU1	Ingestion	Total PCBs	2.88E+00	mg/kg	7.5E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-07	1.8E-07	mg/kg-day	2.0E-05	mg/kg-day	0.009
FORD Doxin-like Congener TEG Ingestion 5.84E-06 mg/kg 1.5E-13 mg/kg-day 1.3E+05 (mg/kg-day)-1 2E-08 3.8E-13 mg/kg-day 7.0E-10 mg/kg-day Demal Total PCBs 2.88E+00 mg/kg S.0E-08 mg/kg-day 2.0E+00 (mg/kg-day)-1 1E-07 1.2E-07 mg/kg-day 2.0E-05 mg/kg-day Demal Total Demal Total FORD Doxin-like Congener TEG Dermal 5.84E-06 mg/kg 1.0E-13 mg/kg-day 1.3E+05 (mg/kg-day)-1 1E-07 Total PCBs 1.3E+06 mg/kg 1.0E-13 mg/kg-day 1.3E+05 (mg/kg-day)-1 1E-07 Total PCBs 1.3E+06 mg/kg 3.5E-08 mg/kg-day 2.0E+00 (mg/kg-day)-1 1E-08 2.4E-13 mg/kg-day 7.0E-10 mg/kg-day 1.0E-13 mg/kg-day					Mercury	2.95E+00	mg/kg	2.6E-07	mg/kg-day	NA		NA	6.0E-07	mg/kg-day	3.0E-04	mg/kg-day	0.002
Demail Total PCBs 2.88E+00 mg/kg 5.0E+08 mg/kg-day 2.0E+00 mg/kg-day)-1 1E-07 1.2E-07 mg/kg-day 2.0E+05 mg/kg-day 2.0E+06 mg/kg-day 3.0E+08 mg				Ingestion Total								2E-07					0.01
Mercury 2.95E-00 mg/kg NA mg/kg-day NA NA NA mg/kg-day 3.0E-04 mg/kg-day 2.0E-05 mg/kg-day 1.3E+05				PCB Dioxin-like Co	ngener TEQ Ingestion	5.84E-06	mg/kg	1.5E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	3.6E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0005
Demail Total				Dermal	Total PCBs	2.88E+00	mg/kg	5.0E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-07	1.2E-07	mg/kg-day	2.0E-05	mg/kg-day	0.006
PCB Dioxin-like Congener TEQ Dermal 5.84E-06 mg/kg 1.0E-13 mg/kg-day 1.3E+05 (mg/kg-day)-1 1E-08 2.4E-13 mg/kg-day 7.0E-10 mg/kg-day 2.0E-06 mg/kg-day 3.5E-08 mg/kg-day 2.0E+00 mg/kg-day 3.5E-08 mg/kg-day 3.5E-08 mg/kg-day 3.5E-08 mg/kg-day 3.6E-08 mg/kg-d					Mercury	2.95E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
Surface Soil at C7S-EU1 Ingestion Total PCBs 1.32±00 mg/kg 3.5±-08 mg/kg-day 2.0±00 (mg/kg-day)-1 7±-08 8.1±-08 mg/kg-day 2.0±-05 mg/kg-day 2.0±-05 mg/kg-day 2.0±-05 mg/kg-day 3.0±-04 mg/kg-day 3.0±-04 mg/kg-day 7±-08 8.1±-08 mg/kg-day 3.0±-04 mg/kg-day 3.0±-04 mg/kg-day 7±-08 1.4±-07 mg/kg-day 3.0±-04 mg/kg-day 7±-08 1.4±-07 mg/kg-day 3.0±-04 mg/kg-day 7±-08 1.0±-03 mg/kg-day 7±-08 mg				Dermal Total								1E-07					0.006
Surface Soil at C7S-EU1 Ingestion Total PCBs 1.32E+00 mg/kg 3.5E-08 mg/kg-day 2.0E+00 (mg/kg-day)+1 7E-08 8.1E-08 mg/kg-day 2.0E-05 mg/kg-day 3.0E-04 mg/kg-day 7.0E-10 mg/kg-day 7.0E]		PCB Dioxin-like Co	ngener TEQ Dermal	5.84E-06	mg/kg	1.0E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	2.4E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0003
Mercury 6.77E-01 mg/kg 5.9E-08 mg/kg-day NA NA 1.4E-07 mg/kg-day 3.0E-04 mg/kg-day 1.0E-05 mg/kg-day 1.3E+05 mg/kg-day 1.3E+05 mg/kg-day 1.4E-07 mg/kg-day			C6S-EU1 Total									3E-07					0.02
Ingestion Total		1	Surface Soil at C7S-EU1	Ingestion	Total PCBs	1.32E+00	mg/kg	3.5E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	7E-08	8.1E-08	mg/kg-day	2.0E-05	mg/kg-day	0.004
PCB Dioxin-like Congener TEQ Ingestion 2.61E-06 mg/kg 6.8E-14 mg/kg-day 1.3E+05 (mg/kg-day)-1 9E-09 1.6E-13 mg/kg-day 7.0E-10 mg/kg-day 2.0E+00 mg/kg-day 2.0E+00 mg/kg-day 2.0E+00 mg/kg-day 2.0E+00 mg/kg-day 3.0E-04 mg/k					Mercury	6.77E-01	mg/kg	5.9E-08	mg/kg-day	NA		NA	1.4E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0005
Dermal				Ingestion Total								7E-08					0.004
Mercury 6.77E-01 mg/kg NA mg/kg-day NA NA NA mg/kg-day 3.0E-04 mg/kg-day NA NA NA mg/kg-day NA NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA NA mg/kg-day NA MA Ma/kg-day NA MA Ma/kg-day NA MA Ma/kg-day NA MA Ma/kg-day NA Ma/kg-day NA Ma/kg-day NA Ma/kg-day NA NA Ma/kg-day NA NA Ma/kg-day NA NA Ma/kg-day NA NA Ma/kg-day NA NA Ma/kg-day NA Ma/kg-day NA Ma/kg-day NA NA Ma/kg-day NA NA NA Ma/kg-day NA NA NA Ma/kg-day NA NA NA Ma/kg-day NA NA NA NA Ma/kg-day NA NA NA NA Ma/kg-day NA NA NA NA NA NA NA N				PCB Dioxin-like Co	ngener TEQ Ingestion	2.61E-06	mg/kg	6.8E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-09	1.6E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
Defmal Total Defmal Total Defmal Total Defmal Total Defmal Total Defmal Total Defmal Total Defmal Total Defmal Total PCB Dioxin-like Congener TEQ Defmal Defmal Total PCBs 3.09E+00 mg/kg 4.5E-14 mg/kg-day 1.3E+05 (mg/kg-day)+1 6E-09 1.1E-13 mg/kg-day 7.0E-10 mg/kg-day 2.0E-05 mg/kg-day 0.0E+00 mg				Dermal	Total PCBs	1.32E+00	mg/kg	2.3E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	5E-08	5.3E-08	mg/kg-day	2.0E-05	mg/kg-day	0.003
PCB Dioxin-like Congener TEQ Dermal 2.61E-06 mg/kg 4.5E-14 mg/kg-day 1.3E+05 (mg/kg-day)-1 6E-09 1.1E-13 mg/kg-day 7.0E-10 mg/kg-day					Mercury	6.77E-01	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
C7S-EU1 Total Ingestion Total PCBs 3.09E+00 mg/kg 8.1E-08 mg/kg-day 2.0E+00 (mg/kg-day)-1 2E-07 1.9E-07 mg/kg-day 3.0E-05 mg/kg-day 1.4E-07 mg/kg-day NA NA 3.2E-07 mg/kg-day 3.0E-04 mg/kg-day 3.0E-04 mg/kg-day 1.4E-07 mg/kg-day				Dermal Total								5E-08					0.003
Surface Soil at C8N-EU1 Ingestion Total PCBs 3.09±40 mg/kg 8.1E-08 mg/kg-day 2.0E+00 (mg/kg-day)-1 2E-07 1.9E-07 mg/kg-day 2.0E-05 mg/kg-day 3.0E-04 mg/kg-day 2.0E-05 mg/kg-day 3.0E-04 m]		PCB Dioxin-like Co	ngener TEQ Dermal	2.61E-06	mg/kg	4.5E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-09	1.1E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
Mercury 1.57E+00 mg/kg 1.4E-07 mg/kg-day NA NA 3.2E-07 mg/kg-day 3.0E-04 mg/kg-day			C7S-EU1 Total									1E-07					0.008
Ingestion Total		1	Surface Soil at C8N-EU1	Ingestion	Total PCBs	3.09E+00	mg/kg	8.1E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-07	1.9E-07	mg/kg-day	2.0E-05	mg/kg-day	0.009
PCB Dioxin-like Congener TEQ Ingestion 7.22E-06 mg/kg 1.9E-13 mg/kg-day 1.3E+05 (mg/kg-day)-1 2E-08 4.4E-13 mg/kg-day 7.0E-10 mg/kg-day 7.0E-10 mg/kg-day 1.5E-07 mg/kg-day 7.0E-10 mg/kg-day 7					Mercury	1.57E+00	mg/kg	1.4E-07	mg/kg-day	NA		NA	3.2E-07	mg/kg-day	3.0E-04	mg/kg-day	0.001
Dermal Total PCBs 3.09E+00 mg/kg 5.3E-08 mg/kg-day 2.0E+00 (mg/kg-day)-1 1E-07 1.2E-07 mg/kg-day 2.0E-05 mg/kg-day 2.0E-05 mg/kg-day 2.0E-05 mg/kg-day 1.5FE+00 mg/kg NA mg/kg-day NA NA NA mg/kg-day 3.0E-04 mg/kg-day MR NA mg/kg-day 1.2E-07 NA NA mg/kg-day 1.3E+05 mg/kg-da				Ingestion Total								2E-07					0.01
Mercury 1.57E+00 mg/kg NA mg/kg-day NA NA NA mg/kg-day 3.0E-04 mg/kg-day				PCB Dioxin-like Co	ngener TEQ Ingestion	7.22E-06	mg/kg	1.9E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	4.4E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0006
Dermal Total 1E-07 1E-08 1				Dermal	Total PCBs	3.09E+00	mg/kg	5.3E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-07	1.2E-07	mg/kg-day	2.0E-05	mg/kg-day	0.006
PCB Dioxin-like Congener TEQ Dermal 7.22E-06 mg/kg 1.2E-13 mg/kg-day 1.3E+05 (mg/kg-day)-1 2E-08 2.9E-13 mg/kg-day 7.0E-10 mg/kg-day					Mercury	1.57E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
				Dermal Total								1E-07					0.006
]		PCB Dioxin-like Co	ngener TEQ Dermal	7.22E-06	mg/kg	1.2E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	2.9E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0004
C8N-EU1 Total 3E-07			C8N-EU1 Total	•								3E-07			`		0.02

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Receptor Age: Young Child

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	ations			Non-Cance	r Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/I	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD)/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C1-EU1	Ingestion	Total PCBs	1.05E+01	mg/kg	1.0E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-06	1.2E-05	mg/kg-day	6.0E-05	mg/kg-day	0.2
			Ingestion Total								2E-06					0.2
			PCB Dioxin-like Co	ngener TEQ Ingestion	2.11E-05	mg/kg	2.1E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-07	2.4E-11	mg/kg-day	7.0E-10	mg/kg-day	0.03
			Dermal	Total PCBs	1.05E+01	mg/kg	8.6E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-06	1.0E-05	mg/kg-day	6.0E-05	mg/kg-day	0.2
			Dermal Total								2E-06					0.2
			PCB Dioxin-like Co	ngener TEQ Dermal	2.11E-05	mg/kg	1.7E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-07	2.0E-11	mg/kg-day	7.0E-10	mg/kg-day	0.03
		C1-EU1 Total									4E-06					0.4
		Surface Soil at C3S-EU1	Ingestion	Total PCBs	1.95E+01	mg/kg	1.9E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-06	2.2E-05	mg/kg-day	6.0E-05	mg/kg-day	0.4
				Mercury	8.96E+00	mg/kg	2.9E-06	mg/kg-day	NA		NA	3.4E-05	mg/kg-day	3.0E-03	mg/kg-day	0.01
			Ingestion Total								4E-06					0.4
			PCB Dioxin-like Co	ngener TEQ Ingestion	3.93E-05	mg/kg	3.8E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-07	4.5E-11	mg/kg-day	7.0E-10	mg/kg-day	0.06
			Dermal	Total PCBs	1.95E+01	mg/kg	1.6E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	3E-06	1.9E-05	mg/kg-day	6.0E-05	mg/kg-day	0.3
				Mercury	8.96E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-03	mg/kg-day	NA
			Dermal Total								3E-06					0.3
			PCB Dioxin-like Co	ngener TEQ Dermal	3.93E-05	mg/kg	3.2E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-07	3.8E-11	mg/kg-day	7.0E-10	mg/kg-day	0.05
		C3S-EU1 Total									8E-06					0.8
		Surface Soil at C3S-EU2	Ingestion	Total PCBs	2.36E+01	mg/kg	2.3E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	5E-06	2.7E-05	mg/kg-day	6.0E-05	mg/kg-day	0.4
				Mercury	3.90E+00	mg/kg	1.3E-06	mg/kg-day	NA		NA	1.5E-05	mg/kg-day	3.0E-03	mg/kg-day	0.005
			Ingestion Total								5E-06					0.5
			PCB Dioxin-like Co	ngener TEQ Ingestion	1.07E-04	mg/kg	1.0E-11	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-06	1.2E-10	mg/kg-day	7.0E-10	mg/kg-day	0.2
			Dermal	Total PCBs	2.36E+01	mg/kg	1.9E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-06	2.3E-05	mg/kg-day	6.0E-05	mg/kg-day	0.4
				Mercury	3.90E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-03	mg/kg-day	NA
			Dermal Total								4E-06					0.4
	Ι,		PCB Dioxin-like Co	ngener TEQ Dermal	1.07E-04	mg/kg	8.8E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-06	1.0E-10	mg/kg-day	7.0E-10	mg/kg-day	0.1
		C3S-EU2 Total									1E-05					1

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcul	ations			Non-Cancer	r Hazard Cal	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfE	D/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C1-EU1	Ingestion	Total PCBs	1.05E+01	mg/kg	2.8E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	6E-07	2.0E-06	mg/kg-day	2.0E-05	mg/kg-day	0.1
			Ingestion Total								6E-07					0.1
			PCB Dioxin-like Cor	ngener TEQ Ingestion	2.11E-05	mg/kg	5.7E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-08	4.0E-12	mg/kg-day	7.0E-10	mg/kg-day	0.006
			Dermal	Total PCBs	1.05E+01	mg/kg	1.2E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-06	8.4E-06	mg/kg-day	2.0E-05	mg/kg-day	0.4
			Dermal Total								2E-06					0.4
			PCB Dioxin-like Cor	ngener TEQ Dermal	2.11E-05	mg/kg	2.4E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-07	1.7E-11	mg/kg-day	7.0E-10	mg/kg-day	0.02
		C1-EU1 Total									3E-06					0.6
	'	Surface Soil at C3S-EU1	Ingestion	Total PCBs	1.95E+01	mg/kg	5.3E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-06	3.7E-06	mg/kg-day	2.0E-05	mg/kg-day	0.2
				Mercury	8.96E+00	mg/kg	8.1E-07	mg/kg-day	NA		NA	5.7E-06	mg/kg-day	3.0E-04	mg/kg-day	0.02
			Ingestion Total								1E-06					0.2
			PCB Dioxin-like Cor	ngener TEQ Ingestion	3.93E-05	mg/kg	1.1E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-07	7.5E-12	mg/kg-day	7.0E-10	mg/kg-day	0.01
			Dermal	Total PCBs	1.95E+01	mg/kg	2.2E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-06	1.6E-05	mg/kg-day	2.0E-05	mg/kg-day	0.8
				Mercury	8.96E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								4E-06					0.8
			PCB Dioxin-like Cor	ngener TEQ Dermal	3.93E-05	mg/kg	4.5E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-07	3.2E-11	mg/kg-day	7.0E-10	mg/kg-day	0.05
		C3S-EU1 Total									6E-06					1
		Surface Soil at C3S-EU2	Ingestion	Total PCBs	2.36E+01	mg/kg	6.4E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-06	4.5E-06	mg/kg-day	2.0E-05	mg/kg-day	0.2
				Mercury	3.90E+00	mg/kg	3.5E-07	mg/kg-day	NA		NA	2.5E-06	mg/kg-day	3.0E-04	mg/kg-day	0.008
			Ingestion Total								1E-06					0.2
			PCB Dioxin-like Cor	ngener TEQ Ingestion	1.07E-04	mg/kg	2.9E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-07	2.0E-11	mg/kg-day	7.0E-10	mg/kg-day	0.03
			Dermal	Total PCBs	2.36E+01	mg/kg	2.7E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	5E-06	1.9E-05	mg/kg-day	2.0E-05	mg/kg-day	1
				Mercury	3.90E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								5E-06					1
			PCB Dioxin-like Cor	ngener TEQ Dermal	1.07E-04	mg/kg	1.2E-11	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-06	8.6E-11	mg/kg-day	7.0E-10	mg/kg-day	0.1
		C3S-EU2 Total			•			·	·		9E-06					1

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	tions			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure 0	Concentration	CSF/L	Init Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C1-EU1	Ingestion	Total PCBs	1.05E+01	mg/kg	5.5E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-06	1.3E-06	mg/kg-day	2.0E-05	mg/kg-day	0.06
			Ingestion Total								1E-06					0.06
			PCB Dioxin-like Cor	ngener TEQ Ingestion	2.11E-05	mg/kg	1.1E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-07	2.6E-12	mg/kg-day	7.0E-10	mg/kg-day	0.004
			Dermal	Total PCBs	1.05E+01	mg/kg	3.6E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	7E-07	8.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.04
			Dermal Total								7E-07					0.04
			PCB Dioxin-like Cor	ngener TEQ Dermal	2.11E-05	mg/kg	7.3E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-08	1.7E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		C1-EU1 Total									2E-06					0.1
		Surface Soil at C3S-EU1	Ingestion	Total PCBs	1.95E+01	mg/kg	1.0E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-06	2.4E-06	mg/kg-day	2.0E-05	mg/kg-day	0.1
				Mercury	8.96E+00	mg/kg	1.6E-06	mg/kg-day	NA		NA	3.6E-06	mg/kg-day	3.0E-04	mg/kg-day	0.01
			Ingestion Total								2E-06					0.1
			PCB Dioxin-like Cor	ngener TEQ Ingestion	3.93E-05	mg/kg	2.1E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-07	4.8E-12	mg/kg-day	7.0E-10	mg/kg-day	0.007
			Dermal	Total PCBs	1.95E+01	mg/kg	6.7E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-06	1.6E-06	mg/kg-day	2.0E-05	mg/kg-day	0.08
				Mercury	8.96E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								1E-06					0.08
			PCB Dioxin-like Cor	ngener TEQ Dermal	3.93E-05	mg/kg	1.4E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-07	3.2E-12	mg/kg-day	7.0E-10	mg/kg-day	0.005
		C3S-EU1 Total									4E-06					0.2
		Surface Soil at C3S-EU2	Ingestion	Total PCBs	2.36E+01	mg/kg	1.2E-06	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-06	2.9E-06	mg/kg-day	2.0E-05	mg/kg-day	0.1
				Mercury	3.90E+00	mg/kg	6.8E-07	mg/kg-day	NA		NA	1.6E-06	mg/kg-day	3.0E-04	mg/kg-day	0.005
			Ingestion Total								2E-06					0.1
			PCB Dioxin-like Cor	ngener TEQ Ingestion	1.07E-04	mg/kg	5.6E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-07	1.3E-11	mg/kg-day	7.0E-10	mg/kg-day	0.02
			Dermal	Total PCBs	2.36E+01	mg/kg	8.2E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-06	1.9E-06	mg/kg-day	2.0E-05	mg/kg-day	0.1
				Mercury	3.90E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-06					0.1
	,		PCB Dioxin-like Cor	ngener TEQ Dermal	1.07E-04	mg/kg	3.7E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-07	8.6E-12	mg/kg-day	7.0E-10	mg/kg-day	0.01
		C3S-EU2 Total		·							5E-06					0.3

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcul	ations			Non-Cance	r Hazard Cald	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/	Unit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C1-EU2	Ingestion	Total PCBs	4.61E+01	mg/kg	7.8E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	8E-08	5.5E-07	mg/kg-day	2.0E-05	mg/kg-day	0.03
			Ingestion Total								8E-08					0.03
			PCB Dioxin-like Co	ngener TEQ Ingestion	9.32E-05	mg/kg	1.6E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	1.1E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
			Dermal	Total PCBs	4.61E+01	mg/kg	1.3E-07	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-07	9.3E-07	mg/kg-day	2.0E-05	mg/kg-day	0.05
			Dermal Total								1E-07					0.05
			PCB Dioxin-like Co	ngener TEQ Dermal	9.32E-05	mg/kg	2.7E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-08	1.9E-12	mg/kg-day	7.0E-10	mg/kg-day	0.003
		C1-EU2 Total									3E-07					0.08
	•	Surface Soil at C2N-EU1	Ingestion	Total PCBs	1.63E+01	mg/kg	2.8E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-08	1.9E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	1.33E+00	mg/kg	7.5E-09	mg/kg-day	NA		NA	5.3E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0002
			Ingestion Total								3E-08					0.01
			PCB Dioxin-like Co	ngener TEQ Ingestion	3.29E-05	mg/kg	5.6E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-09	3.9E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0006
			Dermal	Total PCBs	1.63E+01	mg/kg	4.7E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	5E-08	3.3E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
				Mercury	1.33E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								5E-08					0.02
	,		PCB Dioxin-like Co	ngener TEQ Dermal	3.29E-05	mg/kg	9.5E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	6.6E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0009
		C2N-EU1 Total									1E-07					0.03
		Surface Soil at C3N-EU1	Ingestion	Total PCBs	2.32E+01	mg/kg	3.9E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	4E-08	2.8E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	3.32E+00	mg/kg	1.9E-08	mg/kg-day	NA		NA	1.3E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0004
			Ingestion Total								4E-08					0.01
			PCB Dioxin-like Co	ngener TEQ Ingestion	4.14E-05	mg/kg	7.0E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-09	4.9E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0007
			Dermal	Total PCBs	2.32E+01	mg/kg	6.7E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	7E-08	4.7E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
				Mercury	3.32E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								7E-08					0.02
	,		PCB Dioxin-like Co	ngener TEQ Dermal	4.14E-05	mg/kg	1.2E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	8.3E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
		C3N-EU1 Total									2E-07					0.05
		Surface Soil at C3N-EU2	Ingestion	Total PCBs	3.69E+01	mg/kg	6.2E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	6E-08	4.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
		,		Mercury	4.62E+00	mg/kg	2.6E-08	mg/kg-day	NA		NA	1.8E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0006
			Ingestion Total								6E-08					0.02
]		ngener TEQ Ingestion	9.70E-05	mg/kg	1.6E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	1.2E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
			Dermal	Total PCBs	3.69E+01	mg/kg	1.1E-07	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-07	7.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.04
				Mercury	4.62E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total					, ,			1E-07		, ,			0.04
	1		PCB Dioxin-like Co	ngener TEQ Dermal	9.70E-05	mg/kg	2.8E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-08	2.0E-12	mg/kg-day	7.0E-10	mg/kg-day	0.003
		C3N-EU2 Total									3E-07					0.08

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC	;		Can	cer Risk Calcula	ations			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C4N-EU1	Ingestion	Total PCBs	8.12E+00	mg/kg	1.4E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-08	9.6E-08	mg/kg-day	2.0E-05	mg/kg-day	0.005
				Mercury	2.28E+00	mg/kg	1.3E-08	mg/kg-day	NA		NA	9.0E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0003
			Ingestion Total								1E-08					0.005
			PCB Dioxin-like Co	ngener TEQ Ingestion	1.84E-05	mg/kg	3.1E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-09	2.2E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0003
			Dermal	Total PCBs	8.12E+00	mg/kg	2.3E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-08	1.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.008
				Mercury	2.28E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-08					0.008
			PCB Dioxin-like Co	ngener TEQ Dermal	1.84E-05	mg/kg	5.3E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-09	3.7E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0005
		C4N-EU1 Total									6E-08					0.02
		Surface Soil at C4N-EU2	Ingestion	Total PCBs	8.50E+00	mg/kg	1.4E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-08	1.0E-07	mg/kg-day	2.0E-05	mg/kg-day	0.005
				Mercury	2.74E+00	mg/kg	1.5E-08	mg/kg-day	NA		NA	1.1E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0004
			Ingestion Total								1E-08					0.005
			PCB Dioxin-like Co	ngener TEQ Ingestion	1.79E-05	mg/kg	3.0E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-09	2.1E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0003
			Dermal	Total PCBs	8.50E+00	mg/kg	2.4E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-08	1.7E-07	mg/kg-day	2.0E-05	mg/kg-day	0.009
				Mercury	2.74E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-08					0.009
			PCB Dioxin-like Co	ngener TEQ Dermal	1.79E-05	mg/kg	5.2E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-09	3.6E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0005
		C4N-EU2 Total									6E-08					0.02
		Surface Soil at C4S-EU1	Ingestion	Total PCBs	1.63E+01	mg/kg	2.8E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-08	1.9E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	3.47E+00	mg/kg	2.0E-08	mg/kg-day	NA		NA	1.4E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0005
			Ingestion Total								3E-08					0.01
			PCB Dioxin-like Co	ngener TEQ Ingestion	3.98E-05	mg/kg	6.8E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-09	4.7E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0007
			Dermal	Total PCBs	1.63E+01	mg/kg	4.7E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	5E-08	3.3E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
				Mercury	3.47E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								5E-08					0.02
			PCB Dioxin-like Co	ngener TEQ Dermal	3.98E-05	mg/kg	1.1E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	8.0E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
		C4S-EU1 Total									1E-07					0.03
		Surface Soil at C4S-EU2	Ingestion	Total PCBs	2.51E+00	mg/kg	4.3E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	4E-09	3.0E-08	mg/kg-day	2.0E-05	mg/kg-day	0.001
				Mercury	1.27E+00	mg/kg	7.2E-09	mg/kg-day	NA		NA	5.0E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0002
			Ingestion Total								4E-09					0.002
			PCB Dioxin-like Co	ngener TEQ Ingestion	5.12E-06	mg/kg	8.7E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	6.1E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00009
			Dermal	Total PCBs	2.51E+00	mg/kg	7.2E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	7E-09	5.1E-08	mg/kg-day	2.0E-05	mg/kg-day	0.003
			<u> </u>	Mercury	1.27E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								7E-09					0.003
			PCB Dioxin-like Co	ngener TEQ Dermal	5.12E-06	mg/kg	1.5E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-09	1.0E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0001
		C4S-EU2 Total			-						2E-08					0.005

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	ations			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C4S-EU3	Ingestion	Total PCBs	5.50E+00	mg/kg	9.3E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	9E-09	6.5E-08	mg/kg-day	2.0E-05	mg/kg-day	0.003
		,		Mercury	1.69E+00	mg/kg	9.5E-09	mg/kg-day	NA		NA	6.7E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0002
			Ingestion Total								9E-09					0.003
			PCB Dioxin-like Co	ngener TEQ Ingestion	1.11E-05	mg/kg	1.9E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-09	1.3E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
			Dermal	Total PCBs	5.50E+00	mg/kg	1.6E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-08	1.1E-07	mg/kg-day	2.0E-05	mg/kg-day	0.006
		ļ ,		Mercury	1.69E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-08					0.006
			PCB Dioxin-like Co	ngener TEQ Dermal	1.11E-05	mg/kg	3.2E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-09	2.2E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0003
		C4S-EU3 Total									4E-08					0.01
		Surface Soil at C5N-EU1	Ingestion	Total PCBs	6.05E+00	mg/kg	1.0E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-08	7.2E-08	mg/kg-day	2.0E-05	mg/kg-day	0.004
		ļ ,		Mercury	1.51E+00	mg/kg	8.5E-09	mg/kg-day	NA		NA	6.0E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0002
			Ingestion Total								1E-08					0.004
			PCB Dioxin-like Co	ngener TEQ Ingestion	1.22E-05	mg/kg	2.1E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-09	1.4E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
			Dermal	Total PCBs	6.05E+00	mg/kg	1.7E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-08	1.2E-07	mg/kg-day	2.0E-05	mg/kg-day	0.006
				Mercury	1.51E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-08					0.006
	,		PCB Dioxin-like Co	ngener TEQ Dermal	1.22E-05	mg/kg	3.5E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-09	2.4E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0003
		C5N-EU1 Total								_	4E-08					0.01
		Surface Soil at C5S-EU1	Ingestion	Total PCBs	1.33E+00	mg/kg	2.3E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-09	1.6E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0008
				Mercury	8.86E-01	mg/kg	5.0E-09	mg/kg-day	NA		NA	3.5E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0001
			Ingestion Total								2E-09					0.0009
			PCB Dioxin-like Co	ngener TEQ Ingestion	2.63E-06	mg/kg	4.5E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-10	3.1E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00004
			Dermal	Total PCBs	1.33E+00	mg/kg	3.8E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	4E-09	2.7E-08	mg/kg-day	2.0E-05	mg/kg-day	0.001
		,		Mercury	8.86E-01	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total						1	,	4E-09					0.001
	,		PCB Dioxin-like Co	ngener TEQ Dermal	2.63E-06	mg/kg	7.6E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	5.3E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00008
		C5S-EU1 Total							1		9E-09					0.003
		Surface Soil at C6N-EU1	Ingestion	Total PCBs	2.14E+00	mg/kg	3.6E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	4E-09	2.5E-08	mg/kg-day	2.0E-05	mg/kg-day	0.001
				Mercury	1.41E+00	mg/kg	8.0E-09	mg/kg-day	NA		NA	5.6E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0002
			Ingestion Total								4E-09					0.001
				ngener TEQ Ingestion	4.14E-06	mg/kg	7.0E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-10	4.9E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00007
			Dermal	Total PCBs	2.14E+00	mg/kg	6.2E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	6E-09	4.3E-08	mg/kg-day	2.0E-05	mg/kg-day	0.002
				Mercury	1.41E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total						1	_	6E-09					0.002
			PCB Dioxin-like Co	ngener TEQ Dermal	4.14E-06	mg/kg	1.2E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-09	8.3E-14	mg/kg-day	7.0E-10	mg/kg-day	0.0001
		C6N-EU1 Total									1E-08					0.004

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	ations			Non-Cance	r Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C6S-EU1	Ingestion	Total PCBs	2.88E+00	mg/kg	4.9E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	5E-09	3.4E-08	mg/kg-day	2.0E-05	mg/kg-day	0.002
				Mercury	2.95E+00	mg/kg	1.7E-08	mg/kg-day	NA		NA	1.2E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0004
			Ingestion Total								5E-09					0.002
			PCB Dioxin-like Co	ngener TEQ Ingestion	5.84E-06	mg/kg	9.9E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	6.9E-14	mg/kg-day	7.0E-10	mg/kg-day	0.0001
		·	Dermal	Total PCBs	2.88E+00	mg/kg	8.3E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	8E-09	5.8E-08	mg/kg-day	2.0E-05	mg/kg-day	0.003
				Mercury	2.95E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								8E-09					0.003
	,		PCB Dioxin-like Co	ngener TEQ Dermal	5.84E-06	mg/kg	1.7E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-09	1.2E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
		C6S-EU1 Total									2E-08					0.006
	•	Surface Soil at C7S-EU1	Ingestion	Total PCBs	1.32E+00	mg/kg	2.2E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-09	1.6E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0008
				Mercury	6.77E-01	mg/kg	3.8E-09	mg/kg-day	NA		NA	2.7E-08	mg/kg-day	3.0E-04	mg/kg-day	0.00009
			Ingestion Total								2E-09					0.0009
			PCB Dioxin-like Co	ngener TEQ Ingestion	2.61E-06	mg/kg	4.4E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-10	3.1E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00004
			Dermal	Total PCBs	1.32E+00	mg/kg	3.8E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	4E-09	2.7E-08	mg/kg-day	2.0E-05	mg/kg-day	0.001
		,		Mercury	6.77E-01	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								4E-09					0.001
	ļ ,		PCB Dioxin-like Co	ngener TEQ Dermal	2.61E-06	mg/kg	7.5E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	5.3E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00008
		C7S-EU1 Total									9E-09					0.003
		Surface Soil at C8N-EU1	Ingestion	Total PCBs	3.09E+00	mg/kg	5.2E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	5E-09	3.7E-08	mg/kg-day	2.0E-05	mg/kg-day	0.002
				Mercury	1.57E+00	mg/kg	8.9E-09	mg/kg-day	NA		NA	6.2E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0002
			Ingestion Total								5E-09					0.002
			PCB Dioxin-like Co	ngener TEQ Ingestion	7.22E-06	mg/kg	1.2E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-09	8.6E-14	mg/kg-day	7.0E-10	mg/kg-day	0.0001
			Dermal	Total PCBs	3.09E+00	mg/kg	8.9E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	9E-09	6.2E-08	mg/kg-day	2.0E-05	mg/kg-day	0.003
				Mercury	1.57E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								9E-09					0.003
	,		PCB Dioxin-like Co	ngener TEQ Dermal	7.22E-06	mg/kg	2.1E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-09	1.5E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
		C8N-EU1 Total									2E-08					0.007

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	itions			Non-Cance	er Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	e Concentration	RfD)/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C1-EU2	Ingestion	Total PCBs	4.61E+01	mg/kg	7.5E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	8E-08	3.5E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
			Ingestion Total								8E-08					0.02
			PCB Dioxin-like Cor	ngener TEQ Ingestion	9.32E-05	mg/kg	1.5E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	7.1E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
			Dermal	Total PCBs	4.61E+01	mg/kg	4.0E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	4E-08	1.9E-07	mg/kg-day	2.0E-05	mg/kg-day	0.009
			Dermal Total								4E-08					0.009
	<u> </u>		PCB Dioxin-like Cor	ngener TEQ Dermal	9.32E-05	mg/kg	8.0E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	3.8E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0005
		C1-EU2 Total									1E-07					0.03
	1	Surface Soil at C2N-EU1	Ingestion	Total PCBs	1.63E+01	mg/kg	2.7E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-08	1.2E-07	mg/kg-day	2.0E-05	mg/kg-day	0.006
				Mercury	1.33E+00	mg/kg	7.3E-09	mg/kg-day	NA		NA	3.4E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0001
			Ingestion Total								3E-08					0.006
			PCB Dioxin-like Cor	ngener TEQ Ingestion	3.29E-05	mg/kg	5.4E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-09	2.5E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0004
			Dermal	Total PCBs	1.63E+01	mg/kg	1.4E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-08	6.6E-08	mg/kg-day	2.0E-05	mg/kg-day	0.003
				Mercury	1.33E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								1E-08					0.003
	<u> </u>		PCB Dioxin-like Cor	ngener TEQ Dermal	3.29E-05	mg/kg	2.8E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-09	1.3E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
		C2N-EU1 Total									5E-08					0.01
]	Surface Soil at C3N-EU1	Ingestion	Total PCBs	2.32E+01	mg/kg	3.8E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	4E-08	1.8E-07	mg/kg-day	2.0E-05	mg/kg-day	0.009
				Mercury	3.32E+00	mg/kg	1.8E-08	mg/kg-day	NA		NA	8.4E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0003
			Ingestion Total								4E-08					0.009
			PCB Dioxin-like Cor	ngener TEQ Ingestion	4.14E-05	mg/kg	6.8E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-09	3.2E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0005
			Dermal	Total PCBs	2.32E+01	mg/kg	2.0E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-08	9.4E-08	mg/kg-day	2.0E-05	mg/kg-day	0.005
				Mercury	3.32E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-08					0.005
	_		PCB Dioxin-like Cor	ngener TEQ Dermal	4.14E-05	mg/kg	3.6E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-09	1.7E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
		C3N-EU1 Total									7E-08					0.01
		Surface Soil at C3N-EU2	Ingestion	Total PCBs	3.69E+01	mg/kg	6.0E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	6E-08	2.8E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	4.62E+00	mg/kg	2.5E-08	mg/kg-day	NA		NA	1.2E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0004
			Ingestion Total								6E-08					0.01
			PCB Dioxin-like Cor	ngener TEQ Ingestion	9.70E-05	mg/kg	1.6E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	7.4E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
			Dermal	Total PCBs	3.69E+01	mg/kg	3.2E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-08	1.5E-07	mg/kg-day	2.0E-05	mg/kg-day	0.007
				Mercury	4.62E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								3E-08					0.007
			PCB Dioxin-like Cor	ngener TEQ Dermal	9.70E-05	mg/kg	8.4E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	3.9E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0006
		C3N-EU2 Total	·		<u> </u>				<u> </u>		1E-07					0.02

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	ations			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure 0	Concentration		Jnit Risk	Cancer Risk	Intake/Exposure	Concentration		/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C4N-EU1	Ingestion	Total PCBs	8.12E+00	mg/kg	1.3E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-08	6.2E-08	mg/kg-day	2.0E-05	mg/kg-day	0.003
				Mercury	2.28E+00	mg/kg	1.2E-08	mg/kg-day	NA		NA	5.8E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0002
			Ingestion Total								1E-08					0.003
			PCB Dioxin-like Co	ngener TEQ Ingestion	1.84E-05	mg/kg	3.0E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-09	1.4E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
			Dermal	Total PCBs	8.12E+00	mg/kg	7.0E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	7E-09	3.3E-08	mg/kg-day	2.0E-05	mg/kg-day	0.002
				Mercury	2.28E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								7E-09					0.002
	ļ <u>.</u>		PCB Dioxin-like Co	ngener TEQ Dermal	1.84E-05	mg/kg	1.6E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-09	7.4E-14	mg/kg-day	7.0E-10	mg/kg-day	0.0001
		C4N-EU1 Total									3E-08					0.005
]	Surface Soil at C4N-EU2	Ingestion	Total PCBs	8.50E+00	mg/kg	1.4E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-08	6.5E-08	mg/kg-day	2.0E-05	mg/kg-day	0.003
				Mercury	2.74E+00	mg/kg	1.5E-08	mg/kg-day	NA		NA	7.0E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0002
			Ingestion Total								1E-08					0.003
			PCB Dioxin-like Co	ngener TEQ Ingestion	1.79E-05	mg/kg	2.9E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-09	1.4E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
			Dermal	Total PCBs	8.50E+00	mg/kg	7.3E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	7E-09	3.4E-08	mg/kg-day	2.0E-05	mg/kg-day	0.002
				Mercury	2.74E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								7E-09					0.002
			PCB Dioxin-like Co	ngener TEQ Dermal	1.79E-05	mg/kg	1.5E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-09	7.2E-14	mg/kg-day	7.0E-10	mg/kg-day	0.0001
		C4N-EU2 Total									3E-08					0.005
		Surface Soil at C4S-EU1	Ingestion	Total PCBs	1.63E+01	mg/kg	2.7E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-08	1.2E-07	mg/kg-day	2.0E-05	mg/kg-day	0.006
				Mercury	3.47E+00	mg/kg	1.9E-08	mg/kg-day	NA		NA	8.8E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0003
			Ingestion Total								3E-08					0.007
			PCB Dioxin-like Co	ngener TEQ Ingestion	3.98E-05	mg/kg	6.5E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	8E-09	3.0E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0004
			Dermal	Total PCBs	1.63E+01	mg/kg	1.4E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-08	6.6E-08	mg/kg-day	2.0E-05	mg/kg-day	0.003
				Mercury	3.47E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total							_	1E-08					0.003
			PCB Dioxin-like Co	ngener TEQ Dermal	3.98E-05	mg/kg	3.4E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-09	1.6E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
		C4S-EU1 Total									5E-08					0.01
		Surface Soil at C4S-EU2	Ingestion	Total PCBs	2.51E+00	mg/kg	4.1E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	4E-09	1.9E-08	mg/kg-day	2.0E-05	mg/kg-day	0.001
				Mercury	1.27E+00	mg/kg	6.9E-09	mg/kg-day	NA		NA	3.2E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0001
			Ingestion Total								4E-09					0.001
			PCB Dioxin-like Co	ngener TEQ Ingestion	5.12E-06	mg/kg	8.4E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	3.9E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00006
			Dermal	Total PCBs	2.51E+00	mg/kg	2.2E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-09	1.0E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0005
				Mercury	1.27E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-09					0.0005
] .		PCB Dioxin-like Co	ngener TEQ Dermal	5.12E-06	mg/kg	4.4E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-10	2.1E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00003
		C4S-EU2 Total									8E-09				-	0.002

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	tions			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure C	Concentration		Init Risk	Cancer Risk	Intake/Exposure	Concentration		/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C4S-EU3	Ingestion	Total PCBs	5.50E+00	mg/kg	9.0E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	9E-09	4.2E-08	mg/kg-day	2.0E-05	mg/kg-day	0.002
				Mercury	1.69E+00	mg/kg	9.2E-09	mg/kg-day	NA		NA	4.3E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0001
			Ingestion Total								9E-09					0.002
			PCB Dioxin-like Co	ngener TEQ Ingestion	1.11E-05	mg/kg	1.8E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-09	8.4E-14	mg/kg-day	7.0E-10	mg/kg-day	0.0001
			Dermal	Total PCBs	5.50E+00	mg/kg	4.7E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	5E-09	2.2E-08	mg/kg-day	2.0E-05	mg/kg-day	0.001
				Mercury	1.69E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								5E-09					0.001
	<u> </u>		PCB Dioxin-like Co	ngener TEQ Dermal	1.11E-05	mg/kg	9.5E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	4.5E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00006
		C4S-EU3 Total									2E-08					0.004
		Surface Soil at C5N-EU1	Ingestion	Total PCBs	6.05E+00	mg/kg	9.9E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-08	4.6E-08	mg/kg-day	2.0E-05	mg/kg-day	0.002
				Mercury	1.51E+00	mg/kg	8.2E-09	mg/kg-day	NA		NA	3.8E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0001
			Ingestion Total								1E-08					0.002
			PCB Dioxin-like Co	ngener TEQ Ingestion	1.22E-05	mg/kg	2.0E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-09	9.3E-14	mg/kg-day	7.0E-10	mg/kg-day	0.0001
			Dermal	Total PCBs	6.05E+00	mg/kg	5.2E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	5E-09	2.4E-08	mg/kg-day	2.0E-05	mg/kg-day	0.001
				Mercury	1.51E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								5E-09					0.001
			PCB Dioxin-like Co	ngener TEQ Dermal	1.22E-05	mg/kg	1.1E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	4.9E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00007
	<u> </u>	C5N-EU1 Total									2E-08					0.004
		Surface Soil at C5S-EU1	Ingestion	Total PCBs	1.33E+00	mg/kg	2.2E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-09	1.0E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0005
				Mercury	8.86E-01	mg/kg	4.8E-09	mg/kg-day	NA		NA	2.3E-08	mg/kg-day	3.0E-04	mg/kg-day	0.00008
			Ingestion Total								2E-09		, ,			0.0006
			<u> </u>	ngener TEQ Ingestion	2.63E-06	mg/kg	4.3E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-10	2.0E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00003
			Dermal	Total PCBs	1.33E+00	mg/kg	1.2E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-09	5.4E-09	mg/kg-day	2.0E-05	mg/kg-day	0.0003
				Mercury	8.86E-01	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total					1		T	1E-09		T		1	0.0003
	<u> </u>		PCB Dioxin-like Co	ngener TEQ Dermal	2.63E-06	mg/kg	2.3E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-10	1.1E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00002
	ļ <u></u>	C5S-EU1 Total	,	<u> </u>	1			1		1	4E-09		1 1		T	0.0009
		Surface Soil at C6N-EU1	Ingestion	Total PCBs	2.14E+00	mg/kg	3.5E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-09	1.6E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0008
				Mercury	1.41E+00	mg/kg	7.7E-09	mg/kg-day	NA		NA	3.6E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0001
			Ingestion Total					1		T	3E-09		T		1	0.0009
				ngener TEQ Ingestion	4.14E-06	mg/kg	6.8E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-10	3.2E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00005
			Dermal	Total PCBs	2.14E+00	mg/kg	1.8E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-09	8.6E-09	mg/kg-day	2.0E-05	mg/kg-day	0.0004
			D I T	Mercury	1.41E+00	mg/kg	NA	mg/kg-day	NA		NA an an	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total							T	2E-09		T I			0.0004
			PCB Dioxin-like Co	ngener TEQ Dermal	4.14E-06	mg/kg	3.6E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-10	1.7E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00002
		C6N-EU1 Total									7E-09					0.001

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	itions			Non-Cance	er Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Init Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C6S-EU1	Ingestion	Total PCBs	2.88E+00	mg/kg	4.7E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	5E-09	2.2E-08	mg/kg-day	2.0E-05	mg/kg-day	0.001
				Mercury	2.95E+00	mg/kg	1.6E-08	mg/kg-day	NA		NA	7.5E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0002
			Ingestion Total								5E-09					0.001
			PCB Dioxin-like Co	ngener TEQ Ingestion	5.84E-06	mg/kg	9.5E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	4.5E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00006
			Dermal	Total PCBs	2.88E+00	mg/kg	2.5E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-09	1.2E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0006
				Mercury	2.95E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-09					0.0006
	l J		PCB Dioxin-like Co	ngener TEQ Dermal	5.84E-06	mg/kg	5.0E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-10	2.4E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00003
		C6S-EU1 Total									9E-09					0.002
	1	Surface Soil at C7S-EU1	Ingestion	Total PCBs	1.32E+00	mg/kg	2.2E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-09	1.0E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0005
				Mercury	6.77E-01	mg/kg	3.7E-09	mg/kg-day	NA		NA	1.7E-08	mg/kg-day	3.0E-04	mg/kg-day	0.00006
			Ingestion Total								2E-09					0.0006
			PCB Dioxin-like Co	ngener TEQ Ingestion	2.61E-06	mg/kg	4.3E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-10	2.0E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00003
			Dermal	Total PCBs	1.32E+00	mg/kg	1.1E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-09	5.3E-09	mg/kg-day	2.0E-05	mg/kg-day	0.0003
				Mercury	6.77E-01	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								1E-09					0.0003
	l J		PCB Dioxin-like Co	ngener TEQ Dermal	2.61E-06	mg/kg	2.3E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-10	1.1E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00002
		C7S-EU1 Total									4E-09					0.0009
	1	Surface Soil at C8N-EU1	Ingestion	Total PCBs	3.09E+00	mg/kg	5.1E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	5E-09	2.4E-08	mg/kg-day	2.0E-05	mg/kg-day	0.001
				Mercury	1.57E+00	mg/kg	8.5E-09	mg/kg-day	NA		NA	4.0E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0001
			Ingestion Total								5E-09					0.001
			PCB Dioxin-like Co	ngener TEQ Ingestion	7.22E-06	mg/kg	1.2E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-09	5.5E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00008
			Dermal	Total PCBs	3.09E+00	mg/kg	2.7E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-09	1.2E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0006
				Mercury	1.57E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total		•			•		•	3E-09		•	•	•	0.0006
]		PCB Dioxin-like Co	ngener TEQ Dermal	7.22E-06	mg/kg	6.2E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	8E-10	2.9E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00004
		C8N-EU1 Total									1E-08					0.002

ANNISTON PCB SITE OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Receptor Age: Young Child

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Canc	er Risk Calcula	ations			Non-Cance	r Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C1-EU1	Ingestion	Total PCBs	1.05E+01	mg/kg	1.3E-07	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-07	1.5E-06	mg/kg-day	6.0E-05	mg/kg-day	0.02
			Ingestion Total								1E-07					0.02
			PCB Dioxin-like Cor	ngener TEQ Ingestion	2.11E-05	mg/kg	2.6E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-08	3.0E-12	mg/kg-day	7.0E-10	mg/kg-day	0.004
			Dermal	Total PCBs	1.05E+01	mg/kg	5.7E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	6E-08	6.7E-07	mg/kg-day	6.0E-05	mg/kg-day	0.01
			Dermal Total								6E-08					0.01
			PCB Dioxin-like Cor	ngener TEQ Dermal	2.11E-05	mg/kg	1.2E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	1.3E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		C1-EU1 Total									2E-07					0.04
		Surface Soil at C3S-EU1	Ingestion	Total PCBs	1.95E+01	mg/kg	2.4E-07	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-07	2.8E-06	mg/kg-day	6.0E-05	mg/kg-day	0.05
				Mercury	8.96E+00	mg/kg	3.6E-07	mg/kg-day	NA		NA	4.3E-06	mg/kg-day	3.0E-03	mg/kg-day	0.001
			Ingestion Total								2E-07					0.05
			PCB Dioxin-like Cor	ngener TEQ Ingestion	3.93E-05	mg/kg	4.8E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-08	5.6E-12	mg/kg-day	7.0E-10	mg/kg-day	0.008
			Dermal	Total PCBs	1.95E+01	mg/kg	1.1E-07	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-07	1.2E-06	mg/kg-day	6.0E-05	mg/kg-day	0.02
				Mercury	8.96E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-03	mg/kg-day	NA
			Dermal Total								1E-07					0.02
			PCB Dioxin-like Cor	ngener TEQ Dermal	3.93E-05	mg/kg	2.2E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-08	2.5E-12	mg/kg-day	7.0E-10	mg/kg-day	0.004
		C3S-EU1 Total									4E-07					0.08
]	Surface Soil at C3S-EU2	Ingestion	Total PCBs	2.36E+01	mg/kg	2.9E-07	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-07	3.4E-06	mg/kg-day	6.0E-05	mg/kg-day	0.06
				Mercury	3.90E+00	mg/kg	1.6E-07	mg/kg-day	NA		NA	1.8E-06	mg/kg-day	3.0E-03	mg/kg-day	0.0006
			Ingestion Total								3E-07					0.06
			PCB Dioxin-like Cor	ngener TEQ Ingestion	1.07E-04	mg/kg	1.3E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-07	1.5E-11	mg/kg-day	7.0E-10	mg/kg-day	0.02
			Dermal	Total PCBs	2.36E+01	mg/kg	1.3E-07	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-07	1.5E-06	mg/kg-day	6.0E-05	mg/kg-day	0.03
				Mercury	3.90E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-03	mg/kg-day	NA
			Dermal Total								1E-07					0.03
]]		PCB Dioxin-like Cor	ngener TEQ Dermal	5.9E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	8E-08	6.8E-12	mg/kg-day	7.0E-10	mg/kg-day	0.01		
		C3S-EU2 Total	<u> </u>						·		7E-07					0.1

ANNISTON PCB SITE OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcul	ations			Non-Cance	r Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/	Unit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD)/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C1-EU1	Ingestion	Total PCBs	1.05E+01	mg/kg	3.6E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	4E-08	2.5E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
			Ingestion Total								4E-08					0.01
			PCB Dioxin-like Cor	ngener TEQ Ingestion	2.11E-05	mg/kg	7.2E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-09	5.0E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0007
			Dermal	Total PCBs	1.05E+01	mg/kg	6.0E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	6E-08	4.2E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
			Dermal Total								6E-08					0.02
			PCB Dioxin-like Cor	ngener TEQ Dermal	2.11E-05	mg/kg	1.2E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	8.5E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
		C1-EU1 Total									1E-07					0.04
		Surface Soil at C3S-EU1	Ingestion	Total PCBs	1.95E+01	mg/kg	6.6E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	7E-08	4.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
				Mercury	8.96E+00	mg/kg	1.0E-07	mg/kg-day	NA		NA	7.1E-07	mg/kg-day	3.0E-04	mg/kg-day	0.002
			Ingestion Total								7E-08					0.03
			PCB Dioxin-like Cor	ngener TEQ Ingestion	3.93E-05	mg/kg	1.3E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	9.3E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
			Dermal	Total PCBs	1.95E+01	mg/kg	1.1E-07	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-07	7.8E-07	mg/kg-day	2.0E-05	mg/kg-day	0.04
				Mercury	8.96E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								1E-07					0.04
			PCB Dioxin-like Cor	ngener TEQ Dermal	3.93E-05	mg/kg	2.3E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-08	1.6E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		C3S-EU1 Total									2E-07					0.07
		Surface Soil at C3S-EU2	Ingestion	Total PCBs	2.36E+01	mg/kg	8.0E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	8E-08	5.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.03
				Mercury	3.90E+00	mg/kg	4.4E-08	mg/kg-day	NA		NA	3.1E-07	mg/kg-day	3.0E-04	mg/kg-day	0.001
			Ingestion Total								8E-08					0.03
			PCB Dioxin-like Cor	ngener TEQ Ingestion	1.07E-04	mg/kg	3.6E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-08	2.5E-12	mg/kg-day	7.0E-10	mg/kg-day	0.004
			Dermal	Total PCBs	2.36E+01	mg/kg	1.4E-07	mg/kg-day	1.0E+00	(mg/kg-day)-1	1E-07	9.5E-07	mg/kg-day	2.0E-05	mg/kg-day	0.05
				Mercury	3.90E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								1E-07					0.05
			PCB Dioxin-like Cor	ngener TEQ Dermal	1.07E-04	mg/kg	6.2E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	8E-08	4.3E-12	mg/kg-day	7.0E-10	mg/kg-day	0.006
		C3S-EU2 Total									3E-07					0.09

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	itions			Non-Cance	r Hazard Cald	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Init Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at C1-EU1	Ingestion	Total PCBs	1.05E+01	mg/kg	3.4E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-08	1.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.008
			Ingestion Total								3E-08					0.008
			PCB Dioxin-like Cor	ngener TEQ Ingestion	2.11E-05	mg/kg	6.9E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-09	3.2E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0005
			Dermal	Total PCBs	1.05E+01	mg/kg	1.8E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-08	8.4E-08	mg/kg-day	2.0E-05	mg/kg-day	0.004
			Dermal Total								2E-08					0.004
			PCB Dioxin-like Cor	ngener TEQ Dermal	2.11E-05	mg/kg	3.6E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-09	1.7E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
		C1-EU1 Total									7E-08					0.01
		Surface Soil at C3S-EU1	Ingestion	Total PCBs	1.95E+01	mg/kg	6.4E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	6E-08	3.0E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	8.96E+00	mg/kg	9.8E-08	mg/kg-day	NA		NA	4.6E-07	mg/kg-day	3.0E-04	mg/kg-day	0.002
			Ingestion Total								6E-08					0.02
			PCB Dioxin-like Cor	ngener TEQ Ingestion	3.93E-05	mg/kg	1.3E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	6.0E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0009
			Dermal	Total PCBs	1.95E+01	mg/kg	3.4E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-08	1.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.008
				Mercury	8.96E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								3E-08					0.008
			PCB Dioxin-like Cor	ngener TEQ Dermal	3.93E-05	mg/kg	6.8E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	9E-09	3.2E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0005
		C3S-EU1 Total									1E-07					0.03
		Surface Soil at C3S-EU2	Ingestion	Total PCBs	2.36E+01	mg/kg	7.7E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	8E-08	3.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
				Mercury	3.90E+00	mg/kg	4.2E-08	mg/kg-day	NA		NA	2.0E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0007
			Ingestion Total								8E-08					0.02
			PCB Dioxin-like Cor	ngener TEQ Ingestion	1.07E-04	mg/kg	3.5E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-08	1.6E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
			Dermal	Total PCBs	2.36E+01	mg/kg	4.1E-08	mg/kg-day	1.0E+00	(mg/kg-day)-1	4E-08	1.9E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	3.90E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								4E-08					0.01
			PCB Dioxin-like Cor	ngener TEQ Dermal	1.07E-04	mg/kg	1.9E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	8.6E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
		C3S-EU2 Total									2E-07					0.03

ANNISTON PCB SITE OU4

Scenario Timeframe: Current/Future Receptor Population: Utility Worker

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	ations			Non-Cance	er Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Total Soil	Total Soil at C1-EU2	Ingestion	Total PCBs	6.69E+01	mg/kg	3.7E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	7E-08	2.6E-06	mg/kg-day	2.0E-05	mg/kg-day	0.1
			Ingestion Total								7E-08					0.1
			PCB Dioxin-like Cor	ngener TEQ Ingestion	1.35E-04	mg/kg	7.5E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	5.2E-12	mg/kg-day	7.0E-10	mg/kg-day	0.007
			Dermal	Total PCBs	6.69E+01	mg/kg	2.2E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-08	1.6E-06	mg/kg-day	2.0E-05	mg/kg-day	0.08
			Dermal Total								4E-08					0.08
			PCB Dioxin-like Cor	ngener TEQ Dermal	1.35E-04	mg/kg	4.5E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-09	3.1E-12	mg/kg-day	7.0E-10	mg/kg-day	0.004
		C1-EU2 Total									1E-07					0.2
	1	Total Soil at C2N-EU1	Ingestion	Total PCBs	3.62E+01	mg/kg	2.0E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-08	1.4E-06	mg/kg-day	2.0E-05	mg/kg-day	0.07
				Mercury	1.33E+00	mg/kg	2.5E-09	mg/kg-day	NA		NA	1.7E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0006
			Ingestion Total								4E-08					0.07
			PCB Dioxin-like Cor	ngener TEQ Ingestion	7.31E-05	mg/kg	4.0E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-09	2.8E-12	mg/kg-day	7.0E-10	mg/kg-day	0.004
			Dermal	Total PCBs	3.62E+01	mg/kg	1.2E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-08	8.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.04
				Mercury	1.33E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-08					0.04
			PCB Dioxin-like Cor	ngener TEQ Dermal	7.31E-05	mg/kg	2.4E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-09	1.7E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		C2N-EU1 Total									7E-08					0.1
	1	Total Soil at C4N-EU1	Ingestion	Total PCBs	6.08E+00	mg/kg	3.4E-09	mg/kg-day	2.0E+00	(mg/kg-day)-1	7E-09	2.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	2.12E+00	mg/kg	3.9E-09	mg/kg-day	NA		NA	2.7E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0009
			Ingestion Total								7E-09					0.01
			PCB Dioxin-like Cor	ngener TEQ Ingestion	1.33E-05	mg/kg	7.4E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	5.2E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0007
			Dermal	Total PCBs	6.08E+00	mg/kg	2.0E-09	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-09	1.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.007
				Mercury	2.12E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								4E-09					0.007
			PCB Dioxin-like Cor	ngener TEQ Dermal	1.33E-05	mg/kg	4.4E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-10	3.1E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0004
		C4N-EU1 Total									1E-08					0.02
	1	Total Soil at C5N-EU1	Ingestion	Total PCBs	1.19E+01	mg/kg	6.6E-09	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-08	4.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.02
				Mercury	1.51E+00	mg/kg	2.8E-09	mg/kg-day	NA		NA	1.9E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0006
			Ingestion Total								1E-08					0.02
			PCB Dioxin-like Cor	ngener TEQ Ingestion	2.39E-05	mg/kg	1.3E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-09	9.3E-13	mg/kg-day	7.0E-10	mg/kg-day	0.001
			Dermal	Total PCBs	1.19E+01	mg/kg	3.9E-09	mg/kg-day	2.0E+00	(mg/kg-day)-1	8E-09	2.8E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
				Mercury	1.51E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								8E-09					0.01
			PCB Dioxin-like Cor	ngener TEQ Dermal	2.39E-05	mg/kg	8.0E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	5.6E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0008
	ĺ	C5N-EU1 Total									2E-08					0.04

ANNISTON PCB SITE

OU4

Scenario Timeframe: Current/Future Receptor Population: Utility Worker

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Cano	er Risk Calcula	itions			Non-Cance	er Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	e Concentration	RfD)/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Total Soil	Total Soil at C1-EU2	Ingestion	Total PCBs	6.69E+01	mg/kg	2.8E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-09	2.0E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
			Ingestion Total								3E-09					0.01
			PCB Dioxin-like Cor	ngener TEQ Ingestion	1.35E-04	mg/kg	5.7E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-10	4.0E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0006
			Dermal	Total PCBs	6.69E+01	mg/kg	3.7E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	4E-09	2.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.01
			Dermal Total								4E-09					0.01
]		PCB Dioxin-like Cor	ngener TEQ Dermal	1.35E-04	mg/kg	7.5E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	5.2E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0007
		C1-EU2 Total									8E-09					0.02
	1	Total Soil at C2N-EU1	Ingestion	Total PCBs	3.62E+01	mg/kg	1.5E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-09	1.1E-07	mg/kg-day	2.0E-05	mg/kg-day	0.005
				Mercury	1.33E+00	mg/kg	1.9E-10	mg/kg-day	NA		NA	1.3E-08	mg/kg-day	3.0E-04	mg/kg-day	0.00004
			Ingestion Total								2E-09					0.005
			PCB Dioxin-like Cor	ngener TEQ Ingestion	7.31E-05	mg/kg	3.1E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-10	2.1E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0003
			Dermal	Total PCBs	3.62E+01	mg/kg	2.0E-09	mg/kg-day	1.0E+00	(mg/kg-day)-1	2E-09	1.4E-07	mg/kg-day	2.0E-05	mg/kg-day	0.007
				Mercury	1.33E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								2E-09					0.007
	ļ		PCB Dioxin-like Cor	ngener TEQ Dermal	7.31E-05	mg/kg	4.0E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	5E-10	2.8E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0004
		C2N-EU1 Total									4E-09					0.01
		Total Soil at C4N-EU1	Ingestion	Total PCBs	6.08E+00	mg/kg	2.6E-10	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-10	1.8E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0009
				Mercury	2.12E+00	mg/kg	3.0E-10	mg/kg-day	NA		NA	2.1E-08	mg/kg-day	3.0E-04	mg/kg-day	0.00007
			Ingestion Total								3E-10					0.001
			PCB Dioxin-like Cor	ngener TEQ Ingestion	1.33E-05	mg/kg	5.6E-16	mg/kg-day	1.3E+05	(mg/kg-day)-1	7E-11	3.9E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00006
			Dermal	Total PCBs	6.08E+00	mg/kg	3.4E-10	mg/kg-day	1.0E+00	(mg/kg-day)-1	3E-10	2.4E-08	mg/kg-day	2.0E-05	mg/kg-day	0.001
				Mercury	2.12E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								3E-10					0.001
	,		PCB Dioxin-like Cor	ngener TEQ Dermal	1.33E-05	mg/kg	7.4E-16	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-10	5.2E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00007
		C4N-EU1 Total									8E-10					0.002
		Total Soil at C5N-EU1	Ingestion	Total PCBs	1.19E+01	mg/kg	5.0E-10	mg/kg-day	1.0E+00	(mg/kg-day)-1	5E-10	3.5E-08	mg/kg-day	2.0E-05	mg/kg-day	0.002
				Mercury	1.51E+00	mg/kg	2.1E-10	mg/kg-day	NA		NA	1.5E-08	mg/kg-day	3.0E-04	mg/kg-day	0.00005
			Ingestion Total								5E-10					0.002
			PCB Dioxin-like Cor	ngener TEQ Ingestion	2.39E-05	mg/kg	1.0E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-10	7.0E-14	mg/kg-day	7.0E-10	mg/kg-day	0.0001
			Dermal	Total PCBs	1.19E+01	mg/kg	6.6E-10	mg/kg-day	1.0E+00	(mg/kg-day)-1	7E-10	4.6E-08	mg/kg-day	2.0E-05	mg/kg-day	0.002
			1	Mercury	1.51E+00	mg/kg	NA	mg/kg-day	NA		NA	NA	mg/kg-day	3.0E-04	mg/kg-day	NA
			Dermal Total								7E-10					0.002
]		PCB Dioxin-like Cor	ngener TEQ Dermal	2.39E-05	mg/kg	1.3E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-10	9.3E-14	mg/kg-day	7.0E-10	mg/kg-day	0.0001
		C5N-EU1 Total									1E-09					0.004

ANNISTON PCB SITE

OU4

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Can	er Risk Calcula	itions			Non-Cance	r Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	D/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at Ag-EU1	Ingestion	Total PCBs	4.25E+01	mg/kg	5.7E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-06	1.0E-06	mg/kg-day	2.0E-05	mg/kg-day	0.05
				Mercury	1.34E+01	mg/kg	6.0E-07	mg/kg-day	NA		NA	1.1E-06	mg/kg-day	3.0E-04	mg/kg-day	0.004
			Ingestion Total								1E-06					0.05
			PCB Dioxin-like Con	gener TEQ Ingestion	8.59E-05	mg/kg	1.2E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-07	2.0E-12	mg/kg-day	7.0E-10	mg/kg-day	0.003
			Dermal	Total PCBs	4.25E+01	mg/kg	7.5E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-06	1.3E-06	mg/kg-day	2.0E-05	mg/kg-day	0.07
				Mercury	1.34E+01	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								2E-06					0.07
	1		PCB Dioxin-like Con	gener TEQ Dermal	8.59E-05	mg/kg	1.5E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-07	2.7E-12	mg/kg-day	7.0E-10	mg/kg-day	0.004
		Ag-EU1 Total									3E-06					0.1
	1	Surface Soil at Ag-EU2	Ingestion	Total PCBs	2.23E+01	mg/kg	3.0E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	6E-07	5.2E-07	mg/kg-day	2.0E-05	mg/kg-day	0.03
				Mercury	3.15E+00	mg/kg	1.4E-07	mg/kg-day	NA		NA	2.5E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0008
			Ingestion Total								6E-07					0.03
			PCB Dioxin-like Con	gener TEQ Ingestion	4.50E-05	mg/kg	6.0E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	8E-08	1.1E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
			Dermal	Total PCBs	2.23E+01	mg/kg	4.0E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	8E-07	6.9E-07	mg/kg-day	2.0E-05	mg/kg-day	0.03
				Mercury	3.15E+00	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								8E-07					0.03
			PCB Dioxin-like Con	gener TEQ Dermal	4.50E-05	mg/kg	8.0E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-07	1.4E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
		Ag-EU2 Total									2E-06					0.07
	1	Surface Soil at Ag-EU3	Ingestion	Total PCBs	2.87E+01	mg/kg	3.8E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	8E-07	6.7E-07	mg/kg-day	2.0E-05	mg/kg-day	0.03
				Mercury	4.97E+00	mg/kg	2.2E-07	mg/kg-day	NA		NA	3.9E-07	mg/kg-day	3.0E-04	mg/kg-day	0.001
			Ingestion Total								8E-07					0.03
			PCB Dioxin-like Con	gener TEQ Ingestion	5.79E-05	mg/kg	7.8E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-07	1.4E-12	mg/kg-day	7.0E-10	mg/kg-day	0.002
			Dermal	Total PCBs	2.87E+01	mg/kg	5.1E-07	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-06	8.9E-07	mg/kg-day	2.0E-05	mg/kg-day	0.04
				Mercury	4.97E+00	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								1E-06					0.04
			PCB Dioxin-like Con	gener TEQ Dermal	5.79E-05	mg/kg	1.0E-12	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-07	1.8E-12	mg/kg-day	7.0E-10	mg/kg-day	0.003
		Ag-EU3 Total									2E-06					0.08
	1	Surface Soil at Ag-EU4	Ingestion	Total PCBs	1.74E+00	mg/kg	2.3E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	5E-08	4.1E-08	mg/kg-day	2.0E-05	mg/kg-day	0.002
				Mercury	1.66E+00	mg/kg	7.4E-08	mg/kg-day	NA		NA	1.3E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0004
			Ingestion Total								5E-08					0.002
			PCB Dioxin-like Con	gener TEQ Ingestion	3.45E-06	mg/kg	4.6E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-09	8.1E-14	mg/kg-day	7.0E-10	mg/kg-day	0.0001
			Dermal	Total PCBs	1.74E+00	mg/kg	3.1E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	6E-08	5.4E-08	mg/kg-day	2.0E-05	mg/kg-day	0.003
				Mercury	1.66E+00	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								6E-08					0.003
			PCB Dioxin-like Con	gener TEQ Dermal	3.45E-06	mg/kg	6.1E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	8E-09	1.1E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
]	Ag-EU4 Total	<i></i>	-				•			1E-07					0.005

ANNISTON PCB SITE

OU4

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Can	er Risk Calcula	itions			Non-Cance	r Hazard Cal	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD)/RfC	Honord
							Value	Units	Value	Units		Value	Units	Value	Units	Hazard Quotient
		Surface Soil at Ag-EU5	Ingestion	Total PCBs	5.29E+00	mg/kg	7.1E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-07	1.2E-07	mg/kg-day	2.0E-05	mg/kg-day	0.006
				Mercury	1.65E+00	mg/kg	7.4E-08	mg/kg-day	NA		NA	1.3E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0004
			Ingestion Total								1E-07					0.007
			PCB Dioxin-like Con	gener TEQ Ingestion	1.06E-05	mg/kg	1.4E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	2.5E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0004
			Dermal	Total PCBs	5.29E+00	mg/kg	9.4E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-07	1.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.008
				Mercury	1.65E+00	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								2E-07					0.008
	_		PCB Dioxin-like Con	gener TEQ Dermal	1.06E-05	mg/kg	1.9E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	3.3E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0005
		Ag-EU5 Total									4E-07					0.02
	1	Surface Soil at Ag-EU6	Ingestion	Total PCBs	4.08E-02	mg/kg	5.5E-10	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-09	9.6E-10	mg/kg-day	2.0E-05	mg/kg-day	0.00005
				Mercury	2.14E-01	mg/kg	9.6E-09	mg/kg-day	NA		NA	1.7E-08	mg/kg-day	3.0E-04	mg/kg-day	0.00006
			Ingestion Total								1E-09					0.0001
			PCB Dioxin-like Con	gener TEQ Ingestion	1.94E-08	mg/kg	2.6E-16	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-11	4.6E-16	mg/kg-day	7.0E-10	mg/kg-day	0.0000007
			Dermal	Total PCBs	4.08E-02	mg/kg	7.2E-10	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-09	1.3E-09	mg/kg-day	2.0E-05	mg/kg-day	0.00006
				Mercury	2.14E-01	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								1E-09					0.00006
			PCB Dioxin-like Con	gener TEQ Dermal	1.94E-08	mg/kg	3.4E-16	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-11	6.0E-16	mg/kg-day	7.0E-10	mg/kg-day	0.0000009
		Ag-EU6 Total	-								3E-09					0.0002
	1	Surface Soil at Ag-EU7	Ingestion	Total PCBs	7.97E-01	mg/kg	1.1E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-08	1.9E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0009
				Mercury	5.25E-01	mg/kg	2.3E-08	mg/kg-day	NA		NA	4.1E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0001
			Ingestion Total								2E-08					0.001
			PCB Dioxin-like Con	gener TEQ Ingestion	1.55E-06	mg/kg	2.1E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-09	3.6E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00005
			Dermal	Total PCBs	7.97E-01	mg/kg	1.4E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	3E-08	2.5E-08	mg/kg-day	2.0E-05	mg/kg-day	0.001
				Mercury	5.25E-01	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								3E-08					0.001
			PCB Dioxin-like Con	gener TEQ Dermal	1.55E-06	mg/kg	2.7E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-09	4.8E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00007
		Ag-EU7 Total									6E-08					0.002
	1	Surface Soil at Ag-EU8	Ingestion	Total PCBs	4.44E-01	mg/kg	6.0E-09	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-08	1.0E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0005
				Mercury	1.20E+00	mg/kg	5.4E-08	mg/kg-day	NA		NA	9.4E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0003
			Ingestion Total								1E-08					0.0008
			PCB Dioxin-like Con	gener TEQ Ingestion	8.34E-07	mg/kg	1.1E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	2.0E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00003
			Dermal	Total PCBs	4.44E-01	mg/kg	7.9E-09	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-08	1.4E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0007
				Mercury	1.20E+00	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								2E-08					0.0007
	_		PCB Dioxin-like Con	igener TEQ Dermal	8.34E-07	mg/kg	1.5E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-09	2.6E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00004
		Ag-EU8 Total									3E-08					0.002

ANNISTON PCB SITE

OU4

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC	;		Can	er Risk Calcula	itions			Non-Cance	r Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	D/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Soil	Surface Soil	Surface Soil at Ag-EU1	Ingestion	Total PCBs	4.25E+01	mg/kg	7.1E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-07	1.2E-07	mg/kg-day	2.0E-05	mg/kg-day	0.006
				Mercury	1.34E+01	mg/kg	7.5E-08	mg/kg-day	NA		NA	1.3E-07	mg/kg-day	3.0E-04	mg/kg-day	0.0004
			Ingestion Total								1E-07					0.007
			PCB Dioxin-like Con	gener TEQ Ingestion	8.59E-05	mg/kg	1.4E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	2.5E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0004
			Dermal	Total PCBs	4.25E+01	mg/kg	9.4E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-07	1.6E-07	mg/kg-day	2.0E-05	mg/kg-day	0.008
				Mercury	1.34E+01	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								2E-07					0.008
			PCB Dioxin-like Con	gener TEQ Dermal	8.59E-05	mg/kg	1.9E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	3.3E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0005
		Ag-EU1 Total									4E-07					0.02
	1	Surface Soil at Ag-EU2	Ingestion	Total PCBs	2.23E+01	mg/kg	3.7E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	7E-08	6.5E-08	mg/kg-day	2.0E-05	mg/kg-day	0.003
				Mercury	3.15E+00	mg/kg	1.8E-08	mg/kg-day	NA		NA	3.1E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0001
			Ingestion Total								7E-08					0.003
			PCB Dioxin-like Con	gener TEQ Ingestion	4.50E-05	mg/kg	7.6E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	1.3E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
			Dermal	Total PCBs	2.23E+01	mg/kg	4.9E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-07	8.6E-08	mg/kg-day	2.0E-05	mg/kg-day	0.004
				Mercury	3.15E+00	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								1E-07					0.004
			PCB Dioxin-like Con	gener TEQ Dermal	4.50E-05	mg/kg	1.0E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	1.7E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
		Ag-EU2 Total	-								2E-07					0.008
	1	Surface Soil at Ag-EU3	Ingestion	Total PCBs	2.87E+01	mg/kg	4.8E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-07	8.4E-08	mg/kg-day	2.0E-05	mg/kg-day	0.004
				Mercury	4.97E+00	mg/kg	2.8E-08	mg/kg-day	NA		NA	4.9E-08	mg/kg-day	3.0E-04	mg/kg-day	0.0002
			Ingestion Total								1E-07					0.004
			PCB Dioxin-like Con	gener TEQ Ingestion	5.79E-05	mg/kg	9.7E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-08	1.7E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0002
			Dermal	Total PCBs	2.87E+01	mg/kg	6.3E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-07	1.1E-07	mg/kg-day	2.0E-05	mg/kg-day	0.006
				Mercury	4.97E+00	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								1E-07					0.006
			PCB Dioxin-like Con	gener TEQ Dermal	5.79E-05	mg/kg	1.3E-13	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-08	2.2E-13	mg/kg-day	7.0E-10	mg/kg-day	0.0003
		Ag-EU3 Total									3E-07					0.01
	1	Surface Soil at Ag-EU4	Ingestion	Total PCBs	1.74E+00	mg/kg	2.9E-09	mg/kg-day	2.0E+00	(mg/kg-day)-1	6E-09	5.1E-09	mg/kg-day	2.0E-05	mg/kg-day	0.0003
				Mercury	1.66E+00	mg/kg	9.3E-09	mg/kg-day	NA		NA	1.6E-08	mg/kg-day	3.0E-04	mg/kg-day	0.00005
			Ingestion Total								6E-09					0.0003
			PCB Dioxin-like Con	gener TEQ Ingestion	3.45E-06	mg/kg	5.8E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	8E-10	1.0E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00001
			Dermal	Total PCBs	1.74E+00	mg/kg	3.8E-09	mg/kg-day	2.0E+00	(mg/kg-day)-1	8E-09	6.7E-09	mg/kg-day	2.0E-05	mg/kg-day	0.0003
			<u>] </u>	Mercury	1.66E+00	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								8E-09					0.0003
			PCB Dioxin-like Con	gener TEQ Dermal	3.45E-06	mg/kg	7.6E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	1E-09	1.3E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00002
		Ag-EU4 Total	"		•	•		•		•	2E-08				•	0.0007

ANNISTON PCB SITE

OU4

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC			Can	cer Risk Calcula	ations			Non-Cance	r Hazard Cald	culations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure	Concentration	RfD	D/RfC	Hamard
							Value	Units	Value	Units		Value	Units	Value	Units	Hazard Quotient
		Surface Soil at Ag-EU5	Ingestion	Total PCBs	5.29E+00	mg/kg	8.9E-09	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-08	1.6E-08	mg/kg-day	2.0E-05	mg/kg-day	0.0008
				Mercury	1.65E+00	mg/kg	9.2E-09	mg/kg-day	NA		NA	1.6E-08	mg/kg-day	3.0E-04	mg/kg-day	0.00005
			Ingestion Total								2E-08					0.0008
			PCB Dioxin-like Con	gener TEQ Ingestion	1.06E-05	mg/kg	1.8E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-09	3.1E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00004
			Dermal	Total PCBs	5.29E+00	mg/kg	1.2E-08	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-08	2.0E-08	mg/kg-day	2.0E-05	mg/kg-day	0.001
				Mercury	1.65E+00	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								2E-08					0.001
			PCB Dioxin-like Con	gener TEQ Dermal	1.06E-05	mg/kg	2.4E-14	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-09	4.1E-14	mg/kg-day	7.0E-10	mg/kg-day	0.00006
		Ag-EU5 Total									5E-08					0.002
		Surface Soil at Ag-EU6	Ingestion	Total PCBs	4.08E-02	mg/kg	6.8E-11	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-10	1.2E-10	mg/kg-day	2.0E-05	mg/kg-day	0.000006
				Mercury	2.14E-01	mg/kg	1.2E-09	mg/kg-day	NA		NA	2.1E-09	mg/kg-day	3.0E-04	mg/kg-day	0.000007
			Ingestion Total								1E-10					0.00001
			PCB Dioxin-like Con	gener TEQ Ingestion	1.94E-08	mg/kg	3.3E-17	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-12	5.7E-17	mg/kg-day	7.0E-10	mg/kg-day	0.0000000
			Dermal	Total PCBs	4.08E-02	mg/kg	9.0E-11	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-10	1.6E-10	mg/kg-day	2.0E-05	mg/kg-day	0.000008
				Mercury	2.14E-01	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total								2E-10				•	0.000008
			PCB Dioxin-like Con	gener TEQ Dermal	1.94E-08	mg/kg	4.3E-17	mg/kg-day	1.3E+05	(mg/kg-day)-1	6E-12	7.5E-17	mg/kg-day	7.0E-10	mg/kg-day	0.0000001
		Ag-EU6 Total									3E-10					0.00002
		Surface Soil at Ag-EU7	Ingestion	Total PCBs	7.97E-01	mg/kg	1.3E-09	mg/kg-day	2.0E+00	(mg/kg-day)-1	3E-09	2.3E-09	mg/kg-day	2.0E-05	mg/kg-day	0.0001
				Mercury	5.25E-01	mg/kg	2.9E-09	mg/kg-day	NA		NA	5.1E-09	mg/kg-day	3.0E-04	mg/kg-day	0.00002
			Ingestion Total								3E-09	<u> </u>				0.0001
			PCB Dioxin-like Con	gener TEQ Ingestion	1.55E-06	mg/kg	2.6E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	3E-10	4.5E-15	mg/kg-day	7.0E-10	mg/kg-day	0.000006
			Dermal	Total PCBs	7.97E-01	mg/kg	1.8E-09	mg/kg-day	2.0E+00	(mg/kg-day)-1	4E-09	3.1E-09	mg/kg-day	2.0E-05	mg/kg-day	0.0002
				Mercury	5.25E-01	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total			1			1	1	4E-09					0.0002
			PCB Dioxin-like Con	gener TEQ Dermal	1.55E-06	mg/kg	3.4E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	4E-10	6.0E-15	mg/kg-day	7.0E-10	mg/kg-day	0.000009
		Ag-EU7 Total			1			1	1	1	7E-09					0.0003
		Surface Soil at Ag-EU8	Ingestion	Total PCBs	4.44E-01	mg/kg	7.4E-10	mg/kg-day	2.0E+00	(mg/kg-day)-1	1E-09	1.3E-09	mg/kg-day	2.0E-05	mg/kg-day	0.00007
				Mercury	1.20E+00	mg/kg	6.7E-09	mg/kg-day	NA		NA	1.2E-08	mg/kg-day	3.0E-04	mg/kg-day	0.00004
			Ingestion Total		-11			1	1	1	1E-09				T	0.0001
			PCB Dioxin-like Con	gener TEQ Ingestion	8.34E-07	mg/kg	1.4E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-10	2.4E-15	mg/kg-day	7.0E-10	mg/kg-day	0.000003
			Dermal	Total PCBs	4.44E-01	mg/kg	9.8E-10	mg/kg-day	2.0E+00	(mg/kg-day)-1	2E-09	1.7E-09	mg/kg-day	2.0E-05	mg/kg-day	0.00009
				Mercury	1.20E+00	mg/kg	NA		NA		NA	NA		3.0E-04	mg/kg-day	NA
			Dermal Total			1		1		T	2E-09		T		1 .	0.00009
			PCB Dioxin-like Con	gener TEQ Dermal	8.34E-07	mg/kg	1.8E-15	mg/kg-day	1.3E+05	(mg/kg-day)-1	2E-10	3.2E-15	mg/kg-day	7.0E-10	mg/kg-day	0.000005
		Ag-EU8 Total									4E-09	ll				0.0002

APPENDIX K DIRECT CONTACT RAGS 9 AND 10 TABLES

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURE ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carci	nogenic Risk			Non-Carcinogo	enic Hazard Quo	tient	
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Surface Soil	Surface Soil at C1-EU2	Total PCBs	1E-06		5E-06	7E-06	Eyes, Immune system	0.2		0.9	1
		C1-EU2 Total		1E-06		5E-06	7E-06		0.2		0.9	1
		C1-EU2 PCB Dioxin-like C	Congener TEQ	2E-07		7E-07	9E-07	Developmental	0.01		0.05	0.07
		Surface Soil at C2N-EU1	Total PCBs	4E-07		2E-06	2E-06	Eyes, Immune system	0.08		0.3	0.4
			Mercury					Immune system	0.001			0.001
		C2N-EU1 Total		4E-07		2E-06	2E-06		0.08		0.3	0.4
		C2N-EU1 PCB Dioxin-like	Congener TEQ	6E-08		2E-07	3E-07	Developmental	0.004		0.02	0.02
		Surface Soil at C3N-EU1	Total PCBs	6E-07		3E-06	3E-06	Eyes, Immune system	0.1		0.5	0.6
			Mercury					Immune system	0.004			0.004
		C3N-EU1 Total		6E-07		3E-06	3E-06		0.1		0.5	0.6
		C3N-EU1 PCB Dioxin-like	Congener TEQ	7E-08		3E-07	4E-07	Developmental	0.006		0.02	0.03
		Surface Soil at C3N-EU2	Total PCBs	1E-06		4E-06	5E-06	Eyes, Immune system	0.2		0.7	0.9
			Mercury					Immune system	0.005			0.005
		C3N-EU2 Total		1E-06		4E-06	5E-06		0.2		0.7	0.9
		C3N-EU2 PCB Dioxin-like	Congener TEQ	2E-07		7E-07	9E-07	Developmental	0.01		0.06	0.07
		Surface Soil at C4N-EU1	Total PCBs	2E-07		9E-07	1E-06	Eyes, Immune system	0.04		0.2	0.2
			Mercury					Immune system	0.002			0.002
		C4N-EU1 Total		2E-07		9E-07	1E-06		0.04		0.2	0.2
		C4N-EU1 PCB Dioxin-like	Congener TEQ	3E-08		1E-07	2E-07	Developmental	0.002		0.01	0.01
		Surface Soil at C4N-EU2	Total PCBs	2E-07		1E-06	1E-06	Eyes, Immune system	0.04		0.2	0.2
			Mercury					Immune system	0.003			0.003
		C4N-EU2 Total		2E-07		1E-06	1E-06		0.04		0.2	0.2
		C4N-EU2 PCB Dioxin-like	Congener TEQ	3E-08		1E-07	2E-07	Developmental	0.002		0.01	0.01
		Surface Soil at C4S-EU1	Total PCBs	4E-07		2E-06	2E-06	Eyes, Immune system	0.08		0.3	0.4
			Mercury					Immune system	0.004			0.004
		C4S-EU1 Total		4E-07		2E-06	2E-06		0.08		0.3	0.4
		C4S-EU1 PCB Dioxin-like	Congener TEQ	7E-08		3E-07	4E-07	Developmental	0.005		0.02	0.03
		Surface Soil at C4S-EU2	Total PCBs	7E-08		3E-07	4E-07	Eyes, Immune system	0.01		0.05	0.06
			Mercury					Immune system	0.001			0.001
		C4S-EU2 Total		7E-08		3E-07	4E-07		0.01		0.05	0.06
		C4S-EU2 PCB Dioxin-like	Congener TEQ	9E-09		4E-08	5E-08	Developmental	0.0007		0.003	0.004
		Surface Soil at C4S-EU3	Total PCBs	1E-07		6E-07	8E-07	Eyes, Immune system	0.03		0.1	0.1
			Mercury					Immune system	0.002			0.002
		C4S-EU3 Total		1E-07		6E-07	8E-07		0.03		0.1	0.1
		C4S-EU3 PCB Dioxin-like	Congener TEQ	2E-08		8E-08	1E-07	Developmental	0.002		0.006	0.008
		Surface Soil at C5N-EU1	Total PCBs	2E-07		7E-07	9E-07	Eyes, Immune system	0.03		0.1	0.2
			Mercury					Immune system	0.002			0.002
		C5N-EU1 Total		2E-07		7E-07	9E-07		0.03		0.1	0.2
		C5N-EU1 PCB Dioxin-like	Congener TEQ	2E-08		9E-08	1E-07	Developmental	0.002		0.007	0.009

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil	Surface Soil	Surface Soil at C5S-EU1	Total PCBs	4E-08		2E-07	2E-07	Eyes, Immune system	0.006		0.03	0.03
			Mercury					Immune system	0.0009			0.0009
		C5S-EU1 Total		4E-08		2E-07	2E-07		0.007		0.03	0.03
		C5S-EU1 PCB Dioxin-like	Congener TEQ	5E-09		2E-08	2E-08	Developmental	0.0004		0.002	0.002
		Surface Soil at C6N-EU1	Total PCBs	6E-08		2E-07	3E-07	Eyes, Immune system	0.01		0.04	0.05
			Mercury					Immune system	0.001			0.001
		C6N-EU1 Total		6E-08		2E-07	3E-07		0.01		0.04	0.05
		C6N-EU1 PCB Dioxin-like	Congener TEQ	7E-09		3E-08	4E-08	Developmental	0.0006		0.002	0.003
		Surface Soil at C6S-EU1	Total PCBs	8E-08		3E-07	4E-07	Eyes, Immune system	0.01		0.06	0.07
			Mercury					Immune system	0.003			0.003
		C6S-EU1 Total		8E-08		3E-07	4E-07		0.02		0.06	0.07
		C6S-EU1 PCB Dioxin-like	Congener TEQ	1E-08		4E-08	5E-08	Developmental	0.0008		0.003	0.004
		Surface Soil at C7S-EU1	Total PCBs	4E-08		2E-07	2E-07	Eyes, Immune system	0.006		0.03	0.03
			Mercury					Immune system	0.0007			0.0007
		C7S-EU1 Total		4E-08		2E-07	2E-07		0.007		0.03	0.03
		C7S-EU1 PCB Dioxin-like	Congener TEQ	5E-09		2E-08	2E-08	Developmental	0.0004		0.002	0.002
		Surface Soil at C8N-EU1	Total PCBs	8E-08		4E-07	4E-07	Eyes, Immune system	0.01		0.06	0.08
			Mercury					Immune system	0.002			0.002
		C8N-EU1 Total		8E-08		4E-07	4E-07		0.02		0.06	0.08
		C8N-EU1 PCB Dioxin-like	Congener TEQ	1E-08		5E-08	7E-08	Developmental	0.0010		0.004	0.005

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURE ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcin	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Surface Soil	Surface Soil at C1-EU2	Total PCBs	2E-06		2E-06	4E-06	Eyes, Immune system	0.1		0.09	0.2
		C1-EU2 Total		2E-06		2E-06	4E-06		0.1		0.09	0.2
		C1-EU2 PCB Dioxin-like C	Congener TEQ	3E-07		2E-07	5E-07	Developmental	0.008		0.005	0.01
		Surface Soil at C2N-EU1	Total PCBs	9E-07		6E-07	1E-06	Eyes, Immune system	0.05		0.03	0.08
			Mercury					Immune system	0.0009			0.0009
		C2N-EU1 Total		9E-07		6E-07	1E-06		0.05		0.03	0.08
		C2N-EU1 PCB Dioxin-like	Congener TEQ	1E-07		7E-08	2E-07	Developmental	0.003		0.002	0.005
	•	Surface Soil at C3N-EU1	Total PCBs	1E-06		8E-07	2E-06	Eyes, Immune system	0.07		0.05	0.1
	,		Mercury					Immune system	0.002			0.002
		C3N-EU1 Total		1E-06		8E-07	2E-06		0.07		0.05	0.1
		C3N-EU1 PCB Dioxin-like	Congener TEQ	1E-07		9E-08	2E-07	Developmental	0.004		0.002	0.006
		Surface Soil at C3N-EU2	Total PCBs	2E-06		1E-06	3E-06	Eyes, Immune system	0.1		0.07	0.2
	,		Mercury					Immune system	0.003			0.003
		C3N-EU2 Total		2E-06		1E-06	3E-06		0.1		0.07	0.2
		C3N-EU2 PCB Dioxin-like	Congener TEQ	3E-07		2E-07	5E-07	Developmental	0.008		0.006	0.01
	•	Surface Soil at C4N-EU1	Total PCBs	4E-07		3E-07	7E-07	Eyes, Immune system	0.02		0.02	0.04
			Mercury					Immune system	0.002			0.002
		C4N-EU1 Total		4E-07		3E-07	7E-07		0.03		0.02	0.04
		C4N-EU1 PCB Dioxin-like	Congener TEQ	6E-08		4E-08	1E-07	Developmental	0.002		0.001	0.003
		Surface Soil at C4N-EU2	Total PCBs	4E-07		3E-07	7E-07	Eyes, Immune system	0.03		0.02	0.04
	ı		Mercury					Immune system	0.002			0.002
		C4N-EU2 Total		4E-07		3E-07	7E-07		0.03		0.02	0.04
		C4N-EU2 PCB Dioxin-like	Congener TEQ	6E-08		4E-08	1E-07	Developmental	0.002		0.001	0.003
		Surface Soil at C4S-EU1	Total PCBs	9E-07		6E-07	1E-06	Eyes, Immune system	0.05		0.03	0.08
	,		Mercury					Immune system	0.002			0.002
		C4S-EU1 Total		9E-07		6E-07	1E-06		0.05		0.03	0.09
		C4S-EU1 PCB Dioxin-like	Congener TEQ	1E-07		9E-08	2E-07	Developmental	0.003		0.002	0.006
		Surface Soil at C4S-EU2	Total PCBs	1E-07		9E-08	2E-07	Eyes, Immune system	0.008		0.005	0.01
	1		Mercury					Immune system	0.0009			0.0009
		C4S-EU2 Total		1E-07		9E-08	2E-07		0.009		0.005	0.01
		C4S-EU2 PCB Dioxin-like	Congener TEQ	2E-08		1E-08	3E-08	Developmental	0.0004		0.0003	0.0007
		Surface Soil at C4S-EU3	Total PCBs	3E-07		2E-07	5E-07	Eyes, Immune system	0.02		0.01	0.03
	Í		Mercury					Immune system	0.001			0.001
		C4S-EU3 Total		3E-07		2E-07	5E-07		0.02		0.01	0.03
		C4S-EU3 PCB Dioxin-like	Congener TEQ	4E-08		2E-08	6E-08	Developmental	0.0010		0.0006	0.002
	'	Surface Soil at C5N-EU1	Total PCBs	3E-07		2E-07	5E-07	Eyes, Immune system	0.02		0.01	0.03
	,		Mercury					Immune system	0.001			0.001
		C5N-EU1 Total		3E-07		2E-07	5E-07		0.02		0.01	0.03
		C5N-EU1 PCB Dioxin-like	Congener TEQ	4E-08		3E-08	7E-08	Developmental	0.001		0.0007	0.002

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil	Surface Soil	Surface Soil at C5S-EU1	Total PCBs	7E-08		5E-08	1E-07	Eyes, Immune system	0.004		0.003	0.007
			Mercury					Immune system	0.0006			0.0006
		C5S-EU1 Total		7E-08		5E-08	1E-07		0.005		0.003	0.007
		C5S-EU1 PCB Dioxin-like	Congener TEQ	9E-09		6E-09	1E-08	Developmental	0.0002		0.0002	0.0004
		Surface Soil at C6N-EU1	Total PCBs	1E-07		7E-08	2E-07	Eyes, Immune system	0.007		0.004	0.01
			Mercury					Immune system	0.001			0.001
		C6N-EU1 Total		1E-07		7E-08	2E-07		0.007		0.004	0.01
		C6N-EU1 PCB Dioxin-like	Congener TEQ	1E-08		9E-09	2E-08	Developmental	0.0004		0.0002	0.0006
		Surface Soil at C6S-EU1	Total PCBs	2E-07		1E-07	3E-07	Eyes, Immune system	0.009		0.006	0.01
			Mercury					Immune system	0.002			0.002
		C6S-EU1 Total		2E-07		1E-07	3E-07		0.01		0.006	0.02
		C6S-EU1 PCB Dioxin-like	Congener TEQ	2E-08		1E-08	3E-08	Developmental	0.0005		0.0003	0.0008
		Surface Soil at C7S-EU1	Total PCBs	7E-08		5E-08	1E-07	Eyes, Immune system	0.004		0.003	0.007
			Mercury					Immune system	0.0005			0.0005
		C7S-EU1 Total		7E-08		5E-08	1E-07		0.004		0.003	0.007
		C7S-EU1 PCB Dioxin-like	Congener TEQ	9E-09		6E-09	1E-08	Developmental	0.0002		0.0002	0.0004
		Surface Soil at C8N-EU1	Total PCBs	2E-07		1E-07	3E-07	Eyes, Immune system	0.009		0.006	0.02
			Mercury					Immune system	0.001			0.001
		C8N-EU1 Total		2E-07		1E-07	3E-07		0.01		0.006	0.02
		C8N-EU1 PCB Dioxin-like	Congener TEQ	2E-08		2E-08	4E-08	Developmental	0.0006		0.0004	0.001

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Receptor Age: Young Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil	Surface Soil	Surface Soil at C1-EU1	Total PCBs	2E-06		2E-06	4E-06	Eyes, Immune system	0.2		0.2	0.4
		C1-EU1 Total		2E-06		2E-06	4E-06		0.2		0.2	0.4
		C1-EU1 PCB Dioxin-like C	Congener TEQ	3E-07		2E-07	5E-07	Developmental	0.03		0.03	0.06
	•	Surface Soil at C3S-EU1	Total PCBs	4E-06		3E-06	7E-06	Eyes, Immune system	0.4		0.3	0.7
			Mercury					Immune system	0.01			0.01
		C3S-EU1 Total		4E-06		3E-06	7E-06		0.4		0.3	0.7
		C3S-EU1 PCB Dioxin-like	Congener TEQ	5E-07		4E-07	9E-07	Developmental	0.06		0.05	0.1
	·	Surface Soil at C3S-EU2	Total PCBs	5E-06		4E-06	8E-06	Eyes, Immune system	0.4		0.4	0.8
			Mercury					Immune system	0.005			0.005
		C3S-EU2 Total		5E-06		4E-06	8E-06		0.5		0.4	0.8
		C3S-EU2 PCB Dioxin-like	Congener TEQ	1E-06		1E-06	3E-06	Developmental	0.2		0.1	0.3

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil	Surface Soil	Surface Soil at C1-EU1	Total PCBs	6E-07		2E-06	3E-06	Eyes, Immune system	0.1		0.4	0.5
		C1-EU1 Total		6E-07		2E-06	3E-06		0.1		0.4	0.5
		C1-EU1 PCB Dioxin-like C	Congener TEQ	7E-08		3E-07	4E-07	Developmental	0.006		0.02	0.03
		Surface Soil at C3S-EU1	Total PCBs	1E-06		4E-06	6E-06	Eyes, Immune system	0.2		0.8	1
			Mercury					Immune system	0.02			0.02
		C3S-EU1 Total		1E-06		4E-06	6E-06		0.2		0.8	1
		C3S-EU1 PCB Dioxin-like	Congener TEQ	1E-07		6E-07	7E-07	Developmental	0.01		0.05	0.06
		Surface Soil at C3S-EU2	Total PCBs	1E-06		5E-06	7E-06	Eyes, Immune system	0.2		1	1
			Mercury					Immune system	0.008			0.008
		C3S-EU2 Total		1E-06		5E-06	7E-06		0.2		1	1
		C3S-EU2 PCB Dioxin-like	Congener TEQ	4E-07		2E-06	2E-06	Developmental	0.03		0.1	0.2

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Medium	Exposure	Exposure	Chemical		Carcin	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
	Medium	Point	of Potential Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Surface Soil	Surface Soil at C1-EU1	Total PCBs	1E-06		7E-07	2E-06	Eyes, Immune system	0.06		0.04	0.1
		C1-EU1 Total		1E-06		7E-07	2E-06		0.06		0.04	0.1
		C1-EU1 PCB Dioxin-like C	Congener TEQ	1E-07		9E-08	2E-07	Developmental	0.004		0.002	0.006
		Surface Soil at C3S-EU1	Total PCBs	2E-06		1E-06	3E-06	Eyes, Immune system	0.1		0.08	0.2
			Mercury					Immune system	0.01			0.01
		C3S-EU1 Total		2E-06		1E-06	3E-06		0.1		0.08	0.2
		C3S-EU1 PCB Dioxin-like	Congener TEQ	3E-07		2E-07	4E-07	Developmental	0.007		0.005	0.01
		Surface Soil at C3S-EU2	Total PCBs	2E-06		2E-06	4E-06	Eyes, Immune system	0.1		0.1	0.2
			Mercury					Immune system	0.005			0.005
		C3S-EU2 Total		2E-06		2E-06	4E-06		0.1		0.10	0.2
		C3S-EU2 PCB Dioxin-like	Congener TEQ	7E-07		5E-07	1E-06	Developmental	0.02		0.01	0.03

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS CENTRAL TENDENCY EXPOSURE ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carci	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Surface Soil	Surface Soil at C1-EU2	Total PCBs	8E-08		1E-07	2E-07	Eyes, Immune system	0.03		0.05	0.07
		C1-EU2 Total		8E-08		1E-07	2E-07		0.03		0.05	0.07
		C1-EU2 PCB Dioxin-like C	Congener TEQ	2E-08		3E-08	6E-08	Developmental	0.002		0.003	0.004
		Surface Soil at C2N-EU1	Total PCBs	3E-08		5E-08	7E-08	Eyes, Immune system	0.010		0.02	0.03
			Mercury					Immune system	0.0002			0.0002
		C2N-EU1 Total		3E-08		5E-08	7E-08		0.01		0.02	0.03
		C2N-EU1 PCB Dioxin-like	Congener TEQ	7E-09		1E-08	2E-08	Developmental	0.0006		0.0009	0.002
		Surface Soil at C3N-EU1	Total PCBs	4E-08		7E-08	1E-07	Eyes, Immune system	0.01		0.02	0.04
			Mercury					Immune system	0.0004			0.0004
		C3N-EU1 Total		4E-08		7E-08	1E-07		0.01		0.02	0.04
		C3N-EU1 PCB Dioxin-like	Congener TEQ	9E-09		2E-08	2E-08	Developmental	0.0007		0.001	0.002
		Surface Soil at C3N-EU2	Total PCBs	6E-08		1E-07	2E-07	Eyes, Immune system	0.02		0.04	0.06
			Mercury					Immune system	0.0006			0.0006
		C3N-EU2 Total		6E-08		1E-07	2E-07		0.02		0.04	0.06
		C3N-EU2 PCB Dioxin-like	Congener TEQ	2E-08		4E-08	6E-08	Developmental	0.002		0.003	0.004
		Surface Soil at C4N-EU1	Total PCBs	1E-08		2E-08	4E-08	Eyes, Immune system	0.005		0.008	0.01
			Mercury					Immune system	0.0003			0.0003
		C4N-EU1 Total		1E-08		2E-08	4E-08		0.005		0.008	0.01
		C4N-EU1 PCB Dioxin-like	Congener TEQ	4E-09		7E-09	1E-08	Developmental	0.0003		0.0005	0.0008
		Surface Soil at C4N-EU2	Total PCBs	1E-08		2E-08	4E-08	Eyes, Immune system	0.005		0.009	0.01
			Mercury					Immune system	0.0004			0.0004
		C4N-EU2 Total		1E-08		2E-08	4E-08		0.005		0.009	0.01
		C4N-EU2 PCB Dioxin-like	Congener TEQ	4E-09		7E-09	1E-08	Developmental	0.0003		0.0005	0.0008
		Surface Soil at C4S-EU1	Total PCBs	3E-08		5E-08	7E-08	Eyes, Immune system	0.01		0.02	0.03
			Mercury					Immune system	0.0005			0.0005
		C4S-EU1 Total		3E-08		5E-08	7E-08		0.01		0.02	0.03
		C4S-EU1 PCB Dioxin-like	Congener TEQ	9E-09		1E-08	2E-08	Developmental	0.0007		0.001	0.002
		Surface Soil at C4S-EU2	Total PCBs	4E-09		7E-09	1E-08	Eyes, Immune system	0.001		0.003	0.004
			Mercury					Immune system	0.0002			0.0002
		C4S-EU2 Total		4E-09		7E-09	1E-08		0.002		0.003	0.004
		C4S-EU2 PCB Dioxin-like	Congener TEQ	1E-09		2E-09	3E-09	Developmental	0.00009		0.0001	0.0002
		Surface Soil at C4S-EU3	Total PCBs	9E-09		2E-08	3E-08	Eyes, Immune system	0.003		0.006	0.009
			Mercury					Immune system	0.0002			0.0002
		C4S-EU3 Total		9E-09		2E-08	3E-08		0.003		0.006	0.009
		C4S-EU3 PCB Dioxin-like	Congener TEQ	2E-09		4E-09	7E-09	Developmental	0.0002		0.0003	0.0005
		Surface Soil at C5N-EU1	Total PCBs	1E-08		2E-08	3E-08	Eyes, Immune system	0.004		0.006	0.01
		<u> </u>	Mercury					Immune system	0.0002			0.0002
		C5N-EU1 Total		1E-08		2E-08	3E-08		0.004		0.006	0.01
		C5N-EU1 PCB Dioxin-like	Congener TEQ	3E-09		5E-09	7E-09	Developmental	0.0002		0.0003	0.0006

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE

OLI 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil	Surface Soil	Surface Soil at C5S-EU1	Total PCBs	2E-09		4E-09	6E-09	Eyes, Immune system	0.0008		0.001	0.002
			Mercury					Immune system	0.0001			0.0001
		C5S-EU1 Total		2E-09		4E-09	6E-09		0.0009		0.001	0.002
		C5S-EU1 PCB Dioxin-like	Congener TEQ	6E-10		1E-09	2E-09	Developmental	0.00004		0.00008	0.0001
		Surface Soil at C6N-EU1	Total PCBs	4E-09		6E-09	1E-08	Eyes, Immune system	0.001		0.002	0.003
			Mercury					Immune system	0.0002			0.0002
		C6N-EU1 Total		4E-09		6E-09	1E-08		0.001		0.002	0.004
		C6N-EU1 PCB Dioxin-like	Congener TEQ	9E-10		2E-09	2E-09	Developmental	0.00007		0.0001	0.0002
		Surface Soil at C6S-EU1	Total PCBs	5E-09		8E-09	1E-08	Eyes, Immune system	0.002		0.003	0.005
			Mercury					Immune system	0.0004			0.0004
		C6S-EU1 Total		5E-09		8E-09	1E-08		0.002		0.003	0.005
		C6S-EU1 PCB Dioxin-like	Congener TEQ	1E-09		2E-09	3E-09	Developmental	0.0001		0.0002	0.0003
		Surface Soil at C7S-EU1	Total PCBs	2E-09		4E-09	6E-09	Eyes, Immune system	0.0008		0.001	0.002
			Mercury					Immune system	0.00009			0.00009
		C7S-EU1 Total		2E-09		4E-09	6E-09		0.0009		0.001	0.002
		C7S-EU1 PCB Dioxin-like	Congener TEQ	6E-10		1E-09	2E-09	Developmental	0.00004		0.00008	0.0001
		Surface Soil at C8N-EU1	Total PCBs	5E-09		9E-09	1E-08	Eyes, Immune system	0.002		0.003	0.005
			Mercury					Immune system	0.0002			0.0002
		C8N-EU1 Total	-	5E-09		9E-09	1E-08		0.002		0.003	0.005
		C8N-EU1 PCB Dioxin-like	Congener TEQ	2E-09		3E-09	4E-09	Developmental	0.0001		0.0002	0.0003

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS CENTRAL TENDENCY EXPOSURE ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carci	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Surface Soil	Surface Soil at C1-EU2	Total PCBs	8E-08		4E-08	1E-07	Eyes, Immune system	0.02		0.009	0.03
		C1-EU2 Total		8E-08		4E-08	1E-07		0.02		0.009	0.03
		C1-EU2 PCB Dioxin-like C	Congener TEQ	2E-08		1E-08	3E-08	Developmental	0.001		0.0005	0.002
		Surface Soil at C2N-EU1	Total PCBs	3E-08		1E-08	4E-08	Eyes, Immune system	0.006		0.003	0.01
			Mercury					Immune system	0.0001			0.0001
		C2N-EU1 Total		3E-08		1E-08	4E-08		0.006		0.003	0.01
		C2N-EU1 PCB Dioxin-like	Congener TEQ	7E-09		4E-09	1E-08	Developmental	0.0004		0.0002	0.0005
		Surface Soil at C3N-EU1	Total PCBs	4E-08		2E-08	6E-08	Eyes, Immune system	0.009		0.005	0.01
			Mercury					Immune system	0.0003			0.0003
		C3N-EU1 Total		4E-08		2E-08	6E-08		0.009		0.005	0.01
		C3N-EU1 PCB Dioxin-like	Congener TEQ	9E-09		5E-09	1E-08	Developmental	0.0005		0.0002	0.0007
		Surface Soil at C3N-EU2	Total PCBs	6E-08		3E-08	9E-08	Eyes, Immune system	0.01		0.007	0.02
			Mercury					Immune system	0.0004			0.0004
		C3N-EU2 Total	·	6E-08		3E-08	9E-08		0.01		0.007	0.02
		C3N-EU2 PCB Dioxin-like	Congener TEQ	2E-08		1E-08	3E-08	Developmental	0.001		0.0006	0.002
		Surface Soil at C4N-EU1	Total PCBs	1E-08		7E-09	2E-08	Eyes, Immune system	0.003		0.002	0.005
			Mercury					Immune system	0.0002			0.0002
		C4N-EU1 Total	,	1E-08		7E-09	2E-08	,	0.003		0.002	0.005
		C4N-EU1 PCB Dioxin-like	Congener TEQ	4E-09		2E-09	6E-09	Developmental	0.0002		0.0001	0.0003
		Surface Soil at C4N-EU2	Total PCBs	1E-08		7E-09	2E-08	Eyes, Immune system	0.003		0.002	0.005
			Mercury					Immune system	0.0002			0.0002
		C4N-EU2 Total		1E-08		7E-09	2E-08		0.003		0.002	0.005
		C4N-EU2 PCB Dioxin-like	Congener TEQ	4E-09		2E-09	6E-09	Developmental	0.0002		0.0001	0.0003
		Surface Soil at C4S-EU1	Total PCBs	3E-08		1E-08	4E-08	Eyes, Immune system	0.006		0.003	0.01
			Mercury					Immune system	0.0003			0.0003
		C4S-EU1 Total		3E-08		1E-08	4E-08		0.007		0.003	0.01
		C4S-EU1 PCB Dioxin-like	Congener TEQ	8E-09		4E-09	1E-08	Developmental	0.0004		0.0002	0.0007
		Surface Soil at C4S-EU2	Total PCBs	4E-09		2E-09	6E-09	Eyes, Immune system	0.001		0.0005	0.001
			Mercury					Immune system	0.0001			0.0001
		C4S-EU2 Total		4E-09		2E-09	6E-09		0.001		0.0005	0.002
		C4S-EU2 PCB Dioxin-like	Congener TEQ	1E-09		6E-10	2E-09	Developmental	0.00006		0.00003	0.00009
		Surface Soil at C4S-EU3	Total PCBs	9E-09		5E-09	1E-08	Eyes, Immune system	0.002		0.0003	0.003
1			Mercury	9E-09		3E-09		Immune system	0.002			0.003
1		C4S-EU3 Total	werouty	9E-09		5E-09	1E-08	minute system	0.0001		0.001	0.003
1		C4S-EU3 PCB Dioxin-like	Congener TEQ	2E-09		1E-09	4E-09	Developmental	0.0001		0.00006	0.0002
1	1	Surface Soil at C5N-EU1	Total PCBs	1E-08		5E-09	2E-08	i 	0.0001		0.0008	0.0002
1	1	Carrade Con at Con-EUT	Nercury	1E-08		5E-09	2E-08	Eyes, Immune system Immune system	0.002		0.001	0.004
1		C5N-EU1 Total	iviercury	1E-08		5E-09	2E-08	illilliule systelli	0.0001		0.001	0.004
1	I	CON-EUT TOTAL		1E-06		DE-09	∠E-U0		0.002		0.001	0.004

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil	Surface Soil	Surface Soil at C5S-EU1	Total PCBs	2E-09		1E-09	3E-09	Eyes, Immune system	0.0005		0.0003	0.0008
			Mercury					Immune system	0.00008			0.00008
		C5S-EU1 Total		2E-09		1E-09	3E-09		0.0006		0.0003	0.0009
		C5S-EU1 PCB Dioxin-like	Congener TEQ	6E-10		3E-10	9E-10	Developmental	0.00003		0.00002	0.00004
		Surface Soil at C6N-EU1	Total PCBs	3E-09		2E-09	5E-09	Eyes, Immune system	0.0008		0.0004	0.001
			Mercury					Immune system	0.0001			0.0001
		C6N-EU1 Total		3E-09		2E-09	5E-09		0.0009		0.0004	0.001
		C6N-EU1 PCB Dioxin-like	Congener TEQ	9E-10		5E-10	1E-09	Developmental	0.00005		0.00002	0.00007
		Surface Soil at C6S-EU1	Total PCBs	5E-09		2E-09	7E-09	Eyes, Immune system	0.001		0.0006	0.002
			Mercury					Immune system	0.0002			0.0002
		C6S-EU1 Total		5E-09		2E-09	7E-09		0.001		0.0006	0.002
		C6S-EU1 PCB Dioxin-like	Congener TEQ	1E-09		7E-10	2E-09	Developmental	0.00006		0.00003	0.0001
		Surface Soil at C7S-EU1	Total PCBs	2E-09		1E-09	3E-09	Eyes, Immune system	0.0005		0.0003	0.0008
			Mercury					Immune system	0.00006			0.00006
		C7S-EU1 Total		2E-09		1E-09	3E-09		0.0006		0.0003	0.0008
		C7S-EU1 PCB Dioxin-like	Congener TEQ	6E-10		3E-10	8E-10	Developmental	0.00003		0.00002	0.00004
		Surface Soil at C8N-EU1	Total PCBs	5E-09		3E-09	8E-09	Eyes, Immune system	0.001		0.0006	0.002
			Mercury					Immune system	0.0001			0.0001
		C8N-EU1 Total	-	5E-09		3E-09	8E-09		0.001		0.0006	0.002
		C8N-EU1 PCB Dioxin-like	Congener TEQ	2E-09		8E-10	2E-09	Developmental	0.00008		0.00004	0.0001

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Receptor Age: Young Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil	Surface Soil	Surface Soil at C1-EU1	Total PCBs	1E-07		6E-08	2E-07	Eyes, Immune system	0.02		0.01	0.04
		C1-EU1 Total		1E-07		6E-08	2E-07		0.02		0.01	0.04
		C1-EU1 PCB Dioxin-like C	Congener TEQ	3E-08		2E-08	5E-08	Developmental	0.004		0.002	0.006
		Surface Soil at C3S-EU1	Total PCBs	2E-07		1E-07	3E-07	Eyes, Immune system	0.05		0.02	0.07
			Mercury					Immune system	0.001			0.001
		C3S-EU1 Total		2E-07		1E-07	3E-07		0.05		0.02	0.07
		C3S-EU1 PCB Dioxin-like	Congener TEQ	6E-08		3E-08	9E-08	Developmental	0.008		0.004	0.01
		Surface Soil at C3S-EU2	Total PCBs	3E-07		1E-07	4E-07	Eyes, Immune system	0.06		0.03	0.08
			Mercury					Immune system	0.0006			0.0006
		C3S-EU2 Total		3E-07		1E-07	4E-07		0.06		0.03	0.08
		C3S-EU2 PCB Dioxin-like	Congener TEQ	2E-07		8E-08	2E-07	Developmental	0.02		0.01	0.03

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Receptor Age: Adolescent

Medium	Exposure	Exposure	Chemical		Carcir	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
	Medium	Point	of Potential Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Surface Soil	Surface Soil at C1-EU1	Total PCBs	4E-08		6E-08	1E-07	Eyes, Immune system	0.01		0.02	0.03
		C1-EU1 Total		4E-08		6E-08	1E-07		0.01		0.02	0.03
		C1-EU1 PCB Dioxin-like C	Congener TEQ	9E-09		2E-08	3E-08	Developmental	0.0007		0.001	0.002
		Surface Soil at C3S-EU1	Total PCBs	7E-08		1E-07	2E-07	Eyes, Immune system	0.02		0.04	0.06
			Mercury					Immune system	0.002			0.002
		C3S-EU1 Total		7E-08		1E-07	2E-07		0.03		0.04	0.06
		C3S-EU1 PCB Dioxin-like	Congener TEQ	2E-08		3E-08	5E-08	Developmental	0.001		0.002	0.004
		Surface Soil at C3S-EU2	Total PCBs	8E-08		1E-07	2E-07	Eyes, Immune system	0.03		0.05	0.08
			Mercury					Immune system	0.001			0.001
		C3S-EU2 Total		8E-08		1E-07	2E-07		0.03		0.05	0.08
			5E-08		8E-08	1E-07	Developmental	0.004		0.006	0.01	

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcinog	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil	Surface Soil	Surface Soil at C1-EU1	Total PCBs	3E-08		2E-08	5E-08	Eyes, Immune system	0.008		0.004	0.01
		C1-EU1 Total		3E-08		2E-08	5E-08		0.008		0.004	0.01
		C1-EU1 PCB Dioxin-like C	Congener TEQ	9E-09		5E-09	1E-08	Developmental	0.0005		0.0002	0.0007
		Surface Soil at C3S-EU1	Total PCBs	6E-08		3E-08	1E-07	Eyes, Immune system	0.01		0.008	0.02
			Mercury					Immune system	0.002			0.002
		C3S-EU1 Total		6E-08		3E-08	1E-07		0.02		0.008	0.02
		C3S-EU1 PCB Dioxin-like	Congener TEQ	2E-08		9E-09	3E-08	Developmental	0.0009		0.0005	0.001
		Surface Soil at C3S-EU2	Total PCBs	8E-08		4E-08	1E-07	Eyes, Immune system	0.02		0.010	0.03
			Mercury					Immune system	0.0007			0.0007
		C3S-EU2 Total		8E-08		4E-08	1E-07		0.02		0.01	0.03
		C3S-EU2 PCB Dioxin-like	Congener TEQ	5E-08		2E-08	7E-08	Developmental	0.002		0.001	0.004

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future Receptor Population: Utility Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcin	nogenic Risk			Non-Carcinoge	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes To
Soil	Surface Soil	Surface Soil at C1-EU2	Total PCBs	7E-08		4E-08	1E-07	Eyes, Immune system	0.1		0.08	0.2
		C1-EU2 Total		7E-08		4E-08	1E-07		0.1		0.08	0.2
		C1-EU2 PCB Dioxin-like C	ongener TEQ	1E-08		6E-09	2E-08	Developmental	0.007		0.004	0.01
		Surface Soil at C2N-EU1	Total PCBs Mercury	4E-08		2E-08	6E-08 	Eyes, Immune system Immune system	0.07 0.0006		0.04	0.1 0.0006
		C2N-EU1 Total		4E-08		2E-08	6E-08		0.07		0.04	0.1
		C2N-EU1 PCB Dioxin-like	Congener TEQ	5E-09		3E-09	8E-09	Developmental	0.004		0.002	0.006
		Surface Soil at C4N-EU1	Total PCBs Mercury	7E-09		4E-09	1E-08 	Eyes, Immune system Immune system	0.01 0.0009		0.007	0.02
		C4N-EU1 Total		7E-09		4E-09	1E-08		0.01		0.007	0.02
		C4N-EU1 PCB Dioxin-like	Congener TEQ	1E-09		6E-10	2E-09	Developmental	0.0007		0.0004	0.001
		Surface Soil at C5N-EU1	Total PCBs Mercury	1E-08 		8E-09	2E-08 	Eyes, Immune system Immune system	0.02 0.0006		0.01	0.04 0.0006
		C5N-EU1 Total		1E-08		8E-09	2E-08		0.02		0.01	0.04
		C5N-EU1 PCB Dioxin-like	Congener TEQ	2E-09		1E-09	3E-09	Developmental	0.001		0.0008	0.002

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE OU 4

Scenario Timeframe: Current/Future Receptor Population: Utility Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcinogo	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Surface Soil	Surface Soil at C1-EU2	Total PCBs	3E-09		4E-09	7E-09	Eyes, Immune system	0.01		0.01	0.02
		C1-EU2 Total		3E-09		4E-09	7E-09		0.01		0.01	0.02
		C1-EU2 PCB Dioxin-like C	Congener TEQ	7E-10		1E-09	2E-09	Developmental	0.0006		0.0007	0.001
		Surface Soil at C2N-EU1	Total PCBs	2E-09		2E-09	4E-09	Eyes, Immune system	0.005		0.007	0.01
			Mercury					Immune system	0.00004			0.00004
		C2N-EU1 Total		2E-09		2E-09	4E-09		0.005		0.007	0.01
		C2N-EU1 PCB Dioxin-like	Congener TEQ	4E-10		5E-10	9E-10	Developmental	0.0003		0.0004	0.0007
		Surface Soil at C4N-EU1	Total PCBs	3E-10		3E-10	6E-10	Eyes, Immune system	0.0009		0.001	0.002
			Mercury					Immune system	0.00007			0.00007
		C4N-EU1 Total		3E-10		3E-10	6E-10		0.001		0.001	0.002
		C4N-EU1 PCB Dioxin-like	Congener TEQ	7E-11		1E-10	2E-10	Developmental	0.00006		0.00007	0.0001
		Surface Soil at C5N-EU1 Total PCBs Mercury	Total PCBs	5E-10		7E-10	1E-09	Eyes, Immune system	0.002		0.002	0.004
							Immune system	0.00005			0.00005	
		C5N-EU1 Total		5E-10		7E-10	1E-09		0.002		0.002	0.004
		C5N-EU1 PCB Dioxin-like	Congener TEQ	1E-10		2E-10	3E-10	Developmental	0.0001		0.0001	0.0002

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE OU 4

Scenario Timeframe: Current/Future Receptor Population: Farmer Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcinoge	enic Hazard Quo	otient	
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Surface Soil	Surface Soil at Ag-EU1	Total PCBs	1E-06		2E-06	3E-06	Eyes, Immune system	0.05		0.07	0.1
			Mercury					Immune system	0.004			0.004
		Ag-EU1 Total		1E-06		2E-06	3E-06		0.05		0.07	0.1
		Ag-EU1 PCB Dioxin-like C	Congener TEQ	1E-07		2E-07	3E-07	Developmental	0.003		0.004	0.007
		Surface Soil at Ag-EU2	Total PCBs	6E-07		8E-07	1E-06	Eyes, Immune system	0.03		0.03	0.06
			Mercury					Immune system	0.0008			0.0008
		Ag-EU2 Total		6E-07		8E-07	1E-06		0.03		0.03	0.06
		Ag-EU2 PCB Dioxin-like C	Congener TEQ	8E-08		1E-07	2E-07	Developmental	0.002		0.002	0.004
		Surface Soil at Ag-EU3	Total PCBs	8E-07		1E-06	2E-06	Eyes, Immune system	0.03		0.04	0.08
			Mercury					Immune system	0.001			0.001
		Ag-EU3 Total		8E-07		1E-06	2E-06		0.03		0.04	0.08
		Ag-EU3 PCB Dioxin-like C	Congener TEQ	1E-07		1E-07	2E-07	Developmental	0.002		0.003	0.005
		Surface Soil at Ag-EU4	Total PCBs	5E-08		6E-08	1E-07	Eyes, Immune system	0.002		0.003	0.005
			Mercury					Immune system	0.0004			0.0004
		Ag-EU4 Total		5E-08		6E-08	1E-07		0.002		0.003	0.005
		Ag-EU4 PCB Dioxin-like C	Congener TEQ	6E-09		8E-09	1E-08	Developmental	0.0001		0.0002	0.0003
		Surface Soil at Ag-EU5	Total PCBs	1E-07		2E-07	3E-07	Eyes, Immune system	0.006		0.008	0.01
			Mercury					Immune system	0.0004			0.0004
		Ag-EU5 Total		1E-07		2E-07	3E-07		0.007		0.008	0.01
		Ag-EU5 PCB Dioxin-like C	Congener TEQ	2E-08		2E-08	4E-08	Developmental	0.0004		0.0005	0.0008
		Surface Soil at Ag-EU6	Total PCBs	1E-09		1E-09	3E-09	Eyes, Immune system	0.00005		0.00006	0.0001
			Mercury					Immune system	0.00006			0.00006
		Ag-EU6 Total		1E-09		1E-09	3E-09		0.0001		0.00006	0.0002
		Ag-EU6 PCB Dioxin-like C	Congener TEQ	3E-11		4E-11	8E-11	Developmental	0.0000007		0.0000009	0.000002
		Surface Soil at Ag-EU7	Total PCBs	2E-08		3E-08	5E-08	Eyes, Immune system	0.0009		0.001	0.002
			Mercury					Immune system	0.0001			0.0001
		Ag-EU7 Total		2E-08		3E-08	5E-08		0.001		0.001	0.002
		Ag-EU7 PCB Dioxin-like C	Congener TEQ	3E-09		4E-09	6E-09	Developmental	0.00005		0.00007	0.0001
		Surface Soil at Ag-EU8	Total PCBs	1E-08		2E-08	3E-08	Eyes, Immune system	0.0005		0.0007	0.001
			Mercury					Immune system	0.0003			0.0003
		Ag-EU8 Total		1E-08		2E-08	3E-08		0.0008		0.0007	0.002
		Ag-EU8 PCB Dioxin-like C	Congener TEQ	1E-09		2E-09	3E-09	Developmental	0.00003		0.00004	0.00006

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS CENTRAL TENDENCY EXPOSURE

ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future Receptor Population: Farmer Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk			Non-Carcinoge	enic Hazard Quo	tient	
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Surface Soil	Surface Soil at Ag-EU1	Total PCBs	1E-07		2E-07	3E-07	Eyes, Immune system	0.006		0.008	0.01
			Mercury					Immune system	0.0004			0.0004
		Ag-EU1 Total		1E-07		2E-07	3E-07		0.007		0.008	0.01
		Ag-EU1 PCB Dioxin-like C	Congener TEQ	2E-08		2E-08	4E-08	Developmental	0.0004		0.0005	0.0008
		Surface Soil at Ag-EU2	Total PCBs	7E-08		1E-07	2E-07	Eyes, Immune system	0.003		0.004	0.008
			Mercury					Immune system	0.0001			0.0001
		Ag-EU2 Total		7E-08		1E-07	2E-07		0.003		0.004	0.008
		Ag-EU2 PCB Dioxin-like C	Congener TEQ	1E-08		1E-08	2E-08	Developmental	0.0002		0.0002	0.0004
		Surface Soil at Ag-EU3	Total PCBs	1E-07		1E-07	2E-07	Eyes, Immune system	0.004		0.006	0.01
			Mercury					Immune system	0.0002			0.0002
		Ag-EU3 Total		1E-07		1E-07	2E-07		0.004		0.006	0.01
		Ag-EU3 PCB Dioxin-like C	Congener TEQ	1E-08		2E-08	3E-08	Developmental	0.0002		0.0003	0.0006
		Surface Soil at Ag-EU4	Total PCBs	6E-09		8E-09	1E-08	Eyes, Immune system	0.0003		0.0003	0.0006
			Mercury					Immune system	0.00005			0.00005
		Ag-EU4 Total		6E-09		8E-09	1E-08		0.0003		0.0003	0.0006
		Ag-EU4 PCB Dioxin-like C	Congener TEQ	8E-10		1E-09	2E-09	Developmental	0.00001		0.00002	0.00003
		Surface Soil at Ag-EU5	Total PCBs	2E-08		2E-08	4E-08	Eyes, Immune system	0.0008		0.001	0.002
			Mercury					Immune system	0.00005			0.00005
		Ag-EU5 Total		2E-08		2E-08	4E-08		0.0008		0.001	0.002
		Ag-EU5 PCB Dioxin-like C	Congener TEQ	2E-09		3E-09	5E-09	Developmental	0.00004		0.00006	0.0001
		Surface Soil at Ag-EU6	Total PCBs	1E-10		2E-10	3E-10	Eyes, Immune system	0.000006		0.000008	0.00001
			Mercury					Immune system	0.000007			0.000007
		Ag-EU6 Total		1E-10		2E-10	3E-10		0.00001		0.000008	0.00002
		Ag-EU6 PCB Dioxin-like C	Congener TEQ	4E-12		6E-12	1E-11	Developmental	0.00000008		0.0000001	0.0000002
		Surface Soil at Ag-EU7	Total PCBs	3E-09		4E-09	6E-09	Eyes, Immune system	0.0001		0.0002	0.0003
			Mercury					Immune system	0.00002			0.00002
		Ag-EU7 Total		3E-09		4E-09	6E-09		0.0001		0.0002	0.0003
		Ag-EU7 PCB Dioxin-like C	Congener TEQ	3E-10		4E-10	8E-10	Developmental	0.000006		0.000009	0.00002
		Surface Soil at Ag-EU8	Total PCBs	1E-09		2E-09	3E-09	Eyes, Immune system	0.00007		0.00009	0.0002
			Mercury					Immune system	0.00004			0.00004
		Ag-EU8 Total		1E-09		2E-09	3E-09		0.0001		0.00009	0.0002
		Ag-EU8 PCB Dioxin-like C	Congener TEQ	2E-10		2E-10	4E-10	Developmental	0.000003		0.000005	0.000008

RISK SUMMARY

REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Chemical		Carcin	ogenic Risk			Non-Carcinog	enic Hazard Qı	uotient	
				Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil	Surface Soil	Surface Soil at C1-EU2	Total PCBs	1E-06		5E-06	7E-06					
		C1-EU2 Total		1E-06		5E-06	7E-06					
		Surface Soil at C2N-EU1	Total PCBs			2E-06	2E-06					
		C2N-EU1 Total				2E-06	2E-06					
		Surface Soil at C3N-EU1	Total PCBs			3E-06	3E-06					
		C3N-EU1 Total				3E-06	3E-06					
		Surface Soil at C3N-EU2	Total PCBs			4E-06	4E-06					
		C3N-EU2 Total	-			4E-06	4E-06	_				
		Surface Soil at C4S-EU1	Total PCBs			2E-06	2E-06					
		C4S-EU1 Total				2E-06	2E-06					

RISK SUMMARY

REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (Low Contact)

Medium	Exposure Medium	Exposure Point	Chemical		Carcin	ogenic Risk			Non-Carcinog	enic Hazard Q	uotient	
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Surface Soil	Surface Soil at C1-EU2 Total PCBs		2E-06		2E-06	4E-06					
		C1-EU2 Total		2E-06		2E-06	4E-06					
		Surface Soil at C3N-EU1	Total PCBs	1E-06			1E-06					
		C3N-EU1 Total		1E-06			1E-06					
		Surface Soil at C3N-EU2	Total PCBs	2E-06		1E-06	3E-06					
		C3N-EU2 Total		2E-06		1E-06	3E-06					

RISK SUMMARY

REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Receptor Age: Young Child

Medium	Exposure Medium	Exposure Point	Chemical		Carcin	ogenic Risk			Non-Carcinog	enic Hazard Qı	uotient	
				Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)			<u> </u>	Routes Total
Soil	Surface Soil	Surface Soil at C1-EU1 Total PCBs		2E-06		2E-06	4E-06					
		C1-EU1 Total	2E-06		2E-06	4E-06						
		Surface Soil at C3S-EU1	Total PCBs	4E-06		3E-06	7E-06					
		C3S-EU1 Total		4E-06		3E-06	7E-06					
		Total PCB Dioxin-like Congene										
		Surface Soil at C3S-EU2 Total PCBs		5E-06		4E-06	8E-06					
		C3S-EU2 Total		5E-06		4E-06	8E-06					

RISK SUMMARY

REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Chemical		Carcin	ogenic Risk			Non-Carcinog	enic Hazard Qı	uotient	
				Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil	Surface Soil	Surface Soil at C1-EU1 Total PCBs				2E-06	2E-06					
		C1-EU1 Total			2E-06	2E-06						
		Surface Soil at C3S-EU1	Total PCBs	1E-06		4E-06	6E-06					
		C3S-EU1 Total		1E-06		4E-06	6E-06					
		Surface Soil at C3S-EU2	Total PCBs	1E-06		5E-06	7E-06					
		C3S-EU2 Total		1E-06		5E-06	7E-06					
		Total PCB Dioxin-like Congene	r TEQ C3S-EU2 Total			2E-06	2E-06					

RISK SUMMARY

REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE

OU 4

Scenario Timeframe: Current/Future

Receptor Population: Recreational User (High Contact)

Medium	Exposure Medium	Exposure Point	Chemical	Carcinogenic Risk			Non-Carcinogenic Hazard Quotient					
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
							rtoutes rotai	rarget Organ(s)				rtoutes rotai
Soil	Surface Soil	Surface Soil at C1-EU1	Total PCBs	1E-06			1E-06					
		C1-EU1 Total	1E-06			1E-06						
		Surface Soil at C3S-EU1	Total PCBs	2E-06		1E-06	3E-06					
	C3S-EU1 Total		2E-06		1E-06	3E-06						
		Surface Soil at C3S-EU2	Total PCBs	2E-06		2E-06	4E-06					
		C3S-EU2 Total				2E-06	4E-06					

RISK SUMMARY

REASONABLE MAXIMUM EXPOSURE

ANNISTON PCB SITE OU 4

Scenario Timeframe: Current/Future Receptor Population: Farmer

Medium	Exposure Medium	Exposure Point	Chemical of Potential	Carcinogenic Risk				Non-Carcinogenic Hazard Quotient					
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure	
							Routes Total	Target Organ(s)				Routes Total	
Soil	Surface Soil	Surface Soil at Ag-EU1	Total PCBs	1E-06		2E-06	3E-06						
		Ag-EU1 Total		1E-06		2E-06	3E-06						
		Surface Soil at Ag-EU3	Total PCBs			1E-06	1E-06						
		Ag-EU3 Total			1E-06	1E-06							